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Abstract
This paper presents the system description of the Hub team participating in HASOC2020: Hate Speech
and Offensive Content Identification in Indo-European Languages. The focus of this shared task research
is to identify hateful or offensive content in English, German, and Hindi comments posted on Twitter.
Each language consists of two tasks, the first of which can be seen as a coarse-grained binary classification
task, and the other can be seen as a fine-grained quaternary classification task. We only participated
in the English task and the German task. According to our analysis of the task description and data
set, we use two fine-tuned pre-trained transformer models ALBERT and BERT for the English task and
the German task. In this paper, we will discuss the experiments and results of the English task and the
German task.
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1. Introduction

Since 2011 was known as the first year of the mobile Internet, the number of online social media
and social media users have shown a spurt of growth. In the context of the ever-expanding
user community, coupled with the free and interactive characteristics of online social media
communication. As a result, many issues worthy of our attention have been exposed in online
social media, such as the lack of communication norms and the out-of-control of information
dissemination, which makes the dissemination of online social media prone to various negative
functions. The negative effects of cyberbullying, online witch hunts, fake news, and privacy
violations in social media bring huge risks to individuals, communities, companies, and society
as a whole [1]. Therefore, research on how to identify these negative influence speeches
in social media has great value and significance. Academia, social media companies, and
technology companies have also realized the importance of this issue. They have been investing
a lot of technology and funds in identifying offensive languages [2]. This also provides great
opportunities and challenges for natural language processing.
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The task goal proposed by the HASOC2020 task organizer team is to identify hate speech and
offensive content from the comment data set obtained from the online social media Twitter [3].
The annotated data set provided by the competition organizer team contains three different lan-
guages (English, German, and Hindi) [4]. Every language has the same task A and task B. In task
A, we need to perform coarse-grained binary classifications of the data set: Non-Hate-Offense
(NOT) and Hate and Offensive (HOF). In task B, we need to perform fine-grained quaternary
classifications of the same data set: Hate speech (HATE), Offensive (OFFN), Profan (PRFN),
and Non-Hate Offensive (NONE). There are many ways to try to complete the requirements
of the tasks mentioned above, such as some commonly used methods in machine learning
Naive Bayesian Model (NBM), Support vector machine (SVM), K-nearest neighbors (KNN), etc.
Besides, there are some methods in deep learning such as Convolutional Neural Networks
(CNN), Recurrent Neural Networks(RNN) [5], Long Short-Term Memory(LSTM) [6], etc. After
analyzing the data, we learned that the main difficulties and challenges in completing the task
are: the amount of data of different categories of labels is not balanced; the distinction between
HATE, OFFN, and PRFN in the fine-grained quaternary task is not obvious; and the noise caused
by the data itself. However, many recent studies have shown that Pre-Trained Transformer
Language Models have achieved state-of-the-art results on many tasks in natural language
processing(NLP) [7].

Therefore, combining the excellent performance of Pre-Trained Transformer Language Mod-
els on many NLP tasks and the analysis of the best result method model in Semantic Evaluation
2020(SemEval-2020) task 12 by Zampieri et al. [8] In terms of model selection, we use Bidi-
rectional Encoder Representations for Transformers (BERT) [9] and A Lite BERT (ALBERT)
[10], and fine-tune the two models to complete the English task and the German task. In terms
of data preprocessing, we perform different processing methods according to the different
characteristics of task A and task B. In a second step, we used the preprocessed data as input
for the fine-tuned model for training. Finally, the trained model is used to predict the result of
the test set.

2. Related Work

In recent years, issues related to the identification of hate speech have received increasing
attention. In the recently concluded SemEval-2020: Task 12 on Multilingual Offensive Language
Identification in Social Media (OffensEval-2020) attracted many participants to participate,
making OffensEval-2020 the most popular in SemEval-2020 One of the tasks [8]. The difference
between hate speech and other NLP tasks is that hate speech may have strong cultural impli-
cations. In other words, in different cultural contexts, the same sentence may or may not be
considered offensive [11].

Although the feature sets concerned in different methods of hate speech recognition are very
different, in general, these methods are mainly focused on supervised learning. Simple Surface
Features similar to the bag-of-words model can provide very clear and easy-to-understand
information in text classification tasks. Authors using this method usually merge multiple
larger n-grams into a feature set [12] [13]. However, to further improve the performance, the
combination with additional features is required. The experiment of Nobata et al. verified this



method [14]. Using bag-of-words similar methods usually require specific words to appear in the
training set and test set. Therefore, in later research work, people turned their attention to Word
Generalization Features. Use the artificial neural network method to train word embeddings
on the corpus, and use the distance between the vectors to indicate the semantic similarity of
different words. For tasks similar to identifying hate speech, we usually classify entire sentences
or a complete paragraph. Djuric et al. proposed a method of directly using embedding to
represent the entire text and proved its effectiveness [15].

The Lexical Resources method is to construct a list of words related to hate speech. The
vocabulary list contains words and phrases of different performance levels. Besides, each
vocabulary item will also have an assigned weight to represent the degree of influence on
the discrimination result. However, comparing the two methods mentioned above (Simple
SurfaceFeatures and WordGeneralization Features), their common problem is that they fail to
explore the role of contextual information [14]. Hate speech is highly dependent on contextual
information [12]. Methods such as simply using keywords to identify hate speech cannot achieve
the desired results. Dinakar et al. used Knowledge-Based Features to identify homosexual
and bisexual-related hate speech [16]. This scheme can use context and knowledge feature
information to identify hate speech, but it is limited by the knowledge feature domain framework
and is only suitable for a small number of specific tasks. Recent research results show that
the Pre-Trained Language Model based on the Transformer architecture has great advantages
whether it is at the word level or contextual information [7].

As mentioned in the third paragraph of the Introduction(§1), in this paper, we use two
pre-trained language models based on the Transformer architecture: BERT and ALBERT to
complete the detection of hate speech in two languages: English and German.

Table 1
The label statistics of the initial training set and test set of English and German in subtask A

Language Sub-Task A HOF NOT Total

English Training set 1856 1852 3708
English Test set 423 391 814
German Training set 673 1700 2373
German Test set 134 392 526

3. Data and Methods

3.1. Data Description

The annotation data set provided by the task organizer team comes from tweets on Twitter. We
only analyze the data sets of the English tasks and German tasks that we participated in. For
subtask A, the label distribution of the English training set is very uniform(50%,50%), on the
contrary, the label distribution of the German training set is very uneven(28%,72%). For subtask
B, the distribution of English training set and German training set labels in the training set is
very imbalanced. The common point of the label distribution of the two languages is that the



NONE label ratio is very high(50%,72%), and the HATE and OFFN label ratios are small. Since
the text of the training set comes from tweets, the content contains many non-letter symbols.
For example, URL, emoticons, some unknown letter combinations, numbers, etc. Some data
examples are given in the Data Preprocessing(§4.1). The training set label statistics for English
and German can be found in Table 1 and Table 2.

Table 2
The label statistics of the initial training set and test set of English and German in subtask B

Language Sub-Task B HATE OFFN PRFN NONE Total

English Training set 158 321 1377 1852 3708
English Test set 25 82 293 414 814
German Training set 146 140 387 1700 2373
German Test set 24 36 88 378 526

Figure 1: Fine-tuned ALBERT and the fine-tuned BERT

3.2. Fine-tuned of ALBERT and BERT

The architectures of ALBERT base and BERT base are both composed of 12-layer Transformer.
Compared with the BERT model, the result of the original embedding parameter P is the product
of the vocabulary size V and the hidden layer size H. ALBERT factorizes the Embedding matrix
by using a lower-dimensional embedding space of size E and then project it to the hidden space.

𝑉 ∗ 𝐻 = 𝑃 → 𝑉 ∗ 𝐸 + 𝐸 ∗ 𝐻 = 𝑃 (1)



Different from H=E in BERT, when H≫E, the number of parameters of ALBERT has a significant
reduction. Another big difference from BERT is that ALBERT’s default decision is to share all
parameters across layers [10]. Based on these improvements, the training effect of ALBERT is
better than that of BERT.

The final result we submitted was obtained using fine-tuned ALBERT and BERT models. For
ALBERT, the output matrix shape of the last four layers is the same([batch_size, sequence_length,
hidden_size]). we get the 0-dimensional(batch_size) and 2-dimensional(hidden_size) of the last
four layers of matrices, and then splice them with the pooler_output([CLS]) output matrix to
obtain a new matrix. Finally, input this new matrix to the classifier(linear classifier ).

For BERT, we get the output matrices of the last four hidden layers. Then, we reshape
the output of the last four hidden layers of BERT to obtain four 4-dimensional output ma-
trices ([batch_size, sequence_length, hidden_size] reshape to [batch_size, 1, sequence_length,
hidden_size]). Next, input these four matrices into the TextCNN network[17]. After that, con-
nect the pooler_output([CLS]) with the four output matrices of TextCNN. Finally, input the
matrix obtained in the previous step into the classifier(linear classifier ) and a layer of softmax
[18]. In TextCNN, we use a three-layer network with a convolution kernel size of 3, 4, and 5.
The number of convolution kernels is 256. Compared with the sequential structure of LSTM,
CNN can better recognize the semantic information of a tweet. Because some orders in tweets
will be changed by various noises. The detailed structure of the two models is shown in Figure
1.

4. Experiment and Results

4.1. Data Preprocessing

According to the analysis of the data in the previous chapter (§3.1), we preprocessed special
symbol data, numeric data, emoji, character data, stop words, and other symbols. The solution
we adopted is to replace some useful information such as names, URLs, numbers, and delete
other symbols that need to be preprocessed. Such as all emoticons and all punctuation will be
deleted. As is shown in the comparison case below.

• Before: RT @airjunebug: When you’re from the Bay but you’re really a NY nigga at
heart♡!!!!!!!!!!!. W/ @supportcaleon https://t.co/mZ8BAYlnlf;
After : username when you are from the bay but you are really newyork nigga at heat
username url

• Before: ”Gutschein ””-50% REBELITA Fleecepulover für Frauen!”” https://t.co/EC0VX6LWYj;
After : guts che number rebel fleece pul over fr frauen url

4.2. Experiment setting

Refer to the analysis of Zampieri et al. in the OffensEval-2020 competition [8]. For the English
subtask A, we use the fine-tuned ALBERT, and the English subtask B and the German task
we use the fine-tuned BERT. For the training data set, we use preprocessed data in English



Table 3
Comparison of the results of subtask A and subtask B on the validation set when the data is preprocessed
and without preprocessing

Task type/score Unprocessed data set Processed data set

Subtask A English subtask A German subtask A English subtask A German subtask A
F1-score 0.8750 0.8031 0.8932 0.8141

Subtask B English subtask B German subtask B English subtask B German subtask B
F1-score 0.6142 0.6070 0.6041 0.5925

and German subtask A, while in English and German subtask B we use data that has not been
preprocessed. Because in the course of our experiments, we found that the preprocessed data
can have a higher score in subtask A, on the contrary, the data set that is not preprocessed in
subtask B has a higher score. We analyze this result because subtask B is a more fine-grained
classification task, and the symbols preprocessed by us may be helpful to the classification result.
For example, information about the frequency of URL mentions and punctuation, comments
and token length, capital letters, words not found in English dictionaries, and the number of
non-alphanumeric characters in the token [11]. In the process of using BERT for training, we
unfreeze the first four layers in BERT-base.

1. English subtask A: We choose the ALBERT-base-v21 English pre-training model for fine-
tuning (§3.2), and then perform five-fold cross-validation on the training set. The loss
function chooses BCEWithLogitsLoss (Binary Cross Entropy With Logits Loss) function
provided by PyTorch. The epoch, batch size, maximum sequence length, and learning rate
for the subtask are 5, 32, 50, and 4e-5, respectively.

2. English subtask B: In this subtask, we use the English BERT-base pre-training model. For
the data set, split the original unprocessed training set into a new training set and a validation
set in proportion (8:2). The loss function selects the CrossEntropyLoss function provided
by PyTorch. The activation function in TextCNN is Mish. The epoch, batch size, maximum
sequence length, and learning rate for the subtask are 5, 32, 150, and 5e-5, respectively.

3. German subtask A: For the German subtask A, we choose the German BERT2 pre-training
model. The loss function chooses BCEWithLogitsLoss (Binary Cross Entropy With Logits
Loss) function. After the original training set is preprocessed, it is divided into a new training
set and a validation set in proportion(8:2). The epoch, batch size, maximum sequence length,
and learning rate for the subtask are 5, 32, 50, and 4e-4, respectively.

4. German subtask B: Different from German subtask A, the German subtask B chooses the
CrossEntropyLoss function in the loss function. The epoch, batch size, maximum sequence
length, and learning rate for the subtask are 5, 32, 150, and 3e-5, respectively.

1https://huggingface.co/albert-base-v2
2https://huggingface.co/bert-base-german-cased

https://huggingface.co/albert-base-v2
https://huggingface.co/bert-base-german-cased


4.3. Analysis of Results

In this competition, the evaluation index given by the task organizer is macro-average F1-score.
The final published results are verified by the competition organizers on a private data set. In
subtask A and subtask B, we use preprocessed and unprocessed data for training respectively.
In our experiment, subtask A uses preprocessed data to get better results, and subtask B has
poor results on the preprocessed data. Their comparison results when tuned to the best effect
are shown in Table 3.

In the English subtask A, the training data is relatively balanced, so the prediction result of
the model is not very bad. But in the German subtask A, due to the imbalance of the training set,
and the results we submitted did not use k-fold cross-validation. As a result, the generalization
ability of the model is not very strong, and the result is not ideal. For the two subtasks B,
the training data is not only unbalanced, but also the emotional tendency of the labels is very
similar, so the scores obtained by the model are generally low. Our score and the best result
score in the final results announced by the competition organizer team can be obtained in Table
4.

Table 4
In the English task and the German task, our score and the best result score

Language subtask A Subtask B

English
Best F1-score:0.5152 Best F1-score:0.2652
Our F1-score:0.4917 Our F1-score:0.2649

Geman
Best F1-score:0.5235 Best F1-score:0.2831
Our F1-score:0.4953 Our F1-score:0.2567

5. Conclusion

The work described in this paper is submitted to HASOC (2020): Hate Speech and Offensive
Content Identification in Indo-European Languages. In our work, we have conducted experi-
ments and researches on all tasks belonging to the two languages of English and German. We
use fine-tuning ALBERT and fine-tuning BERT+TextCNN to complete this task. In English
subtask A, we use ALBERT and 5-fold cross-validation, and our result is only 0.0235 lower
than the first place. In the other three subtasks, we use the BERT-based model to complete the
experiment. In the experiment, we also explore the impact of data preprocessing on the results
of different tasks. In the binary classification task, the result obtained by using the preprocessed
training set data is better than the result obtained by using the original training set data. In
the fine-grained quaternary task, using the training set data without preprocessing has better
results than using the processed training set data. In future work, we hope that better models
and methods can be used to improve the effect of identifying hate speech.
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