CEUR-WS.org/Vol-2826/T2-20.pdf

An Ensemble Model for Hate Speech and Offensive
Content Identification in Indo-European Languages

Anusha M D, H L Shashirekha

Department of Computer Science, Mangalore University, Mangalore, Karnataka, India

Abstract

Hate speech and offensive content is an attack that is coordinated towards a gathering of individuals
or society based on their religion, gender, color, and so on and poses a threat to society. This type of
content is increasing day by day with the increasing use of social media such as Facebook, WhatsApp,
Instagram, etc. Identifying such texts at the earliest to avoid them getting viral on social media creating
a negative impact on society is the need of the day. Analyzing these voluminous and every growing
text manually is challenging, time-consuming, and error-prone. Further, much of the existing works to
identify hate speech and offensive content focuses on high resource languages such as English, Spanish,
etc. In this paper, we, team MUM, describe the work submitted to Hate Speech and Offensive Content
Identification in Indo-European Languages (HASOC) 2020, a shared task in Forum for Information Re-
trieval Evaluation (FIRE) 2020. In the proposed methodology, we combine CountVectorizer and TF-IDF
transformer with additional text-based features to build an ensemble of Gradient Boosting, Random For-
est and XGBoost classifiers, with soft voting. The proposed approaches obtained Sth, 14“‘, 7“‘, S'd, 13th
and 6™ rank for English, German and Hindi Subtasks A and B respectively.

Keywords

Machine learning, Text Classification, Ensemble learning

1. Introduction

Social media is a global place wide open for online users to share their thoughts and opinions.
Various benefits of social media come with several challenges including hate speech, offensive
and profane content getting published targeting an individual, a group or a society. Hate
speech and other offensive and objectionable content in online socialization have seriously
affected people’s daily life leading to depression or suicide in the worst case. Many nations
have restricted the online media content subject to the condition that the content should not
target an individual or a group or trigger any crime. Further, social media companies such as,
YouTube, Facebook, and Twitter have their own approaches to eliminate the hate speech content
or anything which negatively affects the society. However, detecting such objectionable content
at the earliest to curb the menace of spreading such news online is still a major challenge faced
by social media companies [1] and researchers.

Characterizing and understanding hate speech is hard. Researchers have explored several
algorithms starting from the early lexicon based approaches to the latest Neural Network

FIRE °20, Forum for Information Retrieval Evaluation, December 16-20, 2020, Hyderabad, India.

EMAIL: anugowda251@gmail.com (Anusha M D); hlsrekha@gmail.com (H L. Shashirekha)

URL: https://mangaloreuniversity.ac.in/dr-h-I-shashirekha (H.L. Shashirekha)

© 2020 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR Workshop Proceedings (CEUR-WS.org)

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

approaches to detect hate speech and objectionable content. Nevertheless, some algorithms
work better on some datasets, but the same algorithms may not give even an average performance
on some other datasets. So, it is hard to generalize that a specific approach is good for all datasets.
Further, many of the hate speech or objectionable content detection research work focus on the
high resource languages such as English and very little attention is directed to other languages
in general and Indian languages in particular. In this paper, we, team MUM, propose an ensemble
of Machine Learning (ML) algorithms for hate speech and offensive content identification in
Indo-European languages namely, English, Hindi, and German in a shared task called HASOC
2020! of Forum for Information Retrieval Evaluation (FIRE) 2020%.

HASOC 2020 involves two subtasks for each language: i) Subtask A is a typical binary
classification problem which identifies whether a given text contains “HOF” i.e., hate, offensive,
and profane content or “NOT” i.e., no hate, offensive, and profane content and ii) Subtask B is
a multi-class classification problem of identifying whether the “HOF” labeled text in Subtask
A contains hate speech, offensive or profane content and labeling it as HATE, PREN, or OFFN
respectively. More details about the tasks are given in competition page and reference paper
[2]. The rest of the paper is sorted out as follows. Section 2 highlights the related work and
the proposed methodology is described in Section 3. Experiments and results are portrayed in
Section 4 and the paper finally concludes in Section 5.

2. Related Work

Hate Speech detection is of incredible significance and is attracting numerous researchers.
Several recent papers give a good introduction to the issues associated with hate speech identifi-
cation [3]. Some of the important research works related to detecting hate speech and offensive
content is given below:

Davidson et. al. [4] trained a set of multi-class classifiers namely Logistic Regression, Naive
Bayes, Decision Trees, Random Forests and Linear SVM to characterize tweets into one of
three classes, namely, hate speech, offensive but not hate speech, neither offensive and nor
hate speech. Their model obtained a precision of 0.91, recall of 0.90 and an F1 score of 0.90 for
the best performing model. A hate speech and offensive content detection model submitted to
HASOC 2019 by Urmi Saha et. al. [5] uses a list of hate words for feature engineering to build
ML approaches for English and their approach on the test set provided by HASOC 2019 achieved
accuracies of 0.68%, 0.65% and 0.66% for English language subtasks 1, 2 and 3 respectively. An
automatic tweet categorization system proposed by Gaydhani et. al. [6] categorizes tweets into
three classes namely, hateful, offensive and cleaned. They performed a comparative analysis
of the ML classifiers namely Naive Bayes, Logistic Regression and SVM, considering a few
estimations of n in n-grams and TF/IDF standardization strategies on the Twitter dataset. For
a combination of two versions of Crowdflower® * and hate speech’® datasets they obtained
an accuracy of 95.6% as best performance for LR classifier. Rajalakshmi et. al. [7] presented

"https://hasocfire.github.io/hasoc/2020/
*http://fire.irsi.res.in/fire/2020/home
*https://data.world/crowdflower/hate-speech-identification
*https://data.world/ml-research/automated-hate-speech-detection-data
*https://github.com/ZeerakW/hatespeech

an ensemble method using Logistic Regression, Support Vector Machine and Random Forest
Classifiers (RFC) and submitted to HASOC 2019 shared task. They used Mutual Information
and CHI square feature selection methods and applied for Subtask A to classify a given input
as "HATE" or "NOT". Best performance of the system is reported for RFC using CHI square
feature selection method with accuracy of 81% and 64% on German and Hindi language tweets
respectively on the dataset provided by organizers. The framework presented by Hamada et. al.
[8] in HASOC 2019 shared task includes the Stochastic Gradient Descent (SGD) optimization
algorithm that has been utilized for optimizing the parameters of the linear classifier, while SVM
with linear kernel utilizes Lagrange multipliers to tackle the improvement issue. The misfortune
work used in the linear classifier was the "Pivot" loss function. Their model accomplished a
overall macro-averaged F1-score of 66.12%, 42.36% and 42.23% for English subtask 1, 2 and 3
respectively using SVM, 46.37%, 23.46% for German Subtask 1 and 2 respectively using MLP,
and 75.94%, 47.20% and 52.38% on Hindi Subtask 1 using MLP, Subtask 2 using SVM and Subtask
3 using MLP respectively.

3. Methodology

The architecture of the proposed Ensemble model to detect hate speech and offensive content
using the training set provided by the organizers of HASOC 2020 is as shown in Figurel and it
contains the following modules:

Feature

Training .
=3 | Preprocessing |==—_» .
Data P 8 Extraction | Random Forest
> Classifier
- — - -

I concatenation | > Gradient Soft Voting
Boosting Classifier Classifier

- ——r = -
’ XGBoost
Text/NLP | Classifier

based feature

v

Figure 1: Architecture for building an Ensemble model

3.1. Preprocessing

Preprocessing transforms the textual content into a structure that is acceptable by the ML
algorithms. The initial step in preprocessing is converting emojis to corresponding text in
English language dataset and removing them in Hindi and German language dataset as we didn’t
get any libraries to convert emojis to text for these languages. Emojis are visual representation
of emotions, object or symbol which can be inserted individually or together to create a string.
As they are powerful representations of emotions converting them to text will give valuable
words. All punctuation symbols, numeric data, stop words, frequently occurring words and
uninformative words which do not contribute to the text classification are removed. Further,

Lemmatization is applied to reduce the words into their root forms. The remaining words are
given as input to the feature extraction step to extract features.

3.2. Feature Extraction

In this step, text data will be transformed into feature vectors using the following feature
extraction methods:

. CountVectorizer® is a highly flexible feature representation for text and is a simple
method of changing text to vector. It tokenizes the text to construct a vocabulary of the
words present in the corpus and checks how frequently each word from the vocabulary
is available in every single text in the corpus.

« TF-IDF Transformer’ computes the IDF values by calling tfidf _transformer on the word
counts. TF-IDF which speaks the relative importance of the word in the document and the
whole corpus is a common method utilized in any text analysis application including text
classification. It gains more information from longer documents and is ideal for problems
with many words and larger document files.

« Text based features helps in improving text classification models. The total number
of word count, character count, punctuation count, and the normal length of the words
present in the corpus is utilized for all three languages. Further, upper case count, title
word count, the frequency distribution of Part of Speech tags i.e., noun count, verb count,
adjective count, adverb count, pronoun count is applied only to English language text.

The preprocessed text is converted into vector representation using CountVectorizer and TF-IDF
transformer and is combined with text-based features to improve text classification models.

3.3. Classifier Construction

In this phase, the extracted features are used to train Random Forest (RF), Gradient Boosting
(GB) and XGBoost Classifier models to identify hate speech and offensive content. RF classifiers
are reasonable good for managing the high-dimensional noisy text data [9]. GB classifiers are
a group of powerful ML algorithms that have indicated significant success in a wide range of
applications. They are exceptionally altered to the specific needs of the application, like being
learned with respect to different loss functions [10]. XGB classifier also has gradient boosting
at its core. Nevertheless, the contrast between simple GB algorithm and XGB algorithm is that
unlike in GB, the process of addition of weak learners does not happen one after the other; it
takes a multi-threaded approach whereby proper utilization of the CPU core of the machine is
utilized, leading to greater speed and performance [11].

The performance of a classifier depends on the dataset as well and no classifier gives good
results for all the datasets. Hence, no classifier can be generalized as the best classifier. So
instead of considering a single classifier, an ensemble of classifiers where the weakness of one
classifier is overcome by the strength of other classifier is proved to give good results when

®https://scikit-learn.org/stable/modules/generated/sklearn.feature. xtraction.text.CountV ectorizer.html
"https://scikit-learn.org/stable/modules/generated/sklearn feature. wtraction.text. T fidf V ectorizer.html

compared to an individual classifier. In this work, an ensemble of three classifiers namely, RF,
GB and XGB is used for the prediction of input text based on soft voting.

The ensemble classifier accepts the test data provided by the organizers of HASOC 2020
and assigns either a ‘NOT’ or ‘HOF label for Subtask A and one of ‘HATE’, ‘PROF’, and ‘OFF’
for Subtask B after preprocessing and feature extraction. Architecture of Ensemble model for
predicting the class label of test data is shown in Figure 2.

. Feature
Test set Preprocessing Extraction
k4
[Concatenation]—) Soft voting —Pl Label
classifier
L g

o | Text™NLP
“| based feature

Figure 2: Ensemble model for predicting the class labels of test data

4. Experiments and Results

To study the performance of the proposed method on English, German and Hindi datasets,
various experiments were conducted and submitted to the organizers of HASOC 2020 for further
evaluation. However, in this paper, we have described the model selected by the organizers
as the best among our other models. The code is implemented in Python using Scikit-learn,
Machine Learning in Python®.

Training and development dataset provided by the organizers of HASOC 2020 shared task
for two Subtasks A and B for English, German and Hindi is shown in Table 1. Statistics of
dataset show that for English Subtask A, both training and development set are balanced but
German and Hindi training and development set are imbalanced. Further, for English Subtask
B training and development set are heavily imbalanced and German and Hindi training and
development set are not balanced. As all posts with ‘NOT’ labels in Subtask A will be ‘NONE’
for Subtask B, the posts with NOT’ labels are excluded during training models for Subtask B
and for submission they are added with ‘NONE’ label directly. The submissions were evaluated
on 15% of the private dataset and the results obtained in terms of F1 Macro average and ranks
are shown in Table 2.

*https://scikit-learn.org/stable

Table 1
Details of datasets provided by HASOC 2020

Train set Development set
Subtasks | No. of posts English | German | Hindi | English | German | Hindi
HOF 1856 673 847 423 134 197
Subtask A NOT 1852 1700 | 2116 391 392 | 466
PRFN 1377 387 148 293 88 27
HATE 158 146 234 25 24 56
Subtask B OFFN 321 140 | 465 82 36 87
NONE 1852 1700 2116 414 378 493
Total 3708 2373 2963 814 526 663
Table 2
Performance of proposed approach in terms of F1 Macro average
Language English German Hindi
Subtask F1 Macro Rank F1 Macro Rank F1 Macro Rank
average average average
Subtask A 0.5046 5 0.5106 7 0.5033 13
Subtask B 0.2596 15 0.2595 3 0.2488 6

5. Acknowledgements

We would like to thank HASOC 2020 shared task organizers for organizing this interesting
shared task and for replying promptly to all our inquiries. We further thank the anonymous
reviewers for their valuable feedback.

6. Conclusion

In this paper, we describe the work submitted by our team MUM to HASCO 2020 shared task in
FIRE 2020 to identify hate and offensive content in Indo-European Languages. The problem
of identifying hate and offensive content is studied experimentally on English, German and
Hindi language datasets provided by the organizers. Using an ensemble of three classifiers
namely, Random Forest, Gradient Boosting and XGBoost, with soft voting our team obtained
competitive results for both the subtasks of all three languages. We would like to explore more
features and more classifiers to identify hate and offensive content in Indian languages.

References

[1] R. Kumar, A. K. Ojha, S. Malmasi, M. Zampieri, Benchmarking aggression identification
in social media, in: Proceedings of the First Workshop on Trolling, Aggression and
Cyberbullying (TRAC-2018), 2018, pp. 1-11.

[2] T. Mandl, S. Modha, G. K. Shahi, A. K. Jaiswal, D. Nandini, D. Patel, P. Majumder, J. Schéfer,
Overview of the HASOC track at FIRE 2020: (Hate Speech and Offensive Content Iden-

[10]

[11]

tification in Indo-European Languages), in: Working Notes of FIRE 2020 - Forum for
Information Retrieval Evaluation, CEUR, 2020.

T. Mandl, S. Modha, P. Majumder, D. Patel, M. Dave, C. Mandlia, A. Patel, Overview of the
hasoc track at fire 2019: Hate speech and offensive content identification in indo-european
languages, in: Proceedings of the 11th Forum for Information Retrieval Evaluation, 2019,
pp- 14-17.

T. Davidson, D. Warmsley, M. Macy, I. Weber, Automated hate speech detection and the
problem of offensive language, arXiv preprint arXiv:1703.04009 (2017).

U. Saha, A. Dubey, P. Bhattacharyya, Iit bombay at hasoc 2019: Supervised hate speech
and offensive content detection in indo-european languages., in: FIRE (Working Notes),
2019, pp. 352-358.

A. Gaydhani, V. Doma, S. Kendre, L. Bhagwat, Detecting hate speech and offensive
language on twitter using machine learning: An n-gram and tfidf based approach, arXiv
preprint arXiv:1809.08651 (2018).

R. Rajalakshmi, B. Y. Reddy, Dlrg@ hasoc 2019: An enhanced ensemble classifier for hate
and offensive content identification., in: FIRE (Working Notes), 2019, pp. 370-379.

H. A. Nayel, H. Shashirekha, Deep at hasoc2019: A machine learning framework for hate
speech and offensive language detection., in: FIRE (Working Notes), 2019, pp. 336-343.
M. Z. Islam, J. Liu, J. Li, L. Liu, W. Kang, A semantics aware random forest for text
classification, in: Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, 2019, pp. 1061-1070.

A. Natekin, A. Knoll, Gradient boosting machines, a tutorial, Frontiers in neurorobotics 7
(2013) 21.

S. Ramraj, N. Uzir, R. Sunil, S. Banerjee, Experimenting xgboost algorithm for prediction
and classification of different datasets, International Journal of Control Theory and
Applications 9 (2016) 651-662.

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Preprocessing
	3.2 Feature Extraction
	3.3 Classifier Construction

	4 Experiments and Results
	5 Acknowledgements
	6 Conclusion

