CEUR-WS.org/Vol-2826/T5-5.pdf

Boosting a kNN classifier by improving feature
extraction for authorship identification of source code

Yves Bestgen

“Université catholique de Louvain, 10 place Cardinal Mercier, Louvain-la-Neuve, 1348, Belgium

Abstract

This paper presents the system developed by the LAST to identify the author of a source code. It combines
the classical 1-nearest neighbor algorithm with a feature extraction step whose main characteristics are the
use of indentation-aware tokenization to gather n-grams and skip-grams, which are weighted by Relevance
Frequency. Its performance is over 92% correct identification of the author among 1,000 potential programmers.

Keywords

1-nearest neighbor, indentation-aware tokenization, skipgrams, relevance frequency supervised weighting

1. Introduction

This paper presents the system developed by the Laboratoire d’analyse statistique des textes (LAST)
for the PAN@FIRE 2020 Task on Authorship Identification of SOurce COde (AI-SOCO). This task aim
is to identify the programmer who wrote a source code. As stressed by the challenge organizers [1],
being able to perform this task effectively should make it possible to combat cheating in academic
and scientific communities. It could also help to fight against copyright infringement and intervenes
in code integrity investigations [2].

Authorship identification is a question that has held attention for many years, especially in the
literary [3, 4, 5] and history fields [6]. More recently, due to the development of computers and the
Internet, works have focused on plagiarism and the re-use of sources without citing them adequately.
Identifying the author of a literary text or a source code are two relatively different tasks, not only
because of the differences between these genres of documents [2], but also because the potential
authors of a literary work are usually well known and in very small numbers while the number of
potential programmers is very large. This is for example the case in the present shared task since
no less than 1,000 programmers must be discriminated. This task, therefore, appears a priori to be
particularly complex.

As in other areas of machine learning, the state-of-the-arts approach is based on Deep Learning
[7, 8, 9]. However, given the very large number of potential authors in this challenge, the classical
k-nearest neighbors (kNN) algorithm could prove to be very effective. In line with my previous re-
search ([3] for example), the main objective of the study is thus to try developing the most efficient
no deep learning system without using any additional resources such as pre-trained language models
or knowledge bases. To do this, special attention was put on tokenization, by trying to take into ac-
count the source code format style [10], on the feature set used, which includes skipgram [11], and

Forum for Information Retrieval Evaluation, December 16-20, 2020, Hyderabad, India
Q yves.bestgen@uclouvain.be (Y. Bestgen)

&} https://perso.uclouvain.be/yves.bestgen (Y. Bestgen)

® 0000-0001-7407-7797 (Y. Bestgen)

@ ® © 2020 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

L 1 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:yves.bestgen@uclouvain.be
https://perso.uclouvain.be/yves.bestgen
https://orcid.org/0000-0001-7407-7797
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

on the weighting of these features, by adapting relevance frequency, the supervised weighting scheme
proposed by [12].

The rest of this paper describes the materials collected by the challenge organizers, the system
developed, and the level of performance it has achieved. It also presents an analysis of the usefulness
of each of its components.

2. Data and Challenge

The organizers of the AI-SOCO task collected from the Codeforces site (http://codeforces.com), a web
platform on which programming contests are organized, 100,000 source codes in C++, 100 codes for
each of the 1,000 selected participants. These source codes have all been considered to be correct by
Codeforces. [1] provide useful statistics about this dataset.

This dataset has been divided into three sets: the training set composed of 50 source codes for each
of the 1,000 authors, the development set consisting of 25 source codes for each author, and the test
set also made up of 25 source codes for each author.

Author IDs were provided for the training and development sets, but not for the test set. Strangely
enough, the rules of the challenge forbade adding the development set to the training set to predict
the test set while the answers were provided. During the testing phase, each team could submit three
solutions that were evaluated using the accuracy metric, a logical choice given that the number of
instances in all categories is the same.

3. Developed System

The specificity of the developed system is clearly not in the supervised classification procedure used
since it is the classical kNN algorithm, but in the features and their weighting. The choices made
to try to arrive at the best possible classifier are described below. Each option was evaluated based
on a stratified sample of 5,000 instances of the development set (instead of the full set to speed up
the evaluation). From time to time, certain choices were also evaluated on the full development set
and on the training set using a Leave-one-out cross-validation technique (LOOCV) [13, 14]. Document
preprocessing and feature extraction were performed using the Statistical Analysis System (SAS). The
kNN algorithm was performed using a custom C program [15].

3.1. Indentation-Aware Tokenization

As underlined in the first works in source code authorship identification [16] (see [17] for a synthesis),
programmers can be discriminated by source code components such as preferred variable names and
ways of doing typical operations, but also by the code layout such as indentations and space between
and within instructions. For this reason, the tokenization step kept track of indentations. Concretely,
the contiguous spaces and tabs present at the beginning of a line are considered as tokens in the same
way as any other sequence of characters separated by space or tab. For example, the following two
lines (> and < marking the start and end of a line):

for(auto &p : elem.second) {<
> i = p.first;<

produce the following tokens (> and < marking the start and end of a token):

http://codeforces.com

> <
>for(auto<
>&p<

> <
>elem.second)<
>{<

> <
>i<

>=<

>p.first;<

In this tokenization, the space and the tab are distinguished from each other.

3.2. Features

The extracted features are composed of token n-grams with n ranging from 1 to 4. To reduce the size
of the data, n-grams longer than 40 characters, an arbitrary threshold, were discarded. As indentations
are considered as "normal" tokens, they are taken into account in the n-grams.

Skipgrams [11], n-grams of which one or several tokens located in the middle are replaced by a
placeholder, were also extracted, one from each 3-gram (a_b_c producing a_?_c) and three from each
4-gram (a_b_c_d producing a ? b ¢, a b ? d and a_? ? d). Minimum frequency thresholds were
applied to these different types of features: 30 for 1-grams, 50 for 2-grams and 40 for 3-grams, 4-
grams and skipgrams.

3.3. Weighting

Instead of the classic tf.idf frequently used in the field (for example [7]), the system proposed here
uses relevance frequency (rf), the supervised weighting factor of [12], which favors features that are
positively associated with the target category. Its formula is

a

rf =logy(2 +),

max(1, ¢)

where a is the number of instances in the target category in which this feature occurs and ¢ is the num-
ber of instances in all other categories in which this feature occurs. As this is a supervised weighting
scheme, it is computed on the training set only. This rf weighting is combined with a binary coding
(presence or absence) of the feature.

Since the category of an instance is ignored for the test set, [12] proposed to use for weighting
the unknown instance the weights of the category with which it is compared. If this approach is
technically feasible, it poses practical problems since it is necessary to reweight the features of an
unknown instance as many times as there are potential categories. The approach proposed by [18]
for other supervised weighting procedures was used instead. It consists of using the maximum weight
that the feature in question has received on all the categories considered in the learning set. The rf
weights used for the test set are therefore calculated by the same formula and on the same data as the
weights used for the training set.

3.4. Adding Centroids

While it was not obvious that this factor could be of much use, the centroid of each category was
added to its 50 instances in the training set. It is obtained by calculating the mean weight of all the

features present in at least one of these 50 instances.

3.5. L2 Normalization

The analyzes showed that the use of L2 normalization markedly improves the system performance.

3.6. Parameters for the kNN Algorithm

The analyzes carried out on the development set led to fix the kNN parameter k at 1 and to use the
classical Euclidean distance.

4. Analyzes and Results

4.1. Performance on the Test Set

As allowed by the rules of the challenge, three submissions were made on the test set. The first was
based on the system described above and obtained an accuracy of 0.9217 while its accuracy on the
development set was 0.9269. The other two systems submitted tried to account for the information
provided by the challenge organizers that the test material contained exactly 25 instances of each of
the 1,000 categories. More precisely, the classification was carried out by employing the best matching
first approach (see [19] for the use of this approach in a case of a pair-matching) and by stopping
assigning instances to a category when a sufficiently large number of instances had been assigned
to it. As this kind of information is obviously not available in real life and as these two submissions
scored only very slightly higher than to first one (0.9219 instead of 0.9217), they are not discussed in
more detail.

The system ranked fourth in the challenge out of 16 teams with 0.0294 less than the first (0.9511),
0.0119 less than the 3rd (0.9336) and 0.006 more than the 5th (0.9157). It is also interesting to compare
its performance with the TF-IDF kNN Baseline proposed by the organizers, which is based on the
standard sklearn tokenizer, a TF-IDF weighting applied to the 10,000 most frequent features, and a
kNN classifier with k = 25. It scored 0.6278 on the test material, 0.2939 lower than the system proposed
here.

4.2. Factors Affecting the System Performance

If the supervised learning procedure is very classic, the feature extraction is somewhat different from
what is usually done in the field. It is therefore useful to discuss the benefits provided by its different
components. To do this, Table 1 compares the full system described in section 3 (the system used
for the first submission) to a series of other systems obtained by ablation, modifying one component
at a time. The full system is therefore based on the indentation-aware tokenization, the n-grams (n
ranging from 1 to 4) and the skipgrams, the rf weighting, adding the centroids of the categories and
using k = 1 while for building the other systems only one of these components is modified like the
tokenization procedure, the weighting or the value of k. The accuracy scores reported in Table 1 were
obtained on a stratified sample of 5,000 instances taken from the development set.
Table 1 indicates that three factors have an important impact on performance:

+ Tokenization which, when done in the classical way, by simply separating tokens according to
the presence of space or tab, results in a performance decrease of 0.0464.

Table 1
Ablation Analysis of the Usefulness of the System Components

Systems Accuracy
Full system 0.9244
Standard tokenization 0.8780
Without skipgrams 0.9218
1&2&3-grams 0.9194
1&2-grams 0.9080
1-grams 0.8390
Tf.idf weighting 0.9192
Without centroids 0.9238
k=3 0.9222
k=5 0.9160
k=9 0.9030
k=25 0.8752

+ The extracted features since the system based only on 1-grams obtains an accuracy lower by
0.0354 compared to the full system. Adding each additional n-gram length improves perfor-
mance, but the gain provided by the 4-grams is small and less than that provided by the skip-
grams. It should be remembered, however, that three of the four types of skipgrams are based
on the 4-grams.

« The value of k has also a very important effect. The smaller the k, the better the performance,
a k of 25, as in the baseline proposed by the organizers, producing a loss of 0.0492.

The other two factors have a much smaller impact. This is particularly the case with the addition
of centroids (+0.0006). The rf weighting brings a gain of 0.005, which is a bit disappointing.

4.3. Qualitative Analysis

At first glance, it seemed difficult to imagine that it would be possible to achieve such a high level of
performance (let alone the level reached by the challenge best system) in a task that requires identify-
ing 1,000 different programmers based on 50 instances for each of them. So, I tried to understand why
this task was "so" simple. The main reason is that the vast majority of programmers in the datasets do
not try to hide their identity. Many of them systematically insert at the beginning or at the end of all
or almost all of their source codes metadata stored in block comments that distinguish them from all
the others. Many programmers also systematically insert preambles (idiosyncratic declarations and
insertion of standard declaration files) at the start of the code, which they systematically copy from
one program to another and therefore whose content and order are always identical.

There is, however, one special case that deserves mention here. Analysis of the errors made by
the system shows that it was unable to distinguish two programmers from each other, User IDs 91
and 147. The system makes more than 50% of errors on them, the errors made on one consisting of
assigning the source code to the other programmer and vice versa. The comparison of the source
codes of these two programmers shows that they both use very frequently the same metadata and
preambles around the C++ instructions needed to solve the problem as shown in Figure 1. Without
further information, it is difficult to understand the origin of this similarity.

uid = 91, pid = 74855

uid = 147, pid = 35348

W = = = S~
7/ VR | E | | T S | NS [
ol e]] s JE |
/17

#include <bits/stdc++.h>

#define ss second
#define ff first
#define pb push_back

using namespace std;

void err(istream_iterator<string> it){}
template <typename S37,typename... Args>
void err(istream_iterator<string> it,S37 a,Args...

typedef long long 11;
typedef long double 1ld;

11 n,m,x,y,w,z,t,k,d,ans,a[N],b[N];
string s,f[N];

int mainQ{
faster;
Ccin>n>>y>>x>>$;
reverse(s.begin(),s.end());
for(int i=0;i<y;i++){
if(i==x)s[i]="1"-s[i]+'0";
if(s[i]=="1")ans++;
}
cout<<ans;
return 0;

Welcome To My Maze!

#define faster ios::sync_with_stdio(@), cin.tie(@), cout.tie(@)
#define error(args...) {string _s=#args;replace(_s.begin(),_s.end(),"',"," ');sf

args){cerr<<*it<<" = "<<a<<(|

const long long N=300100,mod=1€9+7 ,mod2=1€9+9,mod3=998244353,5q=450 ,base=727, 1{

/A - = =
/2 S I | ST S I\ | S|
V772 T P R D VAR B |
17/

#include <bits/stdc++.h>

#define
#define
#define
#define
#define

ss second

ff first

pb push_back

faster ios::sync_with_stdio(@), cin.tie(@),

using namespace std;
void err(istream_iterator<string> it){}
template <typename S37,typename... Args>

void err(istream_iterator<string> it,S37 a,Args...

typedef long long 11;
typedef long double 1d;

const long long N=300100,mod=1e9+7,mod2=1e9+9,mod3=

11 n,m,x,y,w,z,t,k,d,ans,a[N],b[N];

int main(O{
faster;
cin>>n>>m;
for(int i=0;i<n;i++){
cin>>ali];
x=max(x,a[1]);

ans+=a[n-2];
ans-=a[n-1];

cout<<ans;
return 0;

Welcome To My Maze!

cout.tie(@)

args){cerr<<*it<<" = "<<a<<e

998244353 ,5q=450,base=727,1g

Figure 1: Source codes from two different programmers.

5. Discussion and Conclusion

The system developed by the LAST for the PAN@FIRE 2020 Task on Authorship Identification of
SOurce COde (AI-SOCO) was aimed at obtaining the best possible performance by combining a su-
pervised learning algorithm among the most classical with a feature extraction step as efficient as
possible. The classifier used is the 1-nearest neighbor algorithm. The features are extracted by a fully
automatic procedure exclusively from the training set. The performance achieved is over 92% cor-
rect identification of the author of a source code among 1,000 potential programmers, ranking the
system 4th out of 16 teams. Analyzes carried out on a sample of the development set indicate that
the indentation-aware tokenization, the extraction of n-grams from 1 to 4 tokens and skipgrams, and
setting the parameter k to 1 are at the source of the efficiency of the system, as well as, but to a
lesser extent, the use of relevance frequency, the supervised weighting scheme proposed by [12]. The
performance obtained on the test set seems rather high for a system that is based on an approach
as simple as kNN and which only uses training data without the addition of external knowledge or

precomputed embeddings.

An important weakness of the kNN algorithm is that it is biased in favor of the most frequent cat-
egories. In the present task, this is not a problem since the categories are balanced, but this weakness
should be kept in mind if the system is used with other datasets in which this condition is not met.

Another limitation of the system is that it is far from obvious that it could prove useful for the pur-
pose for which the AI-SOCO task was designed: to aid in the detection of cheating in the academic
community (https://sites.google.com/view/ai-soco-2020/task-description). The proposed system ben-
efits too much from the fact that the vast majority of programmers do not try to hide their identity,
systematically inserting at the beginning or at the end of all or almost all of their source codes, meta-
data which distinguishes them from all the others. When two different programmers use the same
metadata in their source code the system performance is very low. It would be interesting to deter-
mine what level of performance the proposed system could achieve when using only the parts of the
source codes that contain these metadata or, even more interesting, to determine the efficiency of
this system, but also of the other systems participating in this task [1], on source codes without these
metadata.

Regarding possible developments, it could be very fruitful to try to make tokenization more efficient
since the analyzes have shown that even the partial use of code formatting is very beneficial. Taking
inspiration from [9] could be particularly relevant.

Acknowledgments

The author wishes to thank the organizers of the AI-SOCO task for putting together this valuable
event and the two anonymous reviewers for their very helpful comments. He is a Research Associate
of the Fonds de la Recherche Scientifique - FNRS (Fédération Wallonie Bruxelles de Belgique). Compu-
tational resources have been provided by the supercomputing facilities of the Université Catholique de
Louvain (CISM/UCL) and the Consortium des Equipements de Calcul Intensif en Fédération Wallonie
Bruxelles (CECI).

References

[1] A.Fadel, H. Musleh, L. Tuffaha, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, P. Rosso, Overview of
the PAN@FIRE 2020 task on Authorship Identification of SOurce COde (AI-SOCO), in: Proceed-
ings of The 12th meeting of the Forum for Information Retrieval Evaluation (FIRE 2020), CEUR
Workshop Proceedings, CEUR-WS.org, 2020.

[2] C. Zhang, S. Wang, J. Wu, Z. Niu, Authorship identification of source codes, in: L. Chen,
C. S. Jensen, C. Shahabi, X. Yang, X. Lian (Eds.), Web and Big Data - First International
Joint Conference, APWeb-WAIM 2017, Beijing, China, July 7-9, 2017, Proceedings, Part I, vol-
ume 10366 of Lecture Notes in Computer Science, Springer, 2017, pp. 282-296. doi:10.1007/
978-3-319-63579-8_22.

[3] Y. Bestgen, Recherche en paternité littéraire : deux romans en quéte d’auteur, in: V. Martin-
Schmets (Ed.), Henri Vandeputte : Oeuvres complétes, volume 3, Tropismes, Bruxelles, 1992, pp.
379-404.

[4] W. M. A. Smith, The revenger’s tragedy: The derivation and interpretation of statistical results
for resolving disputed authorship, Computer and the Humanities 21 (1987) 21-55.

[5] H.H. Somers, Analyse statistique du style, Nauwelaerts, Louvain, 1962.

[6] F. Mosteller, D. L. Wallace, Inference in an authorship problem, Journal of the American Statis-
tical Association 58 (1963) 275-3009.

[7] M. Abuhamad, T. Abuhmed, A. Mohaisen, D. Nyang, Large-scale and language-oblivious code
authorship identification, in: D. Lie, M. Mannan, M. Backes, X. Wang (Eds.), Proceedings of the

https://sites.google.com/view/ai-soco-2020/task-description
http://dx.doi.org/10.1007/978-3-319-63579-8_22
http://dx.doi.org/10.1007/978-3-319-63579-8_22

[10]
[11]
[12]

[19]

2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto,
ON, Canada, October 15-19, 2018, ACM, 2018, pp. 101-114. doi:10.1145/3243734.3243738.
E. Bogomolov, V. Kovalenko, A. Bacchelli, T. Bryksin, Authorship attribution of source code:
A language-agnostic approach and applicability in software engineering, CoRR abs/2001.11593
(2020).

S. Gorshkov, M. Nered, E. Ilyushin, D. Namiot, V. Sukhomlin, Source code authorship identifica-
tion using tokenization and boosting algorithms, in: V. Sukhomlin, E. Zubareva (Eds.), Modern
Information Technology and IT Education, Springer International Publishing, 2020, pp. 295-308.
I. Krsul, E. H. Spafford, Authorship analysis: identifying the author of a program, Comput.
Secur. 16 (1997) 233-257. d0i:10.1016/S0167-4048(97)00005-09.

Y. Wilks, Reveal: the notion of anomalous texts in a very large corpus, Tuscan Word Centre
International Workshop, Certosa di Pontignano, Italy, 2005.

M. Lan, C. L. Tan, J. Su, Y. Lu, Supervised and traditional term weighting methods for automatic
text categorization, IEEE Trans. Pattern Anal. Mach. Intell. 31 (2009) 721-735. doi:10.1109/
TPAMI.2008.110.

P. A. Lachenbruch, R. M. Mickey, Estimation of error rates in discriminant analysis, Techno-
metrics 10 (1968) 1-11.

Y. Bestgen, S. Granger, J. Thewissen, Error patterns and automatic 11 identification, in:
S. Jarvis, S. Crossley (Eds.), Approaching Transfer through Text Classification: Explorations in
the Detection-based Approach, volume 3, Multilingual Matters, Bristol, UK, 2012, pp. 127-153.
Y. Bestgen, Détermination de la valence affective de termes dans de grands corpus de textes, in:
Actes du Colloque International sur la Fouille de Texte CIFT’02, INRIA, 2002, pp. 81-94.

L Krsul, Authorship analysis: identifying the author of a program, Department of Computer
Science Technical Reports TR-94-030, Purdue University, 1994.

S. D. Burrows, Source code authorship attribution, Ph.D. thesis, RMIT University, Melbourne,
2010.

L. Batal, M. Hauskrecht, Boosting KNN text classification accuracy by using supervised term
weighting schemes, in: D. W. Cheung, I. Song, W. W. Chu, X. Hu, J. J. Lin (Eds.), Proceedings of
the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, Hong Kong,
China, November 2-6, 2009, ACM, 2009, pp. 2041-2044. doi:10.1145/1645953.1646296.

Y. Bestgen, LSVMA : au plus deux composants pour apparier des résumé a des articles, in: Actes
de DEFT2011 : septiéme Défi Fouille de Textes, ATALA, 2011, pp. 105-114.

http://dx.doi.org/10.1145/3243734.3243738
http://dx.doi.org/10.1016/S0167-4048(97)00005-9
http://dx.doi.org/10.1109/TPAMI.2008.110
http://dx.doi.org/10.1109/TPAMI.2008.110
http://dx.doi.org/10.1145/1645953.1646296

	1 Introduction
	2 Data and Challenge
	3 Developed System
	3.1 Indentation-Aware Tokenization
	3.2 Features
	3.3 Weighting
	3.4 Adding Centroids
	3.5 L2 Normalization
	3.6 Parameters for the kNN Algorithm

	4 Analyzes and Results
	4.1 Performance on the Test Set
	4.2 Factors Affecting the System Performance
	4.3 Qualitative Analysis

	5 Discussion and Conclusion

