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Abstract

This paper describes the system proposed for addressing
the research problem posed in Task1 of scientific document
understanding (SDU@AAAI-2021): Acronym Identification.
We proposed an end-to-end model that takes the text as input
and corresponding to each word gives the label of word to be
acronyms (short-forms) or their meanings (long-forms). We
take experiment on several totally different ideas, including
features engineering, transformer model, multi-task learning,
Span and CRF. Our result shows that feature-based method
can handle this task well, and transformer-based models are
particularly effective in this task. Moreover, different model
frameworks complement each other. We achieved the best f1
score of 0.931 on test dataset and were ranked second.

Introduction
An obstacle of scientific document understanding (SDU) is
the extensive use of acronyms which are shortened forms
of long technical phrases (Veyseh et al. 2020a,b). In order
to correctly process a document, an SDU system should be
able to identify acronyms and their correct meanings. As
acronyms might be defined either locally in the same doc-
ument or globally in an external dictionary with multiple
meanings, the challenge is to capture both local definitions
and disambiguate acronyms which are not defined in doc-
uments. The SDU task aims at solving this problem. The
dataset provided for this task is in English, and task de-
scription GitHub 1 repository provided by the organizers de-
scribes the task, data, evaluation, rule-based baseline model
(Schwartz and Hearst 2003) and its result.

We tried four different approaches for the task. Our
feature-based approach use BiLSTM-CRF (Luo et al. 2018)
framework. For the inputs to BiLSTM-CRF, we concatenate
the output of Roberta (Liu et al. 2019), GloVe (Pennington,
Socher, and Manning 2014) vectors and the task-specific
features.

Our XLNet-Softmax approach is inspired by the Em-
phasis Selection paper (Shirani et al. 2020, 2019; Singhal
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et al. 2020). This approach involves transfer learning using
Transformer based models. It is a transformer-based model
with the BiLSTM layer, the attention layer (Bahdanau, Cho,
and Bengio 2014), and fully connected layer on top. The
small size of the dataset was a bottleneck that can be coun-
tered by using transfer learning via the pre-trained mod-
els. So we used XLNet as transformer-based models. Mo-
tivated by MRC for NER task (Li et al. 2019), we apply
BERT-Span approach to predict the start and end positioins
of spans. BERT-CRF (Souza, Nogueira, and Lotufo 2019)
approach is employed to caputre the transfer information be-
tweent different tags. Our feature-based approach indepen-
dently achieved f1 score of 0.9281 on test data. Our Bert-
CRF model, Bert-Span model and XLNet-SoftMax model
are ensembled to achieve f1 score of 0.931 on test data. As
the Bert-Span model predict probability of label’s begin and
end. XLNet-SoftMax and BERT-CRF directly predict prob-
ability of different labels. It is not easy to ensemble the re-
sult together. In the end, we tried ensemble of these three
models by voting on the label-level. Our code is available
on https://github.com/NetEase-GameAI/sdu task1.

Background

Problem definition

We take this task as sentence level sequence labeling prob-
lem. Given a sequence of words or tokens in a text, the task
is to compute a label Li for each xi which indicates the
boundaries of short-form (i.e., acronym) and long-form (i.e.,
phrase).

Evaluation Metric

The approaches are evaluated based on their macro-averaged
precision, recall, and F1 scores on the test set computed for
correct predictions of short-form (i.e., acronym) and long-
form (i.e., phrase) boundaries in the sentences. A short-form
or long-form boundary prediction is counted as correct if
the beginning and the end of the predicted short-form or
long-from boundaries equal to the ground-truth beginning
and end of the short-form or long-form boundary, respec-
tively. The official score is the macro average of short-form
and long-form prediction F1 score.



Data
The dataset consisting of 20000+ sentences extracted from
English scientific papers published at arXiv. The dataset is
divided into training (17506), development (1715) and test
(1750) sets by organizers. The training and development
datasets are manually labeled. Each sample has three at-
tributes: tokens, labels and id. The short-form and long-form
labels of words are in BIO format. The labels B-short and B-
long identifies the beginning of a short-form and long-form
phrase, respectively. The labels I-short and I-long indicates
the words inside the short-form or long-form phrases. Fi-
nally, the label O shows the word is not part of any short-
form or long-form phrase.

Baseline models
The baseline method proposed by Schwartz is a rule-based
method (Schwartz and Hearst 2003) (Character Match). To
identify acronyms, if more than 60% of the characters of a
word are uppercased, this model recognizes it as acronym
(i.e., short-form). To identify the long-form, it compares the
characters of the acronym with the characters of the words
that are before or after the acronym up to a certain win-
dow size. If the characters of these words could form the
acronym, they are labeled as long-form. The official scores
for this baseline are: Precision: 93.22%, Recall: 78.90%, F1:
85.46%.

BiLSTM-CRF (Liu et al. 2019) and BERT-large model
(Devlin et al. 2019) are the another baseline models, since
the task is a standard sequence labeling task.

System Overview
In this section, we introduce the four types of approaches
in detail, and the overall architecture of our approaches is
shown in Figure 1.

Features
Since the data is relatively regular, i.e., a word with more
than 60% of the characters in uppercase are most likely to
be a acronym, and its long-form may probably appear be-
fore or after it up to a certain window size2, we consider to
extract some task-specific features to improve our models.
After exploring the whole dataset, we extract the following
features and concatenate them as additional inputs.

• Token Length Token length is a commonly used feature
in NLP. In our experiments, we statistic the length of ev-
ery tokens and decide to group them by their lengths, ex-
cept for the tokens whose lengths are greater than 15, in
which we set them a separate group. In this way, we have
a 16-dimensional feature.

• POS Tagging Part-of-speech Tagging is another com-
monly used feature in NLP. We first count the number of
categories of POS tags on the entire dataset, then use N-
dimensional one-hot features to represent. In our experi-
ments, N is 43.

2https://github.com/amirveyseh/AAAI-21-SDU-shared-task-1-
AI

• Letter Case According to our data analysis, a word in
uppercase has an 85.4% probability of being acronym. So
we design a 4-dimensional one-hot feature to represent
that if the words are uppercase, lowercase, capitalization
or others.

• Token Type Generally speaking, a token composed en-
tirely of punctuation cannot be an acronym or a long-
form, but a token that is alphanumeric strings or a mix-
ture of English letters and punctuation is most likely to
be an acronym or long-form. So we design another 4-
dimensional one-hot feature to represent that if the to-
kens are just all punctuation, all English strings, mixture
strings, or strings with non-English.

• Whether Begin with Digit and End with English A
prior knowledge is that a token matching this pattern
is probably a acronym, such as 2D, 3D and 5G. A 2-
dimensional one-hot feature about this is extracted.

• Character Match Features We notice that the official
baseline, i.e. Character Match, can achieve a very high
precision scores, 93.22, which may be used to design
some strong features. In our experiments, we use the pre-
dictions of Character Match and group the tokens into
their predicted labels (’O’, ’B-long’, ’I-long’, ’B-short’,
’I-short’) to present a 5-dimensional one-hot feature.

• Previous Tokens During our data exploring, we find that
acronyms or long-forms are often following some spe-
cific tokens, such as ’the’, ’a’, ’called’, ’mean’, ’of’,
’or’, ’and’, ’(’, ’)’, ’-’, ’,’, ’:’, ’”’, . So we design a 14-
dimensional one-hot feature to represent it.

• Next Tokens The acronyms and long-forms are also often
followed by the same specific tokens as Previous Tokens.
So another 14-dimensional one-hot feature is extracted.

• Pseudo Map Short to Long We design two types of fea-
tures according to the facts that acronyms are the short
forms of longer phrases. Firstly we design a pattern that
can match most of acronyms. This pattern must consist of
letters and digits and contains at least two letters in up-
percase, except for composing of all digits. Tokens which
match the pattern are collected as a set, named shorted
set, while the letters in these tokens are collected as an-
other set, named shorted letter set. The first type of fea-
tures is to determine if each token matches the pattern, or
the first letter is in the shorted letter set, or other cases.
So a 3-dimensional one-hot feature can be extracted. The
second type of features is to traverse the sentence to see
if tokens matches the pattern or the first letter is match-
ing part of acronym with label ’B’ or ’I’. For example,
token ’mean’ can be the beginning of the acronym MSE,
which means ’mean square error’, and the inside of the
acronym RMSE, which means ’root mean square error’.
There can be five cases in this way, that a token may in the
shorted set meaning that it is acronym itself, or be the be-
ginning or the inside (appearing in only one acronym), or
both the beginning and the inside (appearing in multiple
acronyms), or neither the beginning nor the middle (not
appearing in any acronym). Then a 5-dimensional feature
is extracted.



Figure 1: Models for approaches

We concatenate the features mentioned above all. Addi-
tionally, since the GloVe vectors3 are usually used as sup-
plementary input for the bert-based models, we also concate-
nate the GloVe vector with our handful features to generate
a 410-dimensional feature.

XLNet-Softmax
In this approach, words are tokenized into sub-words us-
ing corresponding tokenizer of transformer model. For
the Transformer-base models, we used pre-trained XLNET
(Yang et al. 2019). Sub-word embedding is obtained by con-
catenating the hidden layers of all encoder layers of the
XLNet model. Token embedding is obtained by average all
embedding of the token’s sub-words. To the nature of the
problem, first letter of token is important. We added em-
bedding of first letter (no case) and tag indicating whether
first letter is capital. The token was also encoded with GRU
on its letters. And the letters and first letter share the same
embedding layer. All these token embedding are concate-
nated. On one hand, the token embedding is passed through
a fully connected layer with a dropout layer and a soft-max
layer, which gives the probabilistic score of BIO label for
each token. BIO cross entropy loss is calculated with the
score and ground truth label. The labels consist of B-short,
I-short, B-long, I-long and Others. On the other hand, the to-
ken embedding is passed through other fully connected layer
with a dropout layer and a soft-max layer, which give the
segment probability of each token. Cross entropy loss for
Short-Phrase-Segmentation is calculated with the probabil-
ity and ground truth segmentation. The segmentation con-

3https://nlp.stanford.edu/projects/glove/

sists of short-start, short-end. Simultaneously, the cross en-
tropy loss for Long-Phrase-Segmentation is calculated. Fi-
nally, we sum the three parts of loss. Addition to the multi-
task work frame, we tried adversarial Learning, which is in-
spired by MRC framework (Li et al. 2019).

BERT-CRF approach
We design a BERT-CRF model (Devlin et al. 2019; Lafferty,
McCallum, and Pereira 2001) for the sequence labeling task.
The model architecture is composed of a BERT model with
a token-level classifier on top followed by a Linear-Chain
CRF. For an input sequence of tokens, BERT outputs an en-
coded token sequence, and the classification model projects
each token’s encoded representation to the tag space. The
output scores of the classification model are then fed to the
CRF layer, whose parameters are a matrix of tag transi-
tions, whose element is represents the score of transitioning
from one tag to other tag. The matrix includes 2 additional
states: start and end of sequence. We compute predictions
and losses only for the first sub-token of each token.

BERT-Span approach
In addition to treat the task as a sequence labeling prob-
lem, we also model it as determining the boundary of phrase
spans, including short-forms and long-forms.

We employ two binary classifiers to output multiple start
indexes and multiple end indexes, one to predict whether
each token is the start index or not, the other to predict
whether each token is the end index or not. Given the repre-
sentation matrix output from BERT encoder, the model pre-
dicts the probabilities of each token being the start or end
position of need forms. At training time, each sentence is



Model validation f score test f score
Character Match 0.8546 –
BiLSTM-CRF 0.8439 –
BERT-large 0.9102 0.9065
1. Fixed-RoBERTa+Feature+BiLSTM-CRF (K-fold) 0.9255 0.9281
2. XLNet-SoftMax 0.9345 0.9188
3. XLNet-SoftMax+Multi-Task+Adversarial-Learning 0.9371 0.9216
4. BERT-CRF 0.9276 0.9082
5. BERT-Span 0.9334 0.9116
6. Model vote (Model-2,4,5) – 0.9311
7. BERT-Span+BERT-CRF 0.9411 –

Table 1: The results of different models on development and test datasets

paired with two label sequences Ystart and Yend of length
n representing the ground-truth label of each token xi being
the start index or end index of any form. The loss of two
weighted cross-entry losses are jointly trained in an end-to-
end fashion with parameters shared at the BERT layer. At
test time, we select span based the same tag from the start
indexes predictions Îstart and end indexes predictions Îend.

Multi-task with BERT-Span and BERT-CRF
In order to take advantage of the above two models, we also
employ multi-task model based on BERT-CRF model and
BERT-Span model with the same BERT layers. And we train
the multi-task model using BERT-CRF loss and BERT-Span
loss weighted sum, and in prediction process, we decode the
tags with the BERT-Span model. And the multi-task learning
model touchs the highest f-score with a single model on the
development dataset, but we have no enough time to verify
the effect on the test dataset.

Experiment Setup
Our implementation uses PyTorch 4 library for deep learning
models and the Transformers 5 library by Hugging face for
the pre-trained transformer models and their tokenizers.

In XLNet Softmax model, the pre-trained XLNet-big-
cased model was used without freezing the layers, and the
outputs of all the layers were concatenated. Additionally,
letters embedding, first letter embedding and tag indicating
whether capitalize the first letter were concatenated. We use
hidden dimension of 128 and pre-trained large model of XL-
NET (large-xlnet-cased). The tokens size is padding to 345
and letter size is padding to 98. For the classifier, two fully
connected layers are used with ReLU activation function.
Dropout layers with a probability of 0.3 are added to avoid
overfitting. Cross-Entropy loss is used for training phase. F1
score is used as performance metrics for validation. Adam
optimizer with the learning rate of 2e-5 is used. The model
is fine-tuned for 4 epochs. The reported test result is corre-
sponding to the best score on validation set.

In BERT-CRF approach, We initialize the model with

4https://pytorch.org/
5https://github.com/huggingface/transformers

bert-large-wwm 6, and initial learning rates are 5e-5 and 5e-
2 for BERT and CRF respectively, and the batch size is 16.

In BERT-Span approach, We initialize the model with
bert-large-wwm, and initial learning rates are 5e-5, and the
batch size is 16.

Our models are trained on 8 Nvidia Tesla P40 cards, and
predicted on one GPU card. Take BERT-Span model as an
example, average train time of one epoch is 27 minutes and
average predict time is 45 seconds for development dataset.

Results
The main result of our models and some baseline is shown
in Table 1. Through the Table 1 shown, the pretrained model
has more advantages and reaches F1: 90.65% on test dataset,
since the train dataset is relatively small. Voting on the re-
sults of XLNet-Fostmax, BERT-CRF, BERT-Span reaches
F1:93.11% on test dataset. In fact, multi-task of BERT-CRF
and BEET-Span gets the highest F1:94.11% on development
dataset, but we don’t have enough time to verify on test
dataset.

From the results of BERT-CRF and BERT-Span, it is rel-
atively earier to predict the begin and end of short-forms or
long-forms. Moreover, based on result of multi-task model
of BERT-CRF and BERT-Span, multi-task learning can
learn the advantages of the two models.

We attempted numerous small changes to our models.
This included some specific attempts particular to each ap-
proach and some ablation experiments. For the XLNet-
Softmax, we compared cased sub-word and no cased sub-
word. We found that cased sub-word is particular impor-
tant in this task. We tried ablating the multi-task metric
and adversarial Learning work frame respectively. We found
that multi-task metric and adversarial Learning work frame
slightly improve result. We tried ablating the first letter em-
bedding, capital letter tag and GRU encode for each token’s
letters. We found that first letter embedding is slightly ef-
fective. We also tried replace last fully connect layers with
LSTM or transformer. We found that fully connect layer is
ok. As the submission chance is limited, we did not try all
these on test data.

6https://huggingface.co/bert-large-cased-whole-word-
masking/tree/main



Conclusion
We described the systems used for submission in the Task1
of SDU@AAAI-2021. The task was a sentence level se-
quence label task. We tried several approaches which used
Transformer-based models like BERT, RoBERTa, XLNet.
These models are pre-trained and hence, perform well on
the small dataset after fine-tuning. There was much future
work left. Firstly, transformer-based approach and feature-
based approach should be well fused. As we have only about
one week to study the task, fusion was unfinished. We test
transformer-based approach and feature-based approach re-
spectively on test data. The two approaches reach f1 score of
0.931 and 0.9281, ranked second and third according to the
leaderboard. Secondly, inside transformer-based approach,
we ensemble different models by simply vote. This was pri-
mal method and should be improved. Thirdly, after the com-
petition, we further studied the task. Inspired by the BERT-
CRF model and BERT-Span model, we proposed a Multi-
task model with BERT-Span and BERT-CRF, which employ
multi-task model based on BERT-CRF model and BERT-
Span model with the same BERT layers, and reach a high f1
score of 0.943 on validation set.
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