
Leveraging Domain Agnostic and Specific Knowledge for Acronym
Disambiguation

Qiwei Zhong, Guanxiong Zeng, Danqing Zhu, Yang Zhang, Wangli Lin, Ben Chen, Jiayu Tang
Alibaba Group, Hangzhou, China

{yunwei.zqw, moshi.zgx, danqing.zdq, zy142206, wangli.lwl, chenben.cb, jiayu.tangjy}@alibaba-inc.com

Abstract

An obstacle to scientific document understanding is the ex-
tensive use of acronyms which are shortened forms of long
technical phrases. Acronym disambiguation aims to find the
correct meaning of an ambiguous acronym in a given text. Re-
cent efforts attempted to incorporate word embeddings and
deep learning architectures, and achieved significant effects
in this task. In general domains, kinds of fine-grained pre-
trained language models have sprung up, thanks to the large-
scale corpora which can usually be obtained through crowd-
sourcing. However, these models based on domain agnos-
tic knowledge might achieve insufficient performance when
directly applied to the scientific domain. Moreover, obtain-
ing large-scale high-quality annotated data and representing
high-level semantics in the scientific domain is challenging
and expensive. In this paper, we consider both the domain
agnostic and specific knowledge, and propose a Hierarchical
Dual-path BERT method coined hdBERT to capture the gen-
eral fine-grained and high-level specific representations for
acronym disambiguation. First, the context-based pretrained
models, RoBERTa and SciBERT, are elaborately involved in
encoding these two kinds of knowledge respectively. Second,
multiple layer perceptron is devised to integrate the dual-
path representations simultaneously and outputs the predic-
tion. With a widely adopted SciAD dataset contained 62,441
sentences, we investigate the effectiveness of hdBERT. The
experimental results exhibit that the proposed approach out-
performs state-of-the-art methods among various evaluation
metrics. Specifically, its macro F1 achieves 93.73%.

Introduction
In recent years, it has witnessed the vigorous development
of deep learning. Among the most successful scenarios, nat-
ural language processing (NLP) is advancing steadily. How-
ever, natural language is frequently ambiguous, so many
words and phrases can be interpreted in many ways de-
pending on the context in which they appear (Navigli 2009).
Specifically, an obstacle to scientific document understand-
ing (SDU) is the widespread use of acronyms, which are
shortened forms of long technical phrases (Veyseh et al.
2020b; Beltagy, Lo, and Cohan 2019). In order to understand
the document correctly, the SDU system should be able to
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identify acronyms and their correct meanings. The goal of
acronym disambiguation (AD) is to determine the correct
long form of an ambiguous acronym in a given text (Veyseh
et al. 2020a). It is usually formulated as a sequence classi-
fication problem in general (Veyseh et al. 2020b). For in-
stance, a toy sample of this task is shown in Table 1. In this
example, the “CNN” might be an acronym for “Convolu-
tional Neural Network”, “Cable News Network” or “Con-
densed Nearest Neighbor”. Given a sentence “They use
CNN in the proposed model.” and a dictionary with pos-
sible expansions (i.e., long forms) of the acronym “CNN”,
the expected prediction for its correct meaning is “Convo-
lutional Neural Network”. Recent efforts attempted to in-
corporate hand crafted features (Li et al. 2018), word em-
beddings (Charbonnier and Wartena 2018; Ciosici, Som-
mer, and Assent 2019), graph structures (Prokofyev et al.
2013; Veyseh et al. 2020b), and deep learning architec-
tures (Jin, Liu, and Lu 2019; Blevins and Zettlemoyer 2020)
and achieved significant effects in this task.

In this paper, we pay more attention to the scenario of sci-
entific acronym disambiguation. Some observations are still
worthy of further investigation. Generally, large-scale train-
ing data for natural language processing tasks in general do-
mains is often possible to obtain through crowd-sourcing,
emerging a variety of domain-independent fine-grained pre-
trained models. However, these models based on domain
agnostic knowledge might achieve insufficient performance
when applied to the specific domain (Beltagy, Lo, and Cohan
2019). Furthermore, obtaining large-scale annotated data in
the scientific domain is challenging and expensive (Beltagy,
Lo, and Cohan 2019), which leads to the shortage of high-
level semantic expression to some extent.

To remedy these challenges, we fully consider both the
domain agnostic and specific knowledge, and propose a
Hierarchical Dual-path BERT method coined hdBERT to
fusion the general fine-grained and high-level specific rep-
resentations for acronym disambiguation. The overall ar-
chitecture is illustrated in Figure 1. We pinpoint that hd-
BERT is a BERT-based supervised method adopting the now
ubiquitous transformer architecture (Vaswani et al. 2017).
First, RoBERTa (Liu et al. 2019) and SciBERT (Beltagy, Lo,
and Cohan 2019) modules are elaborately involved to dis-
till representations from inputs consist of sentence and can-
didate long forms. Specifically, we utilize RoBERTa, a ro-



Input - Sentence: They use CNN in the proposed model.
Input - Dictionary: CNN: 1. Convolutional Neural Network, 2. Cable News Network, 3. Condensed Nearest Neighbor
Output: Convolutional Neural Network

Table 1: A toy sample of acronym disambiguation.

bustly optimized method trained on general domain corpora
via byte-level Byte-Pair-Encoding (Sennrich, Haddow, and
Birch 2016), to capture domain agnostic and fine-grained se-
mantic information. Moreover, SciBERT which is also a pre-
trained language model based on BERT (Devlin et al. 2019)
is exploited to model the high-level scientific domain rep-
resentation. Since it leverages unsupervised pretraining on
a large multi-domain corpus of scientific publications using
WordPiece (Wu et al. 2016) tokenization strategy. Second,
we integrate these dual-path representations from RoBERTa
and SciBERT simultaneously via multiple layer perceptron
and output the prediction. The main contributions of this
work are summarized as follows:

• We are the very first attempt to resolve the acronym dis-
ambiguation problem simultaneously leveraging domain
agnostic and specific knowledge.

• We propose a novel hierarchical dual-path BERT method
coined hdBERT to capture both general fine-grained and
high-level specific representations. It is mainly imple-
mented based on the well-known transformer architec-
ture, which can train the overall model more effectively.

• Experiments on real-world datasets demonstrate the effec-
tiveness of the proposed approach. It achieves competitive
performance and outperforms state-of-the-art methods.

Related Work
In this section, we review the related researches on word
sense disambiguation especially acronym disambiguation as
well as BERT and its two representative variants.

Word Sense Disambiguation
Word sense disambiguation (WSD) is an open problem con-
cerned with identifying which sense of a word is used in
a text (Navigli 2009). It is a core and difficulty in nat-
ural language processing tasks, which affects the perfor-
mance of almost all downstream tasks. The methods to solve
word sense disambiguation are usually divided into two cat-
egories: knowledge-based and supervised (Wang, Wang, and
Fujita 2020; Barba et al. 2020).

Knowledge-based methods usually rely on amounts of
statistical information and can be easily extended to other
low-resource languages (Agirre, López de Lacalle, and
Soroa 2014; Scarlini, Pasini, and Navigli 2020). For exam-
ple, SensEmBERT (Scarlini, Pasini, and Navigli 2020), a
knowledge- and BERT-based method that combines the ex-
pressive power of language modeling with the vast amount
of knowledge contained in the semantic network, produces
high-quality latent semantic representations of the mean-
ings of the word in different languages. And it can achieve

competitive results attained by most of the supervised neu-
ral approaches on the WSD tasks. On the other hand, su-
pervised methods require lots of labeled data to learn word
representations (Bevilacqua and Navigli 2020; Wang, Wang,
and Fujita 2020). Of course, this defect can be alleviated
through semi-supervised methods (Barba et al. 2020) by
jointly leveraging contextualized word embedding and the
multilingual information to project some sense labels.

Furthermore, acronym disambiguation is more challeng-
ing since we need to identify the acronym first and then
to understand the text to determine the correct meaning
of acronyms. Recently, an effective solution is to extract
acronym definitions from unstructured texts by computing
the Levenshtein string edit distance between any pair of
long forms (Ciosici, Sommer, and Assent 2019), which is
an entirely unsupervised acronym disambiguation method.
And researches also attempt to incorporate hand crafted fea-
tures (Li et al. 2018), word embeddings (Charbonnier and
Wartena 2018; Ciosici, Sommer, and Assent 2019), graph
structures (Prokofyev et al. 2013; Veyseh et al. 2020b), and
deep learning architectures (Jin, Liu, and Lu 2019; Blevins
and Zettlemoyer 2020), and have achieved significant ef-
fects in this task. Specifically, a supervised method named
GAD (Veyseh et al. 2020b), which utilizes the syntactic
structure of sentences to extend ambiguous acronyms in sen-
tences by combining Bidirectional Long Short-Term Mem-
ory (BiLSTM) with Graph Convolutional Networks (GCN),
provides a strong baseline on acronym disambiguation tasks
in the scientific domain.

BERT-based Methods
Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al. 2019) is a self-supervised learning
method that trains based on a large number of corpora to
express better features for word embedding. And its net-
work architecture utilizes the multi-layer transformer struc-
ture (Vaswani et al. 2017). The feature representation of
BERT could be directly adopted as word embedding features
for downstream tasks. Besides, BERT provides a model for
transfer learning of other tasks. It can be fine-tuned or fixed
according to tasks and then treated as a feature extractor.
BERT was significantly undertrained, and there have been
many fine-grained improvements or specific domain variants
of it (Beltagy, Lo, and Cohan 2019; Liu et al. 2019; Scarlini,
Pasini, and Navigli 2020; Lee et al. 2020).

RoBERTa. RoBERTa (Liu et al. 2019) is mainly trained
on general domain corpora via byte-level Byte-Pair-
Encoding (Sennrich, Haddow, and Birch 2016) based on the
structure of BERT and can supply more fine-grained rep-
resentation. This encoding scheme can process amounts of
words that are common in natural language corpora and is



Figure 1: Illustration of the proposed hdBERT model.

more conducive to the translation of acronyms.

SciBERT. SciBERT (Beltagy, Lo, and Cohan 2019) is a
specific pretrained language model for scientific domain
texts. This model follows the same architecture as BERT
to solve the lack of high-quality, large-scale labeled scien-
tific data. It significantly outperforms previous BERT-based
methods and achieves new state-of-the-art results on some
scientific NLP tasks.

Methodology
In this section, we first introduce the problem statement of
acronym disambiguation and then describe the overall archi-
tecture and details of our proposed hdBERT model.

Problem Statement
Acronym disambiguation is formulated as a sequence classi-
fication problem in general (Veyseh et al. 2020b). Formally,
given an input sentence s = w1, w2, ..., wn and the posi-
tion of the acronym, i.e., p, the goal is to disambiguate the
acronym wp, that is, predicting the true long form l from all
candidate long forms of wp. Specifically, in this paper, we
simplify it into a binary classification problem. That is, given
an input sample consists of the sentence s with acronym wp

and the candidate long form l, i.e., x = (s; l), our purpose
is to predict the probability of l being the right long form of
wp. We assign a label y ∈ {0, 1} on each sample in train-
ing dataset to indicate whether l is a true long form of wp in
sentence s or not. In the testing phase, the long form with
the highest prediction probability among the candidate long
form set of a sentence would be chosen as its final result.

Overview
Figure 1 exhibits the schematic illustration of the proposed
hdBERT model. As mentioned previously, we design a hier-
archical integration model comprising three major compo-
nents, each plays a different role in final prediction. The first

two context-based components, i.e., RoBERTa (Liu et al.
2019) and SciBERT (Beltagy, Lo, and Cohan 2019) mod-
ules, distill representations of the sentence and the candidate
long forms. Specifically, as a robustly optimized method
trained on vast amounts of general domain corpora, we use
RoBERTa to capture the general and fine-grained semantic
information via byte-level Byte-Pair-Encoding (Sennrich,
Haddow, and Birch 2016). Moreover, SciBERT, which lever-
ages unsupervised pretraining on a large scientific corpus
by WordPiece (Wu et al. 2016) tokenization strategy, is ex-
ploited to represent the high-level scientific domain informa-
tion. Finally, a multiple layer perceptron network is devised
to fusion these two kinds of representations. In the follow-
ing, we present detail of each major component.

Information Distillation
General and Fine-grained Information. We involve
RoBERTa to capture domain agnostic and fine-grained in-
formation of the sentence and its candidate long form.
RoBERTa uses the now ubiquitous transformer architec-
ture (Vaswani et al. 2017) via byte-level Byte-Pair-Encoding
(BPE), which is a hybrid between character- and word-level
representations that allow handling large vocabularies com-
mon in natural language corpora. Instead of full words, BPE
relies on subwords units, which are extracted by perform-
ing statistical analysis of the training corpus. The size of the
original vocabulary released with RoBERTa is about 50K,
which is 20K more than BERT’s.

We define the encoding of a sample x = (s, l) after the
BPE strategy as eBPE and the output representation through-
out the RoBERTa model as hRoBERTa.

eBPE = BPE(x) (1)

hRoBERTa = RoBERTa(eBPE) (2)

High-level Scientific Domain Information. To handle
the high-level scientific domain information, SciBERT is
chosen elaborately. SciBERT follows the same architecture



Statistical Information SciAD
number of acronyms 732
average number of long form per acronym 3.1
overlap between sentence and long forms 0.32
average sentence length 30.7
number of training 50,034
number of development 6,189
number of test 6,218

Table 2: The statistical information of original SciAD
dataset. Note that the third row shows the ratio of sentences
that have at least one word in common with the long forms
of the acronyms appearing in the sentence.

as BERT but is instead pretrained on the scientific texts. It
constructed a new WordPiece vocabulary on scientific cor-
pus using the SentencePiece library and trained on a ran-
dom sample of 1.14M papers from Semantic Scholar (Am-
mar et al. 2018). Its corpus consists of 18% papers from the
computer science domain and 82% from the broad biomedi-
cal domain. The size of the original vocabulary released with
SciBERT is about 30K, which is 20K less than RoBERTa.
The resulting token overlap between SciBERT and BERT is
42%, which illustrates the significant difference in common
terms between scientific and general domain texts.

We define the encoding of a sample x = (s, l) after
SciBERT’s encoding strategy (noted as WPE) as eWPE and
the output representation throughout the SciBERT model as
hSciBERT.

eWPE = WPE(x) (3)
hSciBERT = SciBERT(eWPE) (4)

Integration
After modeling the two complex representations above, the
obtained concatenation h is fed into multiple layer per-
ceptron network and followed by a regression layer with
sigmoid unit, as follows:

h = [hRoBERTa;hSciBERT] (5)

p = sigmoid(WTMLP(h) + b) (6)
where W is the weight vector, b is the bias, and MLP(·)
represents the operation of multiple layer perceptron shown
in Figure 1. Here p is the predicted probability.

Finally, our model is trained with cross entropy loss with
regularization. The loss function is defined as

L(θ) = −
∑
D

(y log(p) + (1− y) log(1− p)) + λ‖θ‖22

(7)
where y is the ground truth, θ is the parameter set of the
proposed model, λ is the regularizer parameter, and D is the
training dataset.

Experiments
In this section, we first illustrate the datasets, evaluation met-
rics, and implementation details, then demonstrate the ex-
perimental results and further studies.

Figure 2: Distribution of acronyms based on number of long
form per acronym.

Figure 3: Distribution of samples based on number of long
form per acronym.

Datasets
The SciAD 1 dataset created from 6,786 English scientific
papers aims to find the correct meaning of an ambiguous
acronym in a given sentence (Veyseh et al. 2020b). It con-
tains 62,441 sentences and a dictionary of 732 ambiguous
acronyms. More statistical information is shown in Table 2.
Besides, a toy sample of the SciAD dataset is shown in Ta-
ble 1. The input is a sentence with an ambiguous acronym
and a dictionary with possible expansions (i.e., long forms)
of the acronym. In this example, the ambiguous acronym
“CNN” in the input sentence is shown in boldface and the ex-
pected prediction for its correct meaning is “Convolutional
Neural Network”. In addition, Figures 2 and 3 demonstrate
more statistics of SciAD dataset (Veyseh et al. 2020b). More
specifically, Figure 2 shows the distribution of the number of
acronyms based on the number of long forms per acronym,
and the distribution of the number of samples based on the
number of long form per acronym is shown in Figure 3.

As mentioned previously, we convert the original SciAD
dataset into a binary classification dataset named SciADBI

during modeling. For a sentence s with acronym wp, y = 1

1We won second place in the acronym disambiguation compe-
tition. https://sites.google.com/view/sdu-aaai21/shared-task



Parameter BERT RoBERTa SciBERT
pretrained model bert-large-ucaseda roberta-largeb allenai/scibert scivocab uncasedc

architecture sequence classification sequence classification sequence classification
attention probs dropout prob 0.1 0.1 0.1
hidden act gelu gelu gelu
hidden dropout prob 0.1 0.1 0.1
hidden size 1024 1024 768
initializer range 0.02 0.02 0.02
intermediate size 4096 4096 3072
layer norm eps 1e-12 1e-05 1e-12
max position embeddings 512 514 512
model type bert roberta bert
num attention heads 16 16 12
num hidden layers 24 24 12
position embedding type absolute absolute absolute
vocab size 30522 50265 31090
learning rate 2e-5 2e-5 2e-5
epoch 5 5 5
a https://huggingface.co/bert-large-uncased
b https://huggingface.co/roberta-large
c https://github.com/allenai/scibert

Table 3: Architecture and hyper parameters information. Our proposed hdBERT model ensembles RoBERTa and SciBERT via
three MLP layers.

Statistical Information SciADBI

number of training 352,366
number of development 28,286
number of test 28,364

Table 4: The statistical information of SciADBI dataset.

if a long form l is true for wp, while y = 0 for other false
candidate long forms of wp. Specifically, to alleviate the im-
balance problem during training, we upsample each positive
sample to equal the number of candidate long forms of its
acronym. More statistics of SciADBI is shown in Table 4.
We finally evaluate performances on SciAD’s test dataset.

Compared Methods
We compare with several state-of-the-art and representative
methods including Non-deep learning methods and Deep
learning methods to verify the effectiveness of our proposed
method.
Non-deep learning methods.

• MF: most frequent which takes the long form with the
highest frequency among all possible meanings of an
acronym as the expanded form of the acronym.

• ADE (Li et al. 2018): a feature-based model that employs
hand crafted features from the context of the acronyms to
train a disambiguation classifier.

Deep learning methods.

• NOA (Charbonnier and Wartena 2018) and UAD (Ciosici,
Sommer, and Assent 2019): language-model-based base-

lines that train the word embeddings using the training
corpus.

• DECBAE (Jin, Liu, and Lu 2019) and BEM (Blevins and
Zettlemoyer 2020): models employing deep architectures
(e.g., LSTM).

• GAD (Veyseh et al. 2020b): supervised method which uti-
lizes syntactic structure of sentences to extend ambiguous
acronyms in sentences by combining BiLSTM with GCN.

• BERT (Devlin et al. 2019), RoBERTa (Liu et al. 2019)
and SciBERT (Beltagy, Lo, and Cohan 2019): pretrained
models use the now ubiquitous transformer architecture.

Evaluation Metrics
To evaluate the performance of different methods, three pop-
ular metrics are adopted, namely Macro Precision, Macro
Recall and Macro F1. The definitions are as follows:

PrecisionMACRO =

∑n
i=1 Precisioni

n
(8)

RecallMACRO =

∑n
i=1 Recalli

n
(9)

F1MACRO =
2× PrecisionMACRO × RecallMACRO

PrecisionMACRO +RecallMACRO
(10)

where n is the number of total classes, Precisioni and
Recalli represent the precision and recall of class i re-
spectively. The higher PrecisionMACRO, RecallMACRO and
F1MACRO indicate the higher performance of approaches.



Methodology Macro Precision(%) Macro Recall(%) Macro F1(%)
MF 89.03 42.20 57.26
ADE (Li et al. 2018) 86.74 43.25 57.72
NOA (Charbonnier and Wartena 2018) 78.14 35.06 48.40
UAD (Ciosici, Sommer, and Assent 2019) 89.01 70.08 78.37
BEM (Blevins and Zettlemoyer 2020) 86.75 35.94 50.82
DECBAE (Jin, Liu, and Lu 2019) 88.67 74.32 80.86
GAD (Veyseh et al. 2020b) 89.27 76.66 81.90
Human Performance (Veyseh et al. 2020b) 97.82 94.45 96.10
MF 89.00 46.36 60.97
BERT (Devlin et al. 2019) 95.26 86.92 90.90
RoBERTa (Liu et al. 2019) 95.96 88.36 92.00
SciBERT (Beltagy, Lo, and Cohan 2019) 96.36 89.77 92.95
hdBERT (ours) 96.94 90.73 93.73

Table 5: Performance of models in acronym disambiguation.

Implementation Details
For models ADE, NOA, UAD, DECBAE, BEM, and GAD,
please refer to Veyseh et al. for more implementation in-
formation. We implement the proposed model based on Py-
torch (Paszke et al. 2019) and Transformers (Wolf et al.
2020). For models BERT, RoBERTa, and SciBERT, we fine-
tune them on dataset based on their popular pretrained mod-
els. The implementation details of these models are shown
in Table 3. Moreover, the information distillation compo-
nents of our model are the same as model RoBERTa and
SciBERT respectively. And we simply adopt three MLP lay-
ers for integration simultaneously. As mentioned previously,
in the testing phase, the long form with the highest predic-
tion probability in the candidate long form set of a sentence
would be chosen as its final result. In addition, we use two
V100 GPUs with 12 cores to complete all these experiments.

Performance Comparison
Table 5 demonstrates the main results of all compared meth-
ods 2 on the dataset. The major findings from the experimen-
tal results can be summarized as follows:

First, GAD achieves a better result than methods such as
ADE, NOA, UAD, BEM, and DECBAE, showing the im-
portance of syntactic structure for the acronym disambigua-
tion task. But it still far worse than pretraining-based models
like BERT and RoBERTa. Second, between the two general-
domain models, RoBERTa gets better performance than
BERT, indicating the advantage of more fine-grained encod-
ing. Moreover, SciBERT is more advanced than the domain
agnostic methods, i.e., BERT and RoBERTa, with about
2.26% and 1.03% increased macro F1 respectively, showing
the importance of the scientific domain pretraining for this
task. Furthermore, we can clearly observe that our hdBERT
model outperforms all the baselines by a large margin. Its
macro F1, with the reported value of 93.73%, is about 1.88%
and 0.84% higher than state-of-the-art RoBERTa and SciB-
ERT respectively. And its loss curve falls faster and con-

2We assume that both Veyseh et al. and this task have the same
distribution of dataset due to the randomly dividing by the same
ratio, making all these methods comparable.

Figure 4: Loss curve on development dataset.

verges lower than the two pretrained methods on the devel-
opment dataset, as shown in Figure 4. These observations
demonstrate that it is effective to model both fine-grained
domain agnostic and high-level domain specific knowledge
simultaneously.

However, despite the significant improvements among
these approaches, performances of all models are still not
as effective as humans on the dataset, especially on macro
recall and macro F1, thus providing many further research
opportunities for this scenario.

Case Study
We further focus on studying both success and failure cases
of pretraining-based models to provide more insight into
acronym disambiguation. Specifically, for success case of
our model in which RoBERTa and SciBERT fail, e.g., “Each
SP within an SM shares an instruction unit, dedicated to
the management of the instruction flow of the threads.”
(DEV-6156), the true long form of “SM” is “Streaming Mul-
tiprocessors”. While both RoBERTa and SciBERT output
“Shared Memory”, which may often appear in deep learning
publications. It might benefit from the additional integration
modeling of two different information from RoBERTa and
SciBERT. However, all the three models fail in this exam-



Sentence Conflicted Annotation
Just like RF, QRF is a set of binary regression trees. TR-43200: Regression Forest

TR-49535: Regression Function
Extensions of the SBM regarding the type of graph are reviewed in Section. TR-17276: Sequential Monte Carlo

TR-47761: Stochastic Block Model
The obfuscated term is the term for which the MACS score is the lowest. TR-15480: Mean Average Conceptual Similarity

TR-27970: Minimum Average Conceptual Similarity

Table 6: Examples of noise data of SciAD dataset.

ple: “In the first stage, we train the SPM, and extract the FL
and FR.” (DEV-4604) with the wrong prediction “Federated
Learning” for “FL”. The true long form of “FL” is “Fixated
Locations”. We guess that all models pay too much attention
to “Federated Learning”, a hot phrase nowadays, and ignore
the subtle information among the sentence and its different
candidate long forms. It also indicates the necessity of more
advanced models for this task.

Further Discussion
As mentioned previously and shown in Table 5, all the cur-
rent models are still less effective than humans in this sce-
nario. There are still many samples that all models fail in.
Some further research opportunities on this dataset are dis-
cussed in this section. First, as shown in Table 6, there are
some noise data, i.e., conflicted annotation, in the SciAD
dataset. For example, the acronym “RF” in boldface in sen-
tence “Just like RF, QRF is a set of binary regression
trees.” gets two different long form “Regression Forest”
(TR-43200) and “Regression Function” (TR-49535) respec-
tively. It will be some negative impacts on modeling to some
extent. Furthermore, to a certain extent, samples constructed
from the same sentence with different long forms are inde-
pendent during our training stage. It might lose more subtle
information among them. Therefore, recent methods such as
self-training (Peng et al. 2019; Chi et al. 2020), adversar-
ial learning (Goodfellow, Shlens, and Szegedy 2015; Miy-
ato, Dai, and Goodfellow 2017; Zhu et al. 2021), and con-
trastive learning (Hadsell, Chopra, and LeCun 2006) are
worth studying to further improve the performance.

Conclusions
An obstacle to scientific document understanding is the
widespread use of acronyms which are shortened forms of
long technical phrases. Acronym disambiguation aims to
find the correct meaning of an ambiguous acronym in a
given text. However, it is challenging and expensive to ob-
tain large-scale high-quality annotated data in the scientific
domain. In this paper, we present a hierarchical dual-path
BERT method coined hdBERT for acronym disambigua-
tion to resolve the special challenges in this scenario. The
method is equipped with pretrained models RoBERTa and
SciBERT and integrates their dual-path representations si-
multaneously to leveraging domain agnostic and specific
knowledge. Experiments on real-world datasets demonstrate
the effectiveness of the proposed approach. It achieves com-
petitive performance and outperforms state-of-the-art meth-
ods among various evaluation metrics. Moreover, there are

still many research opportunities in this task, approaches
such as self-training, adversarial learning, and contrastive
learning are worth studying to further improve the perfor-
mance.
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