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Abstract  
The survey of classical theories of randomness is provided, and an alternative model is 

proposed. Analysis of the classical models demonstrates that despite their mathematical rigor 

they are hardly useful in practice. The new model is based on the lattice theory, has the 

strong mathematical basis and easily used in practice. 
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1. Introduction 

Randomness is one of the most important and difficult notions in computer science. The 

importance of randomness is justified by the fact that we face randomness in the simulation of real 

processes (physical, chemical, etc.), cryptography and many randomized algorithms. Difficulty of 

randomness lies in the fact that its nature is controversial. Some classics of computer science (e.g. 
Turing [1] and von Neumann [2]) considered randomness as a purely physical phenomenon (see 

citations in the excellent survey [3]). Thus, now there exist two parallel worlds: the world of 

physicists, engineers, computer scientists, and other investigators that work in the field of real 
applications and the world of pure mathematicians that attend to theoretical issues of randomness (e.g. 

consistency of axioms, interconnections between different definitions of randomness, etc.). We 

propose a strongly valid mathematical theory of randomness that is easily applicable in practice. 
Following to Vitanyi [4, 5] we divide the works on the concept of randomness into three categories: 

frequency approach, computational complexity and randomness as typicality. 

2. Frequency approach (von Mises) 

The model proposed by von Mises uses a concept of an infinite binary sequence 1 2, ,...x x   

(collective) that meets the following conditions: 1) if nh  is the relative frequency of units in first n 

elements of a sequence, then  
1

1
lim , lim , 0 1

n

n k
n n

k

h T A x p p
n 



     (global regularity), and 2) every 

infinite subsequence 
1 2
, ,...i ix x   drawn from the sequence 1 2, ,...x x  using a  rule of acceptable selection 

has the same limit p (local regularity).  

Definition 1 (von Mises). A sequence is said to be random if it has two properties: 1) every 

sequence of relative frequencies of units in the collective has the same limit; 2) the relative 
frequencies are invariant under the procedure of so-called acceptable selection (the choice of a 

sequence in which the choice of an nth element does not depend on its value). 

Objections to von Mises theory boil down to two aspects: 1) it uses too strict assumptions about 
the relative frequency and 2) the rule of admissible choice of elements of a subsequence is fuzzy. 

These objections became the subject of research by Wald [6] and Church [7].  Wald proposed to limit 
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the possible rules for selecting subsequences by any fixed countable set of functions and showed that 
such collectives exist. Church clarified that this set must be a set of recursive functions. Thus, the 

theory received due mathematical rigor. Such sequences are called random Mises–Wald–Church 

sequences. In 1939, a new counterexample was put forward against this theory. The construction of 

Ville [8] demonstrated the existence of random sequences of Mises–Wald–Church, in which the 

boundary of the sequences of relative frequencies is equal to 1/2, but 
1

2
nh 

 

for all n. Van Lambalgen 

[9–12] carefully conducted an analysis of Ville counterexamples and other objections to von Mises 

theory. In particular, van Lambalgen distinguishes three main objections to von Mises theory from 

Frechet [13] and Ville [8]: 1) von Mises theory is weaker than Kolmogorov theory [14, 15] because it 
does not follow the law of the repeated logarithm; 2) collectives do not always satisfy all asymptotic 

properties arising in the methods of measure theory (therefore they can not serve as satisfactory 

models for real phenomena), and 3) the von Mises formalization for game strategies using the rule of 
allowable choice of elements has disadvantages because there is possibility to win an unlimited sum. 

The answer to the first objection put forward by Ville comes down to the fact that von Mises 

theory is purely frequency and does not provide the operation of passing to the limit in as in the 

measure theory [8]. In other words, von Mises model and Kolmogorov model are not equivalent. But 
the fact that they are different cannot be considered as a disadvantage of any of these models [16].  

The second objection belonging to Frechet can be divided into two parts: 1) collectives cannot be 

satisfactory models for random phenomena, because one-sided convergence, which allows refuting 
Ville counterargument, is not observed in practice; 2) collectives do not satisfy the asymptotic laws 

arising from the theory of measure. Van Lambalgen refuted these objections, pointing out that in 

practice there are only finite sequences and collectives were invented precisely to describe their 
properties, and von Mises did not set himself the goal of describing infinite random phenomena. Note 

that this statement is contradictory, because von Mises axioms include the limit of an infinite 

sequence of relative frequencies. The second part of the counterargument is somewhat reminiscent of 

Ville first counterargument and it is similarly refuted: the fact that collectives do not satisfy the 
asymptotic laws arising from the theory of measure indicates only a fundamental difference between 

these models, but is not their shortcomings.  

The third objection refers to the existence of a strategy invented by Ville, which allows the player 
to win an infinite amount of money in the endless continuation of the game with the coin. In other 

words, there is a collective describing a coin game in which a player wins an unlimited amount, 

although by definition collectives deny this possibility. However, as van Lambalgen notes, the notions 

of fair play according to Ville and von Mises are different, so this counterargument is not valid. 

3. Randomness as computational complexity (Kolmogorov) 

Concluding that von Mises–Wald–Church theory is too fuzzy, Kolmogorov improved it by 

proposing a new class of algorithms for selecting valid sequences.  

Kolmogorov complexity of a sequence  1 2, ,..., Nx x x x , or is algorithmic entropy, is the length 

 K x  of its shortest description, constructed using a Turing machine. If there is some additional 

information y , then we can consider conditional Kolmogorov complexity  K x y . A sequence is 

called Bernoullian by Kolmogorov if its complexity is close to 2log k

NC , i.e.   2, log k

NK x N k C . 

Also, Kolmogorov introduced the notions of chaotic sequence that satisfies the condition 

  2, log k

NK x N k C m  . If a set A contains finite number of elements 1 2, ,..., Nx x x , then the 

complexity of its element is less or equal to 2log N . An element x of A is random if its complexity is 

close to maximal, i.e. 2( )K x A log N . The difference  2 ( )log N K x A  is a defect of randomness of 

an element .x   

In the class of sequences random according to Kolmogorov, frequency stability is observed in all 

acceptable Kolmogorov subsequences. Thus, the class of sequences random according to Kolmogorov 
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is a partial case of the class of random sequences von Mises-Wald-Church. But, according to 

Uspensky [17], today von Mises theory remains an incomplete imprint of the intuitive notion of 

chance. Its main feature is the insistence on the frequency stability of random sequences. The 

contribution of Kolmogorov in the development of the theory of chance is quite fully covered in the 

work of Vovk and Shafer [18].  

Wolf and Shafer believe that the Kolmogorov theory of randomness is based on the principle of 

frequency stability of von Mises and on the principle of Cournot [19]. The von Mises principle states 

that the relative frequency of infinite sequence of outcomes of random tests has a limit, and the 

Cournot principle states that a very unlikely event in a single test will not occur. Accordingly, the 

works of Kolmogorov on this topic can be divided into two categories: those based on the principle of 

von Mises (1963-1965), and those based on the principle of Cournot (1965-1987).  

In [15] Kolmogorov formulated two main shortcomings of von Mises theory: 1) a frequency 

approach that appeals to the concept of limit frequency that cannot have practical application, because 

in real applications researchers are dealing with finite sequences; 2) frequency approach can not be 

developed purely mathematically.  

In 1965, Kolmogorov began to develop the theory of algorithmic randomness [20–22]. Within this 

theory, he introduced the concept of the Bernoullian sequence: a binary sequence  1 2, ,..., Nx x x
 

consisting of k  ones and N k  zeros, to describe which requires at least 
2log k

NC
 
bits. Therefore, the 

problem of randomness was reduced to the choice of a certain way of describing the sequences. The 

main invention that ensured the success of the proposed theory was a universal method of description, 

which generates descriptions that are shorter or slightly longer than the descriptions created by 

alternative methods. Regardless of Kolmogorov analogous methods were invented by Solomonoff 

[23–25] and Chaitin [26]. 

Kolmogorov proposed to consider an infinite binary sequence as random if there is a constant such 

that for all the entropy of the initial segment of the sequence exceeds.  

Definition 2 (Kolmogorov). An infinite binary sequence 1 2, ,..., ,...nx x x  is said to be random if 

there is a constant for an arbitrary natural number that satisfies the inequality  1 2, ,..., nK x x x n c  .  

For a long time, the focus of Kolmogorov and his followers (Asarin [27, 28], Shen [29], Vyugin 

[30, 31] etc.) were finite sequences. Their research was aimed at the consistent removal from 

consideration of statistical models based on the concept of probability, and their replacement by 

models based on the concept of complexity.  

Vovk and Schafer [18] note the following characteristic features of the theory of complexity 

proposed by Kolmogorov and his followers: 1) It considers only finite sequences and finite sets of 

constructive objects; 2) it is based on the assumption that an event that has a very low probability will 

not occur.  

Thus, developing the theory of complexity, Kolmogorov abandoned the von Mises principle and 

based it on the Cournot principle. It should be noted that the complexity theory remains the subject of 

intensive theoretical research. In 2007 for a series of works "On clarification of estimates AN 

Kolmogorov relating to the theory of chance" Muchnik and Semenov [32] was awarded the prize 

named after Kolmogorov. In these works important results were obtained in the field of combinatorial 

theory of probabilities and the theory of frequency tests of randomness. Muchnik and Semenov 

proved that the lower estimate by Kolmogorov, which characterizes the maximum number of 

admissible selection rules, for which there is guaranteed to be a generator of random numbers, is 

accurate in order and even asymptotically accurate. Kolmogorov put it back in 1963, when work on 

complexity theory was just beginning.  

An original approach to estimating the complexity of finite sequences of zeros and ones was 

proposed by Arnold [33]. The value of this work lies in the fact that it uses the ideas of various fields: 

computational mathematics, topology, graph theory, algebra. Despite the fact that a complete solution 

of the problem is not obtained in the work, the combination of methods of different branches of 

mathematics seems to be the most fruitful and promising approach. 
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4. Randomness as typicality (Martin-Löf) 

Attempts to extend the theory of Kolmogorov complexity to infinite sequences have encountered 

the problem of oscillation of complexity. Consider a fixed finite binary sequence  1 2, ,..., nx x x . Do 

inequalities    1 2 1 2, ,..., , ,...,m nK x x x K x x x
 

or    1 2 1 2, ,..., , ,...,m nK x x x m K x x x n
 

hold for all 

infinite binary sequences x  and m n ? As stated in [1], the answers to both questions are negative. 

As Vitanyi [1] points out, even for sequences of high complexity that satisfy the inequality 

 1 2 2 2 2, ,..., log 2log lognK x x x n n n    for all n , the value   1 2 2, ,..., lognn K x x x n
 
varies from 

0 to 1.  

This problem was solved in 1966, when Martin-Löf [34] concluded that the randomness defect of 
an element of a finite set can be considered as a universal statistical test, and extended it to infinite 

sequences using constructive measure theory. In this case, Martin-Löf assumed that the random object 

is typical, i.e. belongs to the vast majority. Martin-Löf definition looks like this.  

Definition 3 (Martin-Löf). An infinite binary sequence 1 2, ,..., ,...nx x x  is said to be random with 

respect to uniform measure, if for an arbitrary natural n  there is a constant c  such that 

 1 2, ,..., nK x x x n c  .  

Obviously, a sequence that is random by Martin-Löf is random by von Mises. From the other side, 
there are sequences that do not satisfy the conditions of Martin-Löf. A uniform measure of a set of 

sequences for which there is a constant c  and an infinite number of numbers n , such 

 1 2, ,..., nK x x x n c   is equal to one. Therefore, the uniform measure of the set of random 

sequences that do not satisfy the condition of Martin- Löf definition is equal to zero.  

Independently of Martin-Löf and each other, Schnorr [35] and Levin [36, 37] worked on the 

problem of infinite binary random sequences. They showed that an infinite binary sequence is random 

according to Martin-Löf if and only if the randomness defect of its initial segments is of limited value, 

i.e.    1 2, ,..., 1nKM x x x n O   where  1 2, ,..., nKM x x x  is the monotonic entropy.  

It is obvious that the sequence, random according to Martin-Löf, is also random according to 

Mises-Wald-Church. On the other hand, as Wald construction demonstrates, there are Mises–Wald–

Church collectives in which the relative frequency of the unit goes to 1/2 and 

    1 2 2, ,..., lognK x x x O f n n
 
for any unlimited, non-decreasing, totally recursive function. Such 

sequences do not satisfy the conditions for the Martin-Löf.  

As we can see, the models described above are purely theoretical and their application in practice 

is associated with great difficulties. We offer an alternative approach, which is both strictly 
mathematically grounded and easily implemented in practical applications. 

5. Alternative model (Petunin–Klyushin) 

Consider the trial T  with two outcomes A  and .A  Introduce the indicator kx  such that 1kx   if in 

kth repetition of T  we observe A and 0 otherwise. The sequence of bits 1 2, ,...x x  is said to be 

Bernoullian sequence of order p , 0 1p  , if   
1

1
lim , lim

n

n k
n n

k

h T A x p
n 



  , where  ,nh T A  is the 

relative frequency of A  under the  n  repetitions of T . 

5.1. Basics of alternative approach 

The key issue of this approach is that for correct definition of the randomness we must consider an 

infinite sequence of the results of series 1 2, ,...X X . For convenience, let arrange these series in an 

indefinite characteristic matrix  
, 1

( ) ij i j
T x




  . Denote rows of  T  as  1 2, ,..., ,...i i i inX x x x  and 
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columns as  *

1 2, ,..., ,...j j j njX x x x . Every row 
nX  and every column *

nX  of the matrix  T  can be 

considered as a binary representation of real numbers 
1 20, ... ...n n n nnx x x  and *

1 20, ... ...n n n nnx x x  in 

 0,1  respectively. These numbers form the sets  M  and *M , respectively.  

Definition 4 (Petunin–Klyushin). A trial T  is said to be random if 1) every row 
nX  and column 

*

nX  ( 1,2,...n ) of  T  is a Bernoullian sequence of the same order  0,1 ;p
 
2) M  and *M  are 

dense in  0,1 . A random experiment E  is an infinite series of trials T . A random event ER
 
is an 

outcome of T  occurring in a random experiment E . The probability  Ep A  of ER  is the order 

 0,1p  of the Bernoullian sequences of the outcomes generated in .E  

In practice, we work with finite matrices. Thus, we propose the following  useful clarification: T  

is said to be a random trial if 1) every row iX  and column 
*

iX  ( 1,2,...i n ) of finite matrix  n T  

are segments of Bernoullian sequences of the same order  0,1p ; and 2) if for an arbitrary 0  

there exists such n  that the sets nM  and 
*

nM  generated by columns and rows of the finite 

characteristic matrix  
, 1

( )
n

n ij i j
T x


 

 
form -net in   0,1 . 

Theorem 1. The probability that the sets M  and 
*M  generated of rows and columns of the 

characteristic matrix  T  in the Bernoullian experiment are dense is equal to 1.  

Proof. Consider the case .M  Take a binary presentation 1 20, ... ...ni i i
 

of an arbitrary real 

number from [0,1] . Choose an arbitrary 0  and a natural 0n , such that 
0

1

22
n



. Put 

0 01 20,0...0 ...n ni i   and 
01 2

ˆ 0, ... 0...0...ni i i    
 

Let A  be a random event that after 0n  

independent repetitions of the random trial T  we obtain a set  
01 2, , ..., .ni i i  Suppose that in this set 

units occur k  times, and zeros occur 0n k  times. Denote by AT  a random trial with outcomes A  and 

.A  Then,     0

0,1 2 ,..., , 1 0
n kk

np T T T A p p


    and  
01 2, ,..., ,np T T T A   

01 21 , ,..., , 1np T T T A   . 

Let us prove, that the probability of at least one event A  in a sequence of independent Bernoulli trials 

equals to 1. Indeed, the probability of A   is less than n  for any n . Thus, it equals to zero. 

Therefore, the probability that there exists a row of  T  such that its first 0n  elements are 

01 2, , ..., ni i i  is equal to 1. This row is a binary presentation of a number   in M , such that 
2

 


 

Let    , 0,1   be an arbitrary interval. Put 
2



 

 . Then the probability that there exists some 

number M  such that 
2

 


   equals to 1, thus [ , ]   . Therefore, in the Bernoulli model 

E  the number set M  represented by the rows  E  is dense in  0,1  with probability 1. The proof 

of the theorem for 
*M  is similar.  

5.2. Field of events 

Let T  be a random trial, and  S T  be a set of all outcomes of .T  Define addition and 

multiplication on members of  S T , and negation of an event. Then, we shall be able to determine 

the probability  Ep A  of an event A  in  S T   transforming it into a field of events  S E . Introduce 

partial order in  S E  generated by the random experiment E : an event A  implies an event B , i.e.

A B , if the occurrence of A  in E  implies the occurrence of B . Therefore,  S E  becomes a 
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partially ordered set where sup( , )A B A B A B     and inf( , )AB A B A B   . Addition and 

multiplication can be performed using the relation of partial order:  supi i
i Ji J

A A


  and  

 infi i
i J

i J

A A




 . Since sum and product of the events always exist in  S E , the field of events 

 S E  is a complete distributive lattice. 

As far as partial order is defined only for elements of  S E , we may apply addition, 

multiplication and negation only to events of the same field. The complement to element A  in a 

lattice with zero is such an element A S  that 0A A   and A A I  , and the lattice  S E  is 

called a lattice with complement if every element has a complement. In the field of events, zero 

element O  is the impossible event, the unit element I  is the certain event, and the complement of an 

element A  is its negation A . Thus, the field of events  S E  is a Boolean algebra with complement. 

The complete lattice  S E  is called totally distributive [39] if it satisfies duality laws: for an 

arbitrary non-empty family of index sets J  , C  

 

 

, ,

, ,

,

,

C J C

C J C

X X

X X

   

   

       
     

       
     





    
   

       

  

where   is a set of all functions defined on C  such that   J    and ,X   ,    ,
X S E

  
, J   

Theorem 2 [39]. For an arbitrary random experiment E  the field of events  S E  is a totally 

distributive complete Boolean algebra. 

Theorem 3 (Tarsky [39]). If complete Boolean algebra S  is totally distributive then it is 

isomorphic to the algebra 2
consisting of all subsets of some set M  with respect to the structures of 

partially ordered spaces (or Boolean algebras).  

5.3. Random variables 

Let us introduce the following useful definitions. 

Definition 5. The set of events  i i J
B B


  from the field of events  S E  is called base if the 

following conditions hold: 

1)  all events iB  from B  are mutually exclusive 0i jB B   if  i j ; 

2)  an arbitrary event A  from  S E  can be represented as a sum of events iB  from B : 

ki

k K

A B


 . 

A probability distribution  EP A  in the field of events  S E  depends on a random experiment E  

and a random event A . Further we shall suppose that E  is fixed, thus  EP A  depends only on 

 A S E .  

By definition,  ( ) lim n
n

P A h A


 , where  nh A  is a relative frequency of the event A . The 

probability  P A  is a finitely additive function defined on  S E , but it is not countably additive 

because the limit of the relative frequency in not interchangeable for a sequence of mutually exclusive 

events from  S E . 

Now, define a random variable x  as a random experiment E  with basic numerical set   1B E R

, or  B E C .  Individual values of a random variable x  in the partially ordered space  S E  play 

the role of atoms of a lattice. Often, it is convenient to consider a random variable x  as a function 
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defined on a basic set of  S E  and map every elementary event  iB B E  to a number  ix x B . 

These definitions of a random variable are equivalent.  
Consider a concept of probability distribution on a field of events generated by values of a random 

variable. At first, consider random variables taking on values in the set of rational numbers Q . Then, 

we shall extend this concept to random variables with real values. 

Denote by  EB x  a set of all possible rational values of random variable x  in a random 

experiment E . Suppose,  EB x Q . Then   2 .QS E   

Definition 6. A random variable x  taking rational values is said to be continuous if its distribution 

function  xF u  is continuous in 1R . Respective distribution of probabilities is said to be continuous. 

Definition 7. A random variable x  with rational values is said to be singular if there exists such 

subset   1 2, ,..., ,...na a a Q    that   , 0n np E a p   n N   and 
1

1n

n

p




 . Respective 

distribution of probabilities is said to be singular. 

Theorem 4 [38]. Let  F u  be an arbitrary continuous distribution function in 1R  then there exists 

a random experiment E  with EB Q  and distribution of probability  ,p E A , A Q  such that for 

every 1u R  
    ,

,
u

p E Q F u


 , where    ,
,

u
Q Q u


  . 

Theorem 5 [38]. Let  F u  be an arbitrary distribution function concentrated on the segment 

 ,a b :  

 
0, ,

1, .

if u a
F u

if u b


 


 

Then there exists a random experiment E  with numerical base set  ,EB a b  generating a 

distribution of probabilities  ,p E A  on all subsets  ,A a b  such that     , ,p E a u F u  if 

 ,u a b . 

Theorem 5 has the remarkable consequence: if the distribution function  F u  is continuous then 

the distribution of probabilities generated by  F u  is not a measure. If we suppose the opposite then 

we have a measure defined on all subsets of the segment  a b, , which is equal to zero at every one-

point set. This contradicts to classic Ulam’s theorem [40], according to which the measure mentioned 

above is equal to zero everywhere. 
The concept of independent events in the new theory is introduced in the following way. Let 

 p E A B,  be the conditional probability of the event A  in the experiment E  generated by the 

series of the trial T . Then, the event A  does not depend on B  if 

   p E A B p E A B, , . 

Theorem 6 [38]. Let E be a random experiment, A  and B  be random events that can occur in 

the experiment E . The random event A  does not depend on B  if and only if  

   p E A B p E A, , . 

5.4. Operations on random variables 

Let us define multiplication by constant, addition, subtraction, multiplication and division of two 

random variables considering a random variable as a function  x B , TB B , defined on the set of 

elementary outcomes TB  of some random trial T . For example, suppose that a set of elementary 

outcomes of the random trials 1T   and 2T  belong to disjoint segments [a, b] and [c, d]. Let random 

variables x  and y  take on their values as a result of the random trials 1T  and 2T . Thus, we can 
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interpret x  as a function  x B  defined on [a, b] and y  as a function  y B  defined on [c, d]. Since 

the segments are disjoint, the sets of elementary outcomes of these trials are disjoint also and sum 

x y  is no valid.  

Let us introduce a useful concept that we need in further. 

Definition 8. The random experiments E1  and E2  are said to be commutative if 

         p E E A A p E E A A1 2 1 2 2 1 2 1, , , , , , . Let  1 2,cT T T  be a composite trial, then 
1 2cT T TB B B  , 

where  denotes the Cartesian product of the sets 
1TB  and 

2TB . The results of the random trial 
cT  is 

the random event  1 2,cB B B , where 
11 EB B  and 

22 EB B , so that x  takes on value  1x B , and y  

takes on value  2y B . We would introduce arithmetic operations as       1 2cx y B x B y B   , 

      1 2cx y B x B y B   ,        1 2cxy B x B y B ,   
 

 
1

2

c

x Bx
B

y y B

 
 

 

, but  they are valid only if 

random experiments 1E  and 2E  are commutative. Let us consider the concept of isomorphic 

experiments and isomorphic random events. A function : X Y   defined on an ordered set X  and 

taking on values in an ordered set Y  is said to be an isotonic function, if x y  implies    x y 

 An isotonic function that is invertible is said to be an isomorphism. Thus, an isomorphism between 

ordered sets is a single-valued mapping that satisfies these conditions. This is an inverse isotonic 

property of the mapping   that is called a structural isomorphism of ordered sets X  and Y . 

Definition 9. Let 1E  and 2E  be two random experiment and let  1S E  and  2S E  be the fields of 

random events generated by 1E  and 2E , respectively. We shall call the fields of events  1S E  and 

 2S E  isomorphic, if between their elements there exists a one-to-one mapping  , which is a 

structural isomorphism of Boolean algebras  1S E  and  2S E , such that the probability of random 

events is     1 2, ,p E A p E A  , where the experiments 1E  and 2E  are isomorphic. 

That is, two fields of events  S E1  and  S E2  are isomorphic if there exists one-to-one mapping 

   :S E S E1 2 , which is isotonic in respect with ordering of correspondent events  S E1  and 

 S E2  in the Boolean algebras and has the inverse isotonic property:   A S E1  

    p E A p E A1 2, ,  . This mapping   is said to be a probabilistic isomorphism. 

Theorem 7 [38]. The fields of events  cS E  and  cS E  generated by the composite experiments 

 1 2,cE E E  and  2 1,cE E E  are isomorphic if the random experiments 1E  and 2E  are 

commutative.  

Using the above theorem we can introduce addition and multiplication of random variables x  and 

y , produced in random experiments 1E  and 2E , respectively. The sum x y  and the product xy  

take on their values in composite experiments  1 2,cE E E , and, y x  and yx  take on their values 

in composite experiment  2 1,cE E E . Let us consider the random value x y  as a result of a 

random experiment cE  with numerical base  
1 2 1 2

: ,
cE E E E EB B B x y x B y B      , where 

, 1,2
iEB i   is the numerical bases of the random experiment iE .  

The random variable y x  is identified with a random experiment cE  with numerical base 

2 1 2c cc
E E E E EE

B B B B B B     . The field of events  cS E  and  cS E  are isomorphic when 

random experiments 1E  and 2E  are commutative. 

Then, the random variables x y  and y x  are isomorphic. If isomorphic objects are identified, 

we can write x y y x   . The similar results is true for multiplication: xy yx . Notice, that for the 
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random variables x y  and y x  the fields of events  cS E  and  cS E  coincide, since they are sets 

of all possible subsets of numerical sets 
c c

E E
B B , and therefore the random experiments 

cE  and 
cE  

generate the identical distributions of probabilities on these fields. 

6. Conclusion 

The new frequency-based approach based on the concept of a characteristic matrix of a random 

experiment eliminates the need to formalize the von Mises rule for acceptable collective selection. In 

the new model, rows and columns of the characteristic matrix automatically form collectives. Using 

the topological properties of the sets of numbers represented by the rows and columns of the 

characteristic matrix makes it easy to apply the new randomness criterion in practice. In addition, we 

propose correct way to define arithmetic operations on random variables in the frame of new model. 
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