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ABSTRACT
With the rapid advancements of sensor technologies and mobile
computing, Mobile Crowd-Sensing (MCS) has emerged as a new
paradigm to collect massive-scale rich trajectory data. Nomadic
sensors empower people and objects with the capability of re-
porting and sharing observations on their state, their behavior
and/or their surrounding environments. Processing and mining
multi-source sensor data in MCS raise several challenges due
to their multi-dimensional nature where the measured parame-
ters (i.e., dimensions) may differ in terms of quality, variabilty,
and time scale. We consider the context of air quality MCS, and
focus on the task of mining the context from the MCS data. Re-
lating the measures to their context is crucial to interpret them
and analyse the participant’s exposure. This paper investigates
the feasibility of recognizing the human’s context (called herein
micro-environment) in an environmental MCS scenario. We put
forward a multi-view learning approach, that we adapt to our
context, and implement it along with other time series classifica-
tion approaches. The experimental results, applied to real MCS
data, not only confirm the power of MCS data in characterizing
the micro-environment, but also show a moderate impact of the
integration of mobility data in this recognition. Furthermore,
multi-view learning shows similar performance as the reference
deep learning algorithm, without requiring specific hardware.

KEYWORDS
Activity Recognition, Multivariate Time Series Classification,
Multi-view Learning, Mobile Crowd Sensing, Air Quality Moni-
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1 INTRODUCTION
Nowadays, the Internet of Things (IoT) basically relies on ad-
vanced sensor technologies to bridge the physical world and
information systems. In particular, along with the widespread
use of GPS, various mobile sensors bring rich information col-
lected from both the surrounding environment and human activ-
ities, which are generally represented as Geo-referenced Time
Series (GTS). Mobile Crowed Sensing (MCS) [12] emerges as a
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new paradigm, which empowers volunteers to contribute data
(i.e., GTS) acquired by their personal sensor-enhanced mobile
devices. Polluscope1, a French project deployed in Île-de-France
(i.e., Paris region), is a typical use case study on MCS. It aims at
getting insights constantly on individual exposure to pollution
everywhere (indoor and outdoor), while enriching the traditional
monitoring system with the collected data by the crowd. The
recruited participants, on a voluntary basis, collect air quality
measurements. Each participant is equippedwith a sensor kit, and
a mobile device which allows the transmission of collected mea-
surements together with the GPS coordinates as a geo-referenced
data stream containing (timestamp, longitude, and latitude). In
addition, the participants are asked to annotate their environ-
ment type through a custom mobile application. This will allow
participants to have personalized insights about their exposure
to pollution everywhere, either in indoor and outdoor environ-
ments (e.g., Home, Work, Transportation, Streets, Park, etc.), and
at a higher resolution along their trajectories, thereby, allowing
to capture local variability and peaks of pollution, depending on
participants’ whereabouts, i.e., micro-environments.

It is worth mentioning that air quality strongly depends on
the context2, and so is the individual exposure to pollution. For
this reason, there is a great interest of making exposure analysis
context-aware. However, the context annotation is by far themost
difficult information to collect in a real-life application setting,
since a very few participants thoroughly annotate their micro-
environment. Therefore, there is a great interest in unburdening
the participants by automatically detecting the context.

When exploring visually the data, we noticed that micro-
environments preserve a certain pattern. Besides, we observe
the existence of an inter-sensor correlation and with the con-
text. Figure 1 shows the evolution of three dimensions (i.e. Black
Carbon (BC), NO2 and Particulate Matters (PM)) with micro-
environments identification. As shown in Figure 1, BC and NO2
preserve the same shapes and statistical characteristics in the
micro-environment “Car”. Plus, we note that PM values keep
the same statistical characteristics in the micro-environment “In-
door”. Moreover, we can observe the existence of a correlation
between the three dimensions during the whole timeline.

The idea we promote in this paper is to utilize a wisely chosen
annotated dataset, in order to train amodel on all the combination
1http://polluscope.uvsq.fr
2In this paper, the terms "context" and "micro-environment" are used
interchangeably.



of air quality, and mobility dimensions as predictors of the micro-
environment. We hypothesize that the multi-variate time series
collected by the MCS campaigns not only depends on the micro-
environment but could be a proxy of it.

Figure 1: Inter-sensor and micro-environment correla-
tions.

The question that arises itself now is how to combine all these
different aspects of the data (geo-location, sensors) to identify
the user’s context automatically? And howmuch a model can dis-
criminate the observations in different micro-environments? To
this end, we envision a holistic approach of activity recognition,
as depicted in [7].

The micro-environment recognition is a crucial figure to ex-
posure interpretation. Once the data are correctly annotated, our
ultimate goal is to get insight into all the dimensions (spatial,
temporal, individual, and contextual) of the exposure to pollution.

In this paper, we evaluate different approaches and provide a
framework dedicated to the preparation, the application and the
comparison of different machine learning algorithms.

The rest of this paper is organized as follows. We introduce
the related work in Section 2. The formal presentation of our
micro-environment recognition model is discussed in Section 3.
Section 4 presents the experimental results and evaluation of the
micro-environment recognition model in the context of environ-
mental crowd sensing. Section 5 gives the extensive discussion
for the perspectives of this work. In section 6, we summarize our
conclusions and provide directions for future work.

2 RELATEDWORK
Human activity recognition involves a wide range of applications
from smart homes activities [1] to daily human activities [4,
17, 28], to human mobility [6, 30] to cite a few. It represents a
typical scenario of machine learning, and some public datasets
are widely used in the benchmarks. In this section, we introduce
a summary of two main topics of related work to our approach.
We focus mainly on multi-variate time series (MTS) classification
and multi-view learning.

2.1 Multi-Variate Time Series Classification
Human activity recognition falls in the problem of labelling data
segments with the type of activity, which leads to a multi-variate
time series classification (MTSC) problem based on data collected
by multiple wearable sensors. There is a wide range of time series
classification approaches that can be classified into four cate-
gories: distance-based methods [2], feature-based methods [19],
ensemble methods [11] and deep learning models [3, 9, 24]. The

One-Nearest Neighbor (1-NN) classifier with different distance
measures, such as Euclidean Distance (ED) or Dynamic Time
Wrapping (DTW) [2], is always considered as the benchmark to
give a preliminary evaluation in the MTSC problem.

Considering the real-life scenarios, where it is difficult or ex-
pensive to obtain a large amount of labeled data for training,
some studies used both labeled and unlabeled data to learn the
human activity, that is Semi-Supervised Learning (SSL) [25] on
MTSC. The pioneering work by [25] propose a semi-supervised
technique for time series classification. The authors demonstrated
that semi-supervised learning requires less human effort and gen-
erally achieves higher accuracy than training on limited labels.
The semi-supervised model [25] is based on the Self-Learning
concept with the One-Nearest-Neighbor (1-NN) classifier. First,
the labeled set, denoted by 𝑃 (as positively labeled) is applied to
train the 1-NN classifier 𝐶 . Then, the unlabeled samples 𝑈 are
given the pseudo labels progressively based on their distance to
the samples in 𝑃 . Thereafter, the enriched labeled set 𝑃 allows it-
eratively repeating the previous step and improving the classifier.
More recently, the deep learning-based models on MTSC show
promising performance under weak supervision. For instance,
Zhang et al. [29] propose a novel semi-supervised MTSC model
named Time series attentional prototype network (TapNet), to ex-
plore the valuable information in the unlabeled samples. TapNet
projects the raw MTS data into a low-dimensional representation
space. The unlabeled samples approach themselves to the class
prototype in the representation space, where the distance-based
probability and the labeled samples allow training the model pro-
gressively. Moreover, the hybrid Convolutional Neural Network
(CNN) and Long Short-Term Memory (LSTM) structure adopted
in TapNet allows modeling, respectively, the variable interactions
and the temporal features of MTS.

2.2 Multi-View Learning
Another line of studies propose multi-view learning to classify
time series data originated from multiple sensors to recognize
users activities. Garcia-Ceja et al. [11] propose a method based on
multi-view learning and stacked generalization for fusing audio
and accelerometer sensor data for human activity recognition
using wearable devices. Each sensor’s data is seen as a different
“view”, and they are combined using stacked generalization [26].
The approach trains a specific classification model over each view
and an extra meta-learner using the view models as input. The
general idea of the authors is to combine data from heterogeneous
types of sensors to complement each other and thus, increase
recognition accuracy.

Wang et al. [23] propose a framework based on deep learning
to learn features from different aspects of the data based on
features of sequence and visualization. In order to imitate the
human brain, which can classify data based on visualization,
the authors transform the time series into an Area Graph. They
use well-trained LSTM-A neural networks and CNN-A neural
networks to extract the features of time series data. LSTM-A is
used to extract sequence features, while CNN-A is used to extract
visual features from the time series. Then, based on the fusion
of features, the authors carry out the time series classification
task. Although the approach gained promising results, it did not
outperform deep learning methods such as InceptionTime [10].

Li et al. [15] propose a Multi-view Discriminative Bilinear Pro-
jections (MDBP) for multi-view MTSC. The proposed approach
is a multi-view dimensionality reduction method for time series



classification which aims to extract discriminative features from
multi-view MTS data. MDBP mainly projects multi-view data to
a shared subspace through view-specific bilinear projections that
preserve the temporal structure of MTS, and learns discriminative
features by incorporating a novel supervised regularization.

3 MICRO-ENVIRONMENT RECOGNITION
MODEL

In this section, we provide an overview of our proposed frame-
work for micro-environment recognition in the context of MCS.
Our proposed approach contains six steps as shown in Figure 2.

3.1 Data Collection
The first step of our micro-environment recognition process is
the data collection. During three campaigns, around one hundred
participants have been recruited to collect ambient air measure-
ments along with geo-location for one week 24 hours a day,
while performing their daily activities. Each participant carries
a multi sensor box and a tablet empowered with GPS chipset.
The sensors collect time annotated measurements of Particulate
Matter (PM1.0, PM10, PM2.5), nitrogen dioxide (𝑁𝑂2), Black Car-
bon (BC), Temperature and Relative Humidity, and the tablet
records participants’ geo-locations and allows them to annotate
their context by using a self-reporting mobile app. They report
every transition to a micro-environment (e.g., Home, Office, Park,
Restaurant, etc.), as well as events, which are temporary activities
for a brief period (e.g., Start cooking, Open a window, Close a
window, Smoking, Turn on a chimney, etc.).

3.2 Data Preparation
The second step consists of pre-processing the data which is two
folds. On the one hand, most sensor data are noisy, and require
a prepossessing phase to clean them from irrelevant measure-
ments. We have observed this especially in the GPS (due to signal
loss), and in air quality data even though the sensor data quality
is a permanent preoccupation of the project, by careful evalu-
ation before their selection, and periodic qualification during
the campaign [14]. The sensors for climatic parameters do not
show such defects. Therefore, a de-noising process is applied to
clean the data. On the other hand, the highest quality sample of
annotated data is selected as a baseline to validate the process
of micro-environment recognition. The idea is to generalize the
micro-environment recognition to all participants’ data, by using
the model derived from a good-quality dataset.

3.3 Multi-View Learning Model
We were interested in the stack generalization approach pro-
posed in [11], but we have adapted it to best fit for solving our
problem. We propose to learn the micro-environment of partici-
pants from multi-variate time series through a two-stage model
based on multi-view learning. Our multi-view classification ap-
proach consists of training a first-level learner on each view
(i.e. step 3 in Figure 2), and then train a second-level learner or
meta-learner (i.e. step 5 in Figure 2) to combine the output of
each view and enhance the global accuracy of the classification.
We assume that 𝑌𝑖𝑡 is a dimension of the n-dimenstional time
series 𝑌𝑡 = (𝑌1𝑡 , 𝑌2𝑡 , ..., 𝑌𝑖𝑡 , ..., 𝑌𝑛𝑡 ). In our model, each view 𝑉𝑖 ,
where 𝑉 = (𝑉1,𝑉2, ...,𝑉𝑖 , ...,𝑉𝑛) is the set of views, represents a
dimension 𝑌𝑖𝑡 of the multi-variate time series 𝑌𝑡 . Thus, we have
as many views as dimensions.

Table 1: An example of the new generated dataset 𝐷 ′

First-Level Learners Associated Prediction Probabilities True Label
𝑙1 𝑙2 ... 𝑙𝑖 ... 𝑙𝑛 𝑝1 𝑝2 ... 𝑝𝑖 ... 𝑝𝑛 𝑦

In step 3, the first-level learner takes as input the time series
data coming from each view. Then, each view will generate its
own predicted labels with associated prediction probabilities
with the form [𝑙𝑖 , 𝑝1, 𝑝2, ..., 𝑝 𝑗 , ..., 𝑝𝑘 , 𝑦], where 𝑙𝑖 is the predicted
label of the first-level learner 𝑖 , 𝑝 𝑗 is the associated prediction
probability for each class 𝑗 of the 𝑘 possible classes, and 𝑦 is the
true label.

One of the advantages of multi-view learning is its versatility
on first and second level learners’ choices. One can flexibly substi-
tute classifier choices as wished. We opt for k-nearest-neighbor
(kNN) classifier coupled with the Dynamic Time Warping (DTW)
distance as first-level learner to be trained on each view of the
data. kNN is one of the most popular and traditional TSC ap-
proaches. kNN with DTW metric was considered for a long time
the state-of-the-art in the time series classification problem [9].
Furthermore, most classification approaches require parameters
settings, whereas kNN with DTW is parameter free. kNN classi-
fier has shown to be a strong baseline [9], and there is no single
distance measure that significantly outperforms DTW [9]. Hence,
recent research has focused on developing ensemble methods
that significantly outperforms the NN coupled with DTW [9].

In step 4, we aimed at giving a weight for each learner, thus
a new dataset 𝐷 ′ is generated by joining the first-level learner
predictions and the probability of each prediction, Table 1 shows
the feature vector in this dataset, where 𝑙𝑖 is the predicted label
of the first-level learner 𝑖 , 𝑝𝑖 is the probability of this prediction,
and 𝑦 is the true label.

In step 5, after generating a new dataset 𝐷 ′, a second-level
classifier, or meta-learner, is trained over 𝐷 ′ through ensemble
learning [31]. This approach allows to preserve the statistical
properties of each view and learn the classes of the MTS instances
with a significant improvement in the classification accuracy.

Many ensemble methods [31] have been proposed to further
enhance the algorithm’s accuracy by combining learners rather
than trying to find the best single learner. Due to their versatility
and flexibility, ensemble methods attract many researchers and
can be applied in different domains, for example, but not limited
to, time series classification [11] and time series segmentation
[8]. In a previous work [8], we used a multi-view approach for
segmenting MCS data, where we employed an unsupervised
learning for change detection on each view.

In this work, we conduct our experiments using Random Forest
classifier since it has shown high performance when it is applied
in the human activity recognition domain [11].

4 EXPERIMENTS AND RESULTS
The experiments are carried out on different environments. The
multi-view learning model was implemented in Python 3.6 using
scikit-learn 0.23.2 and tslearn [21]. The deep-learning models
(MLSTM-FCN [13], TapNet [29]) were trained on a single Tesla
V100 GPU of 32 Go memory with CUDA 10.2, using respectively
Keras 2.2.4 and PyTorch 1.2.0.



Figure 2: Overview of the Micro-Environment Recognition Process.

4.1 Experimental Settings
We evaluated the used models in these experiments using real
life data collected within the scope of Polluscope project. For
the experiments we have used the participants’ ambient air data
containing (PM10, PM1.0, PM2.5, NO2, BC, Temperature, and
Relative Humidity), in addition to the speed dimension derived
from the geo-locational data. Moreover, we have 8 classes (i.e.,
micro-environment to recognize), which can be divided into two
categories indoor such as (“Home”, “Office”, “Restaurant”, and
"Store"), and outdoor such as (“Street”, “Bus”, “Car”, and “Train”).

We have selected the data of six participants who have thor-
oughly annotated their activities within the campaign. Data were
split into two third for training and one third for testing, with
care taken to keep the data of each participant grouped either
in the training or in the testing sets. We used the cross valida-
tion score with "Repeated Stratified K-fold" in order to split the
training set into training and validation, while we test the overall
accuracy using the test dataset.

To account for the temporal feature of the data, we segment
them into samples of 10 minutes’ length at maximum. Usually,
people spend most of their time indoors, thus we should take into
consideration other outdoor activities that have a short period of
time compared to indoor activities. For example, the average time
spent in "Bus" is around 8 minutes, for "Car" the average time
is 20 minutes, etc. Globally, the distribution of data samples is
highly imbalanced over the different classes, as shown in Figure
3a, which reflects the imbalance of time spent in different micro-
environments. Imbalanced classes usually cause low performance
classification for the minority classes. To cope with this problem,
we apply a resampling strategy. Figure 3 shows the distribution
of the data in both the original and the re-sampled dataset. We
have used the random over/under-sampler in order to balance
our dataset.

To consider the valuable variable of the mobility information,
we carry out our experiments on the datasets while considering
or not the speed variable. We also compare the classifiers’ perfor-
mance on both resampled and original (i.e., un-resampled) data.
Finally, we introduce and evaluate a two-steps approach, by first
discriminating indoor from outdoor environments, followed by
a refinement step to learn a more specific class.

4.2 Classification Results
This section details the experimental results. Themicro-environment
recognition is formulated as a MTSC problem. We used as a base-
line a basic kNN classifier with DTW as distance metric. To
compare our multi-view learning approach (2NN-DTW for the
first-level learners and Random Forest as a meta-learner) with
state-of-the-art techniques, we implemented the MLSTM-FCN
[13] and run it on a GPU, since it requires more computational
resources than the multi-view approach. Both kNN-DTW and
MLSTM-FCN were applied on an aggregated feature vector con-
taining all the dimensions together.

As shown in Table 2, kNN-DTW classifier is not able to dis-
criminate correctly between the micro-environments, while the
accuracy improves when applying the multi-view approach that
treats each view independently, thus preserving the statistical
features of each view. For the third experiment, a Long Short
Term Memory network is generated in order to learn a map-
ping between the input vector and the classes. MLSTM-FCN has
shown promising results in the experiments. Table 2 shows the
accuracy of experiments carried out with different conditions.

Table 2: Performance of different classifiers on Multi-
source Polluscope data

Model Condition Accuracy

kNN-DTW

Speed 0.450
No speed 0.440

Speed & Re-smp. 0.587
No speed & Re-smp. 0.597

Multi-view Based

Speed 0.716
No speed 0.710

Speed & Re-smp. 0.729
No speed & Re-smp. 0.640

MLSTM-FCN

Speed 0.808
No speed 0.784

Speed & Re-smp. 0.703
No speed & Re-smp. 0.691

Grouping Step Speed & Re-smp. 0.83
No speed & Re-smp. 0.82



(a) Original Dataset

(b) Re-sampled Dataset

Figure 3: Class Distribution

Next, we focus on the comparison between the proposed ap-
proach and MLSTM-FCN. We also study the impact of using or
not the mobility data, as well as the learning from the original
or the re-sampled data. We report the performances in terms of
recall, and F1 score. These results are grouped in Table 2 to Table
7 and Figure 4 to Figure 6. Table 2 represents the overall accuracy
of the different classifiers used in these experiments while or not
using the Speed data, and with or without re-sampling. Table
3 and 4 reports the precision, recall, and the F1-Score metrics
of the Multi-view learner for raw data and re-sampled data re-
spectively with and without Speed. Table 5 and 6 reports the
precision, recall, and F1-Score metrics of the MLSTM-FCN for
raw data and re-sampled data respectively with and without
Speed. Figure 4 shows the accuracy among different views used
within the experiment of the Multi-view approach. Moreover, fig-
ure 5a and 5b shows the confusion matrix when applying the
Multi-view approach on the re-sampled data with/out the speed
respectively. Figure 6 shows the procedure used for the Grouping
step approach which is also based on the multi-view approach,
and table 7 reports the precision, recall, and F1-Score metrics for
this approach.

The multi-view learner proposed in these experiments em-
ploys the stacked generalization approach, which combines the
predictions of each independent view in order to get the final
classification result. As shown in figure 4 although the first level
learners may have a low accuracy but the combination of their
predictions, by generating a new dataset D’ and feeding it to
train, the meta-learner can improve the accuracy a lot.

We observe an improvement of the accuracy of the overall clas-
sification when adding the speed dimension to the ambient air
dimensions. We also notice from the confusion matrix in figures

Table 3: Performance of Multi-view Learner (Raw data
with/out speed)

class With Speed Without Speed

Precision Recall F1
Score Precision Recall F1

Score
Street 0.65 0.52 0.57 0.69 0.40 0.50
Bus 0.18 0.12 0.14 0.60 0.33 0.42
Office 0.86 0.93 0.89 0.58 0.43 0.49
Restaurant 1.0 0.22 0.36 1.0 0.10 0.18
Home 0.67 0.65 0.66 0.71 0.87 0.78
Car 0.61 0.81 0.69 0.55 0.75 0.63
Store 0.25 0.05 0.08 0.00 0.00 0.00
Train 0.00 0.00 0.00 0.40 0.08 0.13

Table 4: Performance of Multi-view Learner (Re-sampled
data with/out speed)

class With Speed Without Speed

Precision Recall F1
Score Precision Recall F1

Score
Street 0.72 0.49 0.59 0.59 0.36 0.45
Bus 0.00 0.00 0.00 0.25 0.04 0.06
Office 0.94 0.94 0.94 0.71 0.76 0.73
Restaurant 0.92 0.80 0.86 0.43 0.20 0.27
Home 0.72 0.78 0.75 0.54 0.70 0.61
Car 0.64 0.80 0.71 0.56 0.63 0.59
Store 0.09 0.05 0.06 0.12 0.05 0.07
Train 0.54 0.47 0.50 0.26 0.33 0.29

Table 5: Performance of MLSTM-FCN (Raw data with/out
speed)

class With Speed Without Speed

Precision Recall F1
Score Precision Recall F1

Score
Street 0.55 0.60 0.57 0.53 0.54 0.53
Bus 0.88 0.70 0.78 0.76 0.65 0.70
Office 0.96 0.88 0.92 0.91 0.85 0.88
Restaurant 0.78 0.88 0.82 0.78 0.88 0.82
Home 0.83 0.87 0.85 0.82 0.90 0.86
Car 0.81 0.83 0.82 0.78 0.83 0.80
Store 0.50 0.60 0.55 0.62 0.32 0.42
Train 1.0 0.30 0.46 0.38 0.30 0.33

Table 6: Performance of MLSTM-FCN (Re-sampled data
with/out speed)

class With Speed Without Speed

Precision Recall F1
Score Precision Recall F1

Score
Street 0.43 0.54 0.48 0.50 0.42 0.46
Bus 0.41 0.65 0.50 0.52 0.65 0.58
Office 0.90 0.88 0.89 0.87 0.87 0.87
Restaurant 0.75 0.75 0.75 0.50 0.62 0.56
Home 0.80 0.80 0.80 0.81 0.76 0.78
Car 0.80 0.60 0.69 0.65 0.68 0.67
Store 0.38 0.48 0.42 0.50 0.24 0.32
Train 0.22 0.40 0.29 0.12 0.30 0.17

5a and 5b and the recall and F1 score metrics in table 4 that the
model can easily discriminate between the “indoor” and “outdoor”
activities, but it cannot perfectly distinguish between the micro-
environments inside each category. For example, even though



Figure 4: Accuracy among different views (Re-sampled data)

Table 7: Performance of Grouping Step (Re-sampled data
with/out speed)

class With Speed Without Speed

Precision Recall F1
Score Precision Recall F1

Score
Street 0.73 0.59 0.65 0.59 0.35 0.44
Bus 0.60 0.12 0.20 0.00 0.00 0.00
Office 0.92 0.93 0.92 0.80 0.87 0.83
Restaurant 0.91 0.67 0.77 0.20 0.07 0.10
Home 0.86 0.94 0.90 0.75 0.86 0.80
Car 0.71 0.87 0.78 0.66 0.94 0.77
Store 0.46 0.30 0.36 0.40 0.10 0.16
Train 0.29 0.33 0.31 0.33 0.20 0.25

most of the samples in the “Train” micro-environment is falsely
predicted as “Car”, both “Car” and “Train” micro-environments
can be classified as outdoor. Based on this observation, we intro-
duced a grouping step before recognizing the micro-environment.
In this step we classify the sample into either an “Indoor” or “Out-
door” environment. Based on the classification result, a model will
be specialized for each indoor or outdoor micro-environments.
Figure 6 shows the added step and the procedure for the classifi-
cation.

The accuracy of the classifier in the grouping phase (“Indoor”
or “Outdoor”) showed a good result when using the resampled
data. It reaches 0.82 for data without speed dimension, while for
data with the speed dimension it reaches around 0.83. Table7
shows the recall and F1 score for both models trained on resam-
pled data with and without speed. These experiments did not
consider the case with original data due to its low performance,
in particular, for the minority classes.

5 DISCUSSIONS & PERSPECTIVES
In this section, we discuss the perspectives for improving our
multi-view learning model and the possibility for tackling the
practical label issue in the context of Polluscope.

5.1 Multi-view Learner
The multi-view learner adopted in this paper is composed by the
base learner (i.e., kNN-DTW) and the meta-learner (i.e., Random
Forest), which has greatly improved the performance compared to
the single kNN-DTW classifier. The objective of this paper is not
to propose the best classifier for MTS classification, but to provide
an insight that the multi-view learner is capable of coordinating
effectively the information from different variables and achieving
more reliable performance than a single base learner. Moreover,
the results of the grouping approach which is based on the multi-
view approach confirms that there is a clear signature for each
micro-environment, thus we can have an effective prediction
with this approach.

Nevertheless, the kNN-DTW is considered as the baseline for
MTS classification and is widely outpaced by the advanced ap-
proaches such as Shapelets [27, 32, 33] or the frequent patterns
[18]. Essentially, the kNN-DTW captures the global feature based
on the distance measure between the entire sequences, while
the local features (e.g., the frequent patterns [18], the interval
features [5], Shapelets [27], etc.) are more appropriate when a
specific pattern characterizes a class. More specifically, a combi-
nation of features extracted from different domains may improve
dramatically the performance of the base learner [16]. Therefore,
one of the perspectives consists in the optimization of the base
learner and the exploration of the explainability of the multi-
view learner on both the feature interpretation and the variable
importance for building the classifier. The visual representation
of Shapelets make them good candidates for such improvement.

5.2 Label Shortage Issue
The label shortage is a practical issue when building the learning
model. In particular, in the context of Polluscope, post-labelling
for time series sensor data is much more costly than classic data
(e.g., image, text, etc.) due to the low interpretability over the real-
valued sequence. Therefore, the data need to be annotated during
the data collection process. However, certain practical factors
limit the availability of labels. For instance, the participants are
not always conscious in annotating their micro-environment.
Therefore, for certain time periods, no annotations were marked.



(a) With Speed

(b) Without Speed

Figure 5: Confusion Matrix (Re-sampled Data)

Figure 6: Grouping Process

In order to give an insight for the consistency between the
labeled and unlabeled data, and to see if the unlabeled data are
valuable for improving the classifier’s performance in our context,

we conduct a preliminary test on the Polluscope data with the
newly proposed semi-supervised MTSC model TapNet [29].

TapNet [29] is a deep learning based approach designed for
multivariate time series classification. By adopting the proto-
typical network [20], TapNet allows learning a low-dimensional
embeddings for the input MTS where the unlabelled samples
help adjusting the class prototype (i.e., class centroid), which
leads to a better classifier than using only the labelled samples.
Table 8 shows the semi-supervised learning results on Pollus-
cope data considering or not the speed variable. We evaluate the
performance of TapNet under different supervision ratios in the
training set. The results show that the unlabeled samples and
the speed variable do improve the performance of the classifier.
Besides, the accuracy didn’t drop a lot when eliminating the an-
notations in training set (from ratio=1 for fully labelled to 0.5,
and even for 0.2 when only 20% data in labelled), indicating that
the collected data within each class is not sparsely distributed,
thus learning under weak supervision is reliable with the aid of
the unlabeled samples.

Table 8: The accuracy results of TapNet on Polluscope data
under different supervision ratios

Condition Sup_ratio=1 Sup_ratio=0.5 Sup_ratio=0.2
Speed 0.746 0.725 0.717

No speed 0.713 0.703 0.695

Giving the promising results on the data distribution consis-
tency, another avenue worth exploring is to consider and in-
tegrate a semi-supervised model into our multi-view learner.
Various semi-supervised frameworks are applicable to our model,
such as applying self-learning [25] to produce the pseudo labels
on the multi-view learner, or adopting the label propagation and
manifold regularization techniques [22] on the base learner.

6 CONCLUSION
Activity recognition has gained the interest of many researchers
nowadays, due to the widespread use of mobility sensors. Micro-
environment recognition is essential in MCS projects such as
Polluscope, in order to be able to analyse the individual’s expo-
sure to air pollution and to relate it to her context. The major
finding of our study is to show to some extent that the ambient air
can characterize the micro-environment. Moreover, the accuracy
of the model is high enough to consider an automatic detection
of the micro-environment without burdening the participants
with self-reporting. By using the mobility feature, the accuracy
improves slightly though the gain is moderate. Therefore, we can
keep characterizing the micro-environment even in the absence
of the speed dimension.

We employed different approaches and learners, and con-
ducted a thorough experimental study, which shows the effi-
ciency of MLSTM-FCN and the multi-view approach for time
series classification. We have also compared the results with the
kNN-DTW classifier which was considered as the baseline.

We have also identified several perspectives of this work, and
explored the application of semi-supervised learning to cope
with the lack of labels for some classes. In future work, we can
use various algorithms for the first level learner and the meta-
learner, as multi-view learning is flexible. Finally, we intend to
improve the performance of the learned classes by integrating



some a priori rules, like the unlikelihood of being in some micro-
environment at some time of day, or of transitions between some
micro-environments.
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