
FAIR-DB: FunctionAl DependencIes to discoveR Data Bias
Fabio Azzalini

Politecnico di Milano
Milan, Italy

fabio.azzalini@polimi.it

Chiara Criscuolo
Politecnico di Milano

Milan, Italy
chiara.criscuolo@mail.polimi.it

Letizia Tanca
Politecnico di Milano

Milan, Italy
letizia.tanca@polimi.it

ABSTRACT
Computers and algorithms have become essential tools that per-
vade all aspects of our daily lives; this technology is based on
data and, for it to be reliable, we have to make sure that the data
on which it is based on is fair and without bias.

In this context, Fairness has become a relevant topic of dis-
cussion within the field of Data Science Ethics, and in general in
Data Science. Today’s applications should therefore be associated
with tools to discover bias in data, in order to avoid (possibly
unintentional) unethical behavior and consequences; as a result,
technologies that accurately discover discrimination and bias in
databases are of paramount importance.

In this work we propose FAIR-DB (FunctionAl dependencIes to
discoveR Data Bias), a novel solution to detect biases and discover
discrimination in datasets, that exploits the notion of Functional
Dependency, a particular type of constraint on the data. The
proposed solution is implemented as a framework that focuses
on the mining of such dependencies, also proposing some new
metrics for evaluating the bias found in the input dataset. Our
tool can identify the attributes of the database that encompass
discrimination (e.g. gender, ethnicity or religion) and the ones
that instead verify various fairness measures; moreover, based
on special aspects of these metrics and the intrinsic nature of
dependencies, the framework provides very precise information
about the groups treated unequally, obtaining more insights re-
garding the bias present in dataset compared to other existing
tools. Finally, our system also suggests possible future steps, by
indicating the most appropriate (already existing) algorithms to
correct the dataset on the basis of the computed results.

1 INTRODUCTION
In recent years, fairness has become an important topic of in-
terest in the Data Science community. Indeed, computers and
algorithms have made our lives efficient and easier, but among
the prices we risk to pay is the possible presence of discrimination
and unfairness in the decisions we make with their support.

A famous example of unfairness in a data science applica-
tion regards the Propublica analysis of the COMPAS Recidivism
Algorithm 1, a decision-making tool used by judges, probation
and parole officers to assess a criminal defendant’s likelihood of
becoming a recidivist, where their study found that black defen-
dants were far more likely thanwhite defendants to be incorrectly
judged to be at a higher risk of recidivism.

Data Science technologies are based on data, and for them to
be reliable we have to make sure that the data we feed them are
fair and without bias. As a consequence, in these particular ap-
plications of data analysis, data can be considered of good quality
1https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-
sentencing

© 2021 Copyright for this paper by its author(s). Published in theWorkshop Proceed-
ings of the EDBT/ICDT 2021 Joint Conference (March 23–26, 2021, Nicosia, Cyprus)
on CEUR-WS.org. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0)

only if it conforms to high ethical standard[8] and, to avoid (possi-
bly unintentional) unethical behaviors and their consequences,
data cleaning tools should also include tools to discover bias in
data, and technologies that accurately discover discrimination
and bias to obtain fair databases are badly needed[13].

In this paper we present FAIR-DB, a framework that, by dis-
covering and analyzing some special types of functional depen-
dencies, is able to find unfair behaviors in a dataset and guide its
correction.

A Functional Dependency (FD : X → Y) is a class of database
integrity constraints that hold between two sets X and Y of at-
tributes in a relation of a database. It specifies that the values of
the attributes ofX uniquely (or functionally) determine the values
of the attributes of Y . Looking at Table 1 we may spot the follow-
ing FD: Education-Num→ Education, meaning that the number
of years already attended at school functionally determines the
school level. In a FD, X is called antecedent or left-hand-side
(LHS) while Y is called consequent, or right-hand-side (RHS).

The constraints that Functional Dependencies impose are of-
ten too strict for real world datasets since they must hold for
all the values of the attribute sets X and Y. For this reason, re-
searchers have begun to study generalizations of FDs, called
Relaxed Functional Dependencies[4], which relax one or more
constraints of canonical FDs.

Among these, we consider Approximate Functional Depen-
dencies (AFDs), that are uncertain FDs, i.e. they hold only on a
subset of the tuples, and Conditional Functional Dependencies
(or CFDs), where conditions are used to specify the subset of
tuples on which a dependency holds.

In particular, a CFD is a pair
(
X → Y , tp

)
, where X and Y are

sets of attributes, X → Y is a standard functional dependency
and tp is a pattern tuple over the attributes in X and Y ; for each
A in X ∪ Y , tp [A] is a constant ‘a’ in dom(A), or an unnamed
variable ‘_’.

Looking at Table 1 we may have the CFD: Education, Income=
‘>50K’ → Native-Country, meaning that, for people whose in-
come is higher than 50K, their education degree functionally
determines their native country.

With this type of dependencies we can spot specific concrete
patterns in the dataset, and thus we are able to analyze behaviors
in correspondence to precise values. Combining the two kinds
of relaxed dependencies we obtain the Approximate Conditional
Functional Dependencies (ACFDs), i.e., uncertain CFDs.

In this work we use Approximate Conditional Functional De-
pendencies (ACFDs) to detect biases and discover discrimination
in the datasets subject to analysis, by recognizing cases where
the value of a certain attribute (e.g. gender, ethnicity or religion)
frequently determines the value of another one (such as range of
the proposed salary or social state).

The paper is organized as follows. Section 2 contains the re-
lated work. Section 3 details the methodology. Section 4 presents
the experiments and, finally, Section 5 concludes the paper.

2 STATE OF THE ART
Most of the research done in the area of Data Science Ethics is
carried out by the Machine Learning community; in this context,
researcher start from defining a notion of fairness in data, and
then apply it to solve the problem of learning from unfair data
in a prediction task. This notion of fairness is based on the idea
that data have to satisfy three requirements: Diversity, Coverage
and Stability.

Three possible approaches can be adopted when trying to
enforce fairness in a data analysis application: (i) preprocessing
techniques, i.e. procedures that before, the application of a pre-
diction algorithm, make sure that the learning data are fair; (ii)
inprocessing techniques, i.e. procedures that ensure that, during
the learning phase, the algorithm does not picks up the bias
present in the data, and (iii) postprocessing techniques, i.e. pro-
cedures that correct the algorithm’s decisions with the scope of
making them fair.

Most of the machine learning research concerns the second
approach; recently, several open-source libraries have been de-
veloped to solve the “unfairness problem" during the learning
phase of the prediction task. An example is FairML [1], which
provides an auditing tool for predictive models by quantifying
the relative effects providing various different inputs to a model
and comparing its predictions. FairTest [15], on the other hand,
approaches the task of detecting bias by looking for correlations
between predicted labels and protected attributes.

A project that provides the implementation of many inter-
esting techniques is AI Fairness 360: An Extensible Toolkit for
Detecting, Understanding, and Mitigating Unwanted Algorithmic
Bias [2], this work presents a new open-source framework whose
aim is to reach algorithmic fairness. The system tries to mitigate
algorithmic bias by exploiting techniques such as: Reweighing [9],
Optimized Preprocessing [3], Learning Fair representations [10]
and Disparate Impact Remover [7].

In the machine learning context, the majority of works that
try to enforce fairness are related to a prediction task, and more
specifically to classification algorithms in decision-making tools.
The main difference between these approaches and our frame-
work, that solves unfairness adopting a preprocessing tecnique,
is that our system does not need a classifier to work, because
it is based on finding conditions (constraints) that are already
present in the data, even though possibly with some level of
approximation. Furthermore, building a classifier to solve the
fairness problem requires the policy to be application-oriented,
greatly limiting the applicability of these systems to scenarios
where other tasks are needed.

A very interesting work on fairness in Machine Learning that
employs a preprocessing tecnique isNutritional Labels for Data and
Models by Stoyanovich and Howe [12]. The authors developed
an interpretability and transparency tool based on the concept
of Nutritional Labels, drawing an analogy to the food industry,
where simple and standardized labels convey information about
the ingredients and the production processes. Nutritional labels
are derived semi-automatically as part of the complex process that
gave rise to the data or model they describe. The final system is
called Ranking Facts, and automatically derives nutritional labels
for ranking. Ranking Facts is a collection of visual widgets that are
based on stability, fairness and diversity concepts. In particular,
the Fairness widget quantifies whether the ranked output exhibit
statistical parity (a particular definition of group fairness) with
respect to one or more protected attributes.

Even though Ranking Facts and our framework have a similar
objective (they both analyze a dataset to discover unfair behav-
iors), they achieve this goal using two very different strategies.
Moreover, the output of the two systems is very different, our
framework provides very precise indications of unfairness in-
tended to be used in the correction of the dataset, while Ranking
Facts employes data visualization tools to display the general
unfair behaviors found in the dataset.

3 METHODOLOGY
This section presents the details of the FAIR-DB framework.

3.1 Preliminary Notions and Framework
Overview

We now introduce some fundamental notions that will accom-
pany us along our discussion.

Given a dataset D the support of a CFD
(
X → Y , tp

)
is defined

as the proportion of tuples t in the dataset D which contain tp ,
that is:

Support(X → Y , tp) =
|t ∈ D; tp ⊆ t |

|D |
Confidence is an indication of how often the CFD has been

found to be true. Let tp = (x ∪y) where x is a tuple over X and y
is a tuple over Y . The confidence value of a CFD

(
X → Y , tp

)
is

the proportion of the tuples t containing x which also contain y:

Confidence(X → Y , tp) =
|t ∈ D; tp ⊆ t |
|t ∈ D; x ⊆ t |

Figure 1 represents the workflow of FAIR-DB, composed by
the following main steps:

(1) Data Preparation and Exploration: in this phase we
import the data, perform (if needed) data integration and
apply the typical data preprocessing steps (solve missing
values, apply discretization etc.) needed to clean and pre-
pare the data. During this phase, we also might visualize
the attribute features using different Data Visualization
techniques.

(2) ACFD Discovery and Filtering: in this phase we apply
an ACFD Discovery algorithm to extract Approximate Con-
ditional Functional Dependencies from the dataset. This
algorithm takes as input the prepared dataset and three
threshold parameters: minimum support, minimum con-
fidence and maximum antecedent size of the ACFDs that
we are searching. From the output of ACFD Discovery we
discard the dependencies that contain variables. In this
phase, we also discard those some dependencies, keeping
only those that might reveal unfairness.

(3) ACFDs Selection: for each ACFD, we compute some met-
rics capturing the "ethical level" of the dependency, in par-
ticular: (i) the Difference metric is a novel score introduced
to discover dependencies that highlight the violation of
fairness, and (ii) for each protected attribute p we com-
pute its specific p-Difference. According to the values of
the metrics, we select the most interesting ACFDs.

(4) ACFDs Ranking: we rank the ACFDs in descending or-
der of importance, according to the three metrics.

(5) ACFDs Selection and Scoring: from the ranking, the
user selects the N ACFDs she perceives as the most prob-
lematic, and then the system computes some metrics that
summarize the level of unfairness of the dataset.

Data Preparation and Exploration:
Data Preprocessing and Visualization

ACFDs Discovery and Filtering:
Apply a ACFD discovery algorithm and

filter its result

ACFDs Selection:
According to a novel metric, select

unethical ACFDs

ACFDs Ranking:
Rank the ACFDs to facilitate user

interaction

ACFDs User Selection and Scoring:
User selects NACFDs,

presentation of the summarizing metrics

Figure 1: Steps of the FAIR-DB framework

In the next subsections we give a more detailed description of
these phases, with the help of the following running example.

Example 3.1 (Running Example). For a part of our experiments,
we have used the U.S. Census Adult Dataset2 [5], containing in-
formation about many social factors of US adults, like ‘Income’,
‘Age’, ‘Workclass’, ‘Education’, ‘Education-Num’ (i.e. the number
of years already attended at school), ‘Marital-Status’, ‘Race’, ‘Sex’
(i.e. gender), (work) ‘Hours-Per-Week’, ‘Native-Country’, and some
more. Table 1 contains examples of its tuples.

3.2 Data Preparation and Exploration
Data Preparation starts with Data Acquisition, when the user
gathers one or more datasets that she will use in the analysis.
After Data Acquisition, we compute Summary Statistics for each
column of the dataset. This primary phase gives a general idea of
the dataset and during this step, we can hypothesize the protected
columns and identify, if present, the target variable.

We then perform Data Cleaning, since poor data quality could
lead to wrong or incomplete results. Depending on the dataset we
are considering, we may need to face several different error types.
We continue with Data Integration, where, if present, multiple
datasets are merged into a single one. After Data Cleaning and
Data Integration we may need to perform other steps: Feature
Selection and Discretization [14].

Feature selection refers to choosing the set of features to use
that is appropriate for the subsequent analysis. The goal of feature
selection is to come up with the smallest set of features that best
captures the characteristics of the problem being addressed [14].

Another important step is Discretization, performed by trans-
forming data from numeric to nominal data type [14]. In our case
discretization is particularly important, since Functional Depen-
dencies built on numerical attributes that have many different
2https://archive.ics.uci.edu/ml/datasets/Adult

values are very precise, but they do not give an overview over
the attribute values. For instance, if we have a dependency that
contains a specific value of the attribute ‘Age’ (let us assume
that it is 18) we do not know if the dependency could be valid
also for values near to 18, like 20 or 16; furthermore, the depen-
dency could be not useful if involves only 18-years old people.
For this reason, we suggest to use Discretization for numerical
attributes that have many different values. A similar procedure
is often needed also when a categorical attribute can assume a
wide range of values.

As a last step of this first phase, Data Visualization can be of
great help in analyzing the characteristics of the data; in fact, from
the plots, a user can understand whether groups are present in
the dataset and more specifically, if there is a majority class for a
certain attribute, and if present can identify minorities. Visualiza-
tion and summary statistics are very important to find protected
attributes and understand if the data contains minorities that
need to be analyzed more in details.

Example 3.2 (Data Preparation and Exploration). Before being
able to gather useful insights from the running example, we have to
perform some preprocessing operations as Data Cleaning, Feature
Selection and Discretization. We noticed that the majority of the
missing values belong to attributes that are not relevant for our
analysis (e.g. ‘Marital-Status’), we therefore decided to first per-
form feature selection and then to remove the few tuples that still
had missing values. Regarding feature selection we also removed
interesting columns that were related to another one expressing
the same meaning; we noticed that two of the columns, ‘Educa-
tion’ and ‘Education-Num’, represented the same information. The
latter can be obtained through a numerical encoding of the first
one. To extract Functional Dependencies that do not depend on
specific values of an attribute, it is useful to group into bins the
values of attributes that are continuous. In particular we created
five bins for ‘Hours-Per-Week’ attribute that are: ‘0-20’, ‘21-40’,
‘41-60’, ‘61-80’, ‘81-100’. We concluded the analysis identifying the
protected attribute: ‘Sex’, ‘Race’ and ‘Native-Country’, and select-
ing ‘Income’ as target variable. We decided to keep both ‘Race’
and ‘Native-Country’ attributes because they are correlated, but
not in all cases, for example the offspring of migrants have the
same race of their parents, but different native country because in
many cases they may be born in U.S.. To have readable and more
effective Functional Dependencies, we keep the attribute ‘Race’ as
is in the original dataset and we group the values of the attribute
‘Native-Country’ using 4 different values: ‘NC-US’, ‘NC-Hispanic’,
‘NC-Non-US/Hispanic’ and ‘NC-Asian-Pacific’.

3.3 ACFD Discovery and Filtering
In this phase we extract the ACFDs from the dataset, using the
ACFD Discovery algorithm of [11]. The algorithm expects as input
the following three parameters: the (minimum) support threshold,
the (minimum) confidence threshold, and the size of the largest
antecedent maxSize.

Given an instance D of a schema R, support threshold δ , confi-
dence threshold ϵ , and maximum antecedent size α , the approxi-
mate CFDs discovery problem is to find all ACFDs ϕ:

(
X → Y , tp

)
over R with:

• support(ϕ,D) ≥ δ
• confidence(ϕ,D) ≥ ϵ
• |X | ≤ α .

Age Workclass Education Education-Num Marital-Status Race Sex Hours-Per-Week Native-Country Income

0 90 ? HS-grad 9 Widowed White Female 40 United-States <=50K
1 82 Private HS-grad 9 Widowed White Female 18 United-States <=50K
2 66 ? Some-college 10 Widowed Black Female 40 United-States <=50K
3 54 Private 7th-8th 4 Divorced White Female 40 United-States <=50K

Table 1: A few exemplar tuples of th U.S. Census Adult dataset

(Education-Degree=‘Middle-school’)→ Income=‘≤ 50K’
(Age-Range=‘15-30’) → income=‘≤ 50K’

(Education-Degree, Income=‘≤ 50K’)→ Native-Country
(Native-Country=‘NC-Hispanic’)→ Income=‘≤ 50K’

(Income=‘≤ 50K’) → Native-Country=‘NC-US’
Table 2: CFD Discovery output

The ACFDs obtained are in this form:

(lhsAttr1 = v1, ..., lhsAttrN = vN) → (rhsAttr = v)

The algorithm returns all the dependencies that satisfy the
aforementioned criteria. The discovered dependencies may suffer
from the following shortcomings:

• It can happen that a dependency does not involve any pro-
tected attribute, nor the target attribute, and thus it is use-
less for the detection of unfair behavior.

• Some of the dependencies may be ACFDs that contain
variables; in this case the dependency holds for all the
values of each non-constant attribute in its LHS. In our
application this type of dependency does not highlight
a significant difference corresponding to some specific
values of the data, and thus is useless for our aims.

Example 3.3 (CFD Discovery). The algorithm, applied to the
dataset resulting from the previous phase, finds 118 ACFDs. Table 2
reports a few of them. We can easily detect the ACFDs that contain
variables, for example dependency number ϕ3: (Education-Degree,
Income = ‘>50K’)→(Native-Country), does not specify the values
of the attributes ‘Education-Degree’ and ‘Native-Country’. As the
user can notice, there are also dependencies that should be removed
from the list because they do not contain any protected attribute.

Now we filter the dependencies, discarding the ones that do
not satisfy the following two constraints:

• all the attributes of the dependency must be assigned to a
value (this type of ACFDs that consists of only constants
in both its LHS and RHS is called Constant ACFDs[6]);

• at least one protected attribute and the target variable have
to be present inside the dependency, so that the ACFDs
might show bias.

During the ACFDs Filtering phase, the user can also add some
constraints, such as deciding which values must appear in the
dependencies, for instance requiring that all the ACFDs must
involve only the ‘Females’ because the researcher is interested
only in peculiar aspects of women, or deciding which values must
not appear in the dependencies.

Example 3.4 (ACFDs Filtering). From Table 2 we discarded the
third dependency for not being a Constant ACFD and the first three
dependencies for not containing any protected attribute. After this
phase we are left with 84 of the original 118 dependencies.

3.4 ACFDs Selection
This phase is responsible for finding the dependencies that actu-
ally reveal unfairness in the dataset, in fact, even if the ACFDs
identified in the previous step contain protected attributes they
do not all necessarily show some unethical behavior.

To do so we have devised two unfairness measures:
• Difference: it indicates how much a dependency is ‘uneth-
ical’. The more this metric is high, the more the ACFD
reveals an unfair behavior.

• ProtectedAttributeDifference: it indicates how much the
dependency shows bias with respect to a specific protected
attribute.

In order to assess the unfair behavior of a dependency, we also
take into consideration its support, that indicates the pervasive-
ness of the ACFD; unethical dependencies with high support will
impact many tuples, and thus will be more important.

For each dependency ϕ, we define the Difference metric of ϕ
as the difference between the dependency confidence and the
confidence of the dependency computed without the protected
attributes of the LHS of the ACFD.

Given a dependency in the form:

ϕ : (X → Y , tp)

LetZ = (X−{ProtectedAttributes}), that is the LHS of the depen-
dency without its protected attributes, and let z be the restriction
of t to Z . We define the Difference as:

Difference(ϕ) = Confidence(ϕ)−NoProtectedAttributeConfidence(ϕ)

where

NoProtectedAttributeConfidence(ϕ) =
|t ∈ D; tp ⊆ t |
|t ∈ D; z ⊆ t |

That is:

Difference(ϕ) =
|t ∈ D; tp ⊆ t |
|t ∈ D; x ⊆ t |

−
|t ∈ D; tp ⊆ t |
|t ∈ D; z ⊆ t |

The Difference metric gives us an idea of how much the values
of the protected attributes influence the value of Y .

Example 3.5 (Difference score of a dependency). Analyzing the
following dependency:

ϕ1 : (Sex = ‘Female′,Workclass = ‘Private′) → (Income = ‘ ≤ 50K ′)

We can compute the Difference as:

Diff (ϕ1) : Conf (ϕ1) − NoProtAttrConf (ϕ ′1)

where

ϕ ′1 : (Workclass = ‘Private′) → (Income = ‘ ≤ 50K ′)

Three different behaviors can emerge:
• If the Difference is close to zero, fairness is respected since it
means that females are treated equally to all the elements of
the population that have the same characteristics (without
specifying the protected attribute).

ACFD Support Difference RaceDiff SexDiff NativeCountryDiff

(Native-Country = ‘NC-Hispanic’)→ (Income = ‘≤50K’) 0.0439 0.1570 0 0 0.1570
(Sex = ‘Female’)→ (Income = ‘≤50K’) 0.2874 0.1352 0 0.1352 0
(Race = ‘Black’)→ (Income = ‘≤50K’) 0.0813 0.1190 0.1190 0 0

Table 3: A few of the selected ACFDs using the Difference metric

• If the Difference is positive it means that the women that
work privately and gain less than 50K dollars/year are over-
all treated worse than the generality of people that work
privately and gain less than 50K dollars/year.

• If the Difference is negative the opposite situation is detected.

A dependency could contain in the LHS more than one pro-
tected attribute at the same time. For this reason, we introduce the
last metric: the Protected Attribute Difference (P-Difference), which
is very similar to the Difference measure but is computed sepa-
rately, excluding one protected attribute P at a time (Z = X − P).

Finally, we choose the ACFDs whose Difference is above the
minThreshold, which means that there is a significant inequal-
ity between the group involved in the ACFD and the general
behaviour of the population.

Example 3.6 (Selected ACFDs). Table 3 reports three of the
seventeen dependencies that satisfied the selection criteria along
with their relevant metrics. From the example, “Hispanic”, “Female”
and “Black” groups suffer from discrimination with respect to the
rest of the population, in fact, people that belong to one or more of
these groups have an income that is below the 50000 dollars/year
because of their nationality, sex or race.

3.5 ACFDs Ranking
In a real-world dataset, the number of ACFDs selected in the
previous step could be very large, even in the order of thousands,
therefore for the user to look at all these dependencies would
be a very demanding task to complete. Thus, it is necessary to
order the dependencies according to some criterion, enabling the
user to analyze the most important and interesting ones first,
speeding up the process and reducing the cost.

In our framework the user can order the dependencies accord-
ing to one of the following criteria:

• Support-based: the support indicates the proportion of tu-
ples impacted by the dependency: the higher the support,
the more tuples are involved by the ACFD. Ordering de-
pendencies by support highlights the pervasiveness of the
dependency.

• Difference-based: this criterion highlights the dependen-
cies where the values of the protected attributes influence
most the value of their RHS, therefore this ordering privi-
leges the unethical aspect of the dependencies.

• Mean-based: this method tries to combine both aspects
of a dependency: the unethical perspective and its perva-
siveness. Sorting the ACFDs using this criterion results
in positioning first the dependencies that have the best
trade-off between difference and support.

3.6 ACFDs User Selection and Scoring
In this last phase the user selects from the ranked list N depen-
dencies that are interesting for the research needs. Using only
the N selected ACFDs, the framework computes a set of scores
that summarize the properties of the entire dataset:

• Cumulative Support: is the percentage of tuples in the
dataset involved by the selected ACFDs. The more this
value is close to 1, the more tuples are impacted by unfair
dependencies.

• Difference Mean: is the mean of all the ‘Difference’ scores
of the selected ACFDs. It indicates how much the dataset
is unethical according to the dependencies selected. The
greater the value, the higher the bias in the dataset.

• Protected Attribute Difference Mean: for each protected
attribute P, we report the mean of its P-Difference over all
the selected ACFDs. It indicates how much the dataset is
ethical over P according to the selected dependencies.

These summarizing metrics entirely depend on the specific
ACFDs selected by the user, thus by selecting different sets of
dependencies, the user can highlight different aspects of the
dataset.

Note also that the framework allows the user to see some
exemplar tuples impacted by the selected ACFDs.

Example 3.7 (ACFDs User Selection and Scoring). The user
chooses N = 15 ACFDs that are interesting according to her needs
among the dependencies obtained after the ranking step. The total
number of tuples involved by the ACFDs is 13296 while the total
number of tuples in the dataset is 30169; this results in a Cumula-
tive Support of 0.44. The Difference Mean is 0.16. These two scores
indicate that a considerable number of tuples, 44%, show a behavior
that is very different, on average 16%, from the fair one. Finally, the
P-Difference Meanmetrics confirm that the dataset is unfair with re-
spect to all the protected attributes; the groups more discriminated
are: ‘Female’, ‘Black’, ‘NC-Hispanic’ and ‘Amer-Indian-Eskimo’.
Table 4 reports a few interesting ACFDs.

(Sex = ‘Female’)→ Income = ‘≤ 50K’
(Race = ‘Black’)→ Income = ‘≤ 50K’

(Race = ‘Amer-Indian-Eskimo’)→ Income = ‘≤ 50K’
(Native-Country = ‘NC-Hispanic’)→ Income = ‘≤ 50K’

Table 4: A few user-selected dependencies from the U.S.
Census Adult Income Dataset

4 EXPERIMENTAL RESULTS
We now present the results obtained by FAIR-DB on two real-
world datasets, and a comparison between our framework and
the Ranking Facts system[12].

4.1 Datasets
The first dataset we considered is the U.S. Census Adult Income
Dataset, already briefly presented in Example 3.1. The version we
considered contains 32561 tuples and 13 attributes, 5 of which
are numerical and 8 are categorical.

The second dataset we considered is the Titanic Dataset, con-
taining information of passengers on the Titanic, a British pas-
senger liner operated by the ‘White Star Line’ that sank in the

North Atlantic Ocean in the early morning hours of 15 April
1912. Of the estimated 2,224 passengers and crew aboard, more
than 1,500 died, making the sinking one of modern history’s
deadliest peacetime commercial marine disasters. The version
we considered contains 891 samples and 12 attributes, 8 of which
are categorical and 4 are numerical. Specifically the following
attributes are present: ‘PassengerId’, ‘Survived’, ‘Pclass’, ‘Name’,
‘Sex’, ‘Age’, ‘Ticket’, ‘Fare’, ‘Cabin’ and a few more. We chose
‘Sex’ and ‘Pclass’ (the passenger class, that can be first, second or
third) as the protected attributes, and selected ‘Survived’ as the
target variable.

4.2 FAIR-DB Results
We recall from Example 3.7 the results of FAIR-DB on the U.S.
Census Adult Income Dataset, which scores a Cumulative Support
of 0.44 and a Difference Mean of 0.16, indicating that many tuples
show an unfair behavior. Specifically, the dataset highlights bias
towards all the protected attributes: ‘Sex’, ‘Race’ and ‘Native-
Country’; a deeper analysis of the dependencies confirms that the
most discriminated groups are: ‘Female’, ‘Black’, ‘NC-Hispanic’
and ‘Amer-Indian-Eskimo’.

The Titanic Dataset scores a Cumulative Support of 0.74 and
a Difference Mean of 0.35; indicating that many tuples are sub-
jected to an unfair behavior. Specifically, the dataset shows bias
towards the protected attributes ‘Sex’ and ‘Pclass’. Indeed the
most discriminated groups are: ‘Third class passenger’ and ‘Male’,
showing that (i) in the third class, to which more than half of
the passengers belong, the majority of people did not survive,
and (ii) the policy ‘women and children first’ was adopted for the
evacuation into the lifeboats. Table 5 reports the corresponding
ACFDs.

(Pclass = 1, Sex = Female) → Survived = 1
(Pclass = 2, Sex = Female) → Survived = 1
(Survived = 0, Sex = Female)→ (Pclass = 3)
(Pclass = 3, Sex = Male)→ (Survived = 0)
(Survived = 1, Sex = Male)→ (Pclass = 1)

Table 5: A few user-selected dependencies from the Ti-
tanic Dataset

4.3 Comparison with Ranking Facts
The results obtained with Ranking Facts[12] are in complete
accordance with the ones obtained with our framework. Regard-
ing the first dataset, Ranking Facts finds unfair behaviors across
all the three protected attributes with discrimination against:
‘Female’, ‘Black’, ‘NC-Hispanic’ and ‘Amer-Indian-Eskimo’. For
what concerns the Titanic datasets, Ranking Facts detects unfair
behaviors on both the protected attributes with discrimination
against: ‘Male’ and ‘Third class passenger’. A deeper comparison
with Ranking Facts will be included in an extension of this work.

Ranking Facts checks fairness only for one attribute at the
time, while, since the ACFD technique can involve more than
one attribute at a time, our tool can report information about
subgroups fairness, actually detecting unfair behaviors at finer
level of granularity. Instead, the results of Ranking Facts do not
contain information about the existing bias in subgroups or in
minorities.

This is very important, because the discrimination might be
limited to some specific scenario (e.g. not all the women but

only the black women working in the private sector), and this
information is very useful to guide the phase of DB repair.

The importance of analyzing more attributes simultaneously
it is even more clear if we analyze the ACFDs in Table 5; even
though, overall, women obtain a better treatment (both Ranking
Facts and our framework, for the ‘Sex’ attribute found discrimi-
nation only against men), by analyzing the dependencies we can
see that if a woman died she most probably was a third-class pas-
senger, and if a man survived he most probably was a first-class
passenger.

5 CONCLUSION AND FUTUREWORKS
We presented FAIR-DB, a novel framework, that, through the
extraction of a particular type of Functional Dependencies, can
discover bias and discrimination present in a datasets.

Future works will include:, (i) the addition to the system of a
dependency repair phase, that, starting from the selected ACFDs
will correct the dataset removing all the unfair behaviors from it
(ii) the study of dependencies with high confidence and low sup-
port to highlight interesting, not necessarily frequent, behaviors,
(iii) the development of a graphical user interface to facilitate
the interaction of the user with the system, (iv) the study of
other (possibly interesting) classes of functional dependencies[4],
(v) a deeper comparison with Ranking Facts and other similar
methods.

REFERENCES
[1] Julius A Adebayo et al. 2016. FairML: ToolBox for diagnosing bias in predictive

modeling. Ph.D. Dissertation. Massachusetts Institute of Technology.
[2] Rachel KE Bellamy, Kuntal Dey, Michael Hind, Samuel C Hoffman, Stephanie

Houde, Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta,
A Mojsilović, et al. 2019. AI Fairness 360: An extensible toolkit for detecting
and mitigating algorithmic bias. IBM Journal of Research and Development 63,
4/5 (2019), 4–1.

[3] Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan
Ramamurthy, and Kush R Varshney. 2017. Optimized pre-processing for dis-
crimination prevention. In Advances in Neural Information Processing Systems.
3992–4001.

[4] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2015. Relaxed
functional dependencies—a survey of approaches. IEEE Transactions on Knowl-
edge and Data Engineering 28, 1 (2015), 147–165.

[5] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

[6] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. 2010. Discovering
conditional functional dependencies. IEEE Transactions on Knowledge and
Data Engineering 23, 5 (2010), 683–698.

[7] Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and
Suresh Venkatasubramanian. 2015. Certifying and removing disparate impact.
In proceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining. 259–268.

[8] Donatella Firmani, Letizia Tanca, and Riccardo Torlone. 2019. Ethical Dimen-
sions for Data Quality. Journal of Data and Information Quality (JDIQ) 12, 1
(2019), 1–5.

[9] Faisal Kamiran and Toon Calders. 2012. Data preprocessing techniques for
classification without discrimination. Knowledge and Information Systems 33,
1 (2012), 1–33.

[10] David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. 2018.
Learning adversarially fair and transferable representations. arXiv preprint
arXiv:1802.06309.

[11] Joeri Rammelaere and Floris Geerts. 2018. Revisiting conditional functional
dependency discovery: Splitting the “C” from the “FD”. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases. Springer,
552–568.

[12] Julia Stoyanovich and Bill Howe. 2019. Nutritional Labels for Data and Models.
IEEE Data Eng. Bull. 42, 3 (2019), 13–23.

[13] Julia Stoyanovich, Bill Howe, and HV Jagadish. 2020. Responsible data man-
agement. Proceedings of the VLDB Endowment 13, 12 (2020), 3474–3488.

[14] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2016. Introduction to
data mining. Pearson Education India.

[15] Florian Tramer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, Jean-Pierre
Hubaux, Mathias Humbert, Ari Juels, and Huang Lin. 2017. FairTest: Dis-
covering unwarranted associations in data-driven applications. In 2017 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 401–416.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Abstract
	1 Introduction
	2 State of the Art
	3 Methodology
	3.1 Preliminary Notions and Framework Overview
	3.2 Data Preparation and Exploration
	3.3 ACFD Discovery and Filtering
	3.4 ACFDs Selection
	3.5 ACFDs Ranking
	3.6 ACFDs User Selection and Scoring

	4 Experimental Results
	4.1 Datasets
	4.2 FAIR-DB Results
	4.3 Comparison with Ranking Facts

	5 Conclusion and Future Works
	References

