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ABSTRACT
Big Data analytics are being used in many businesses and organi-
zations. However, the requirements that big data analytics intro-
duce cannot be solved by a single system, and require distributed
system knowledge and data management expertise from data an-
alysts who should instead be focus on gleaning information from
the data. AFrame is a data exploration library that provides a data
scientist’s familiar interface, Pandas DataFrame, and scales its op-
erations to large volumes of data through a big data management
system to enable a seamless analysis experience moving from
small to large datasets. In this paper, we present a detailed case
study that uses AFrame to perform an end-to-end data analysis
from data cleaning and modeling through to deployment.

1 INTRODUCTION
As large volumes of data are generated and available through
various sources (e.g., social platforms, IoT, and daily transactions),
Big Data analytics are gaining popularity across all types of in-
dustries. Harnessing information and patterns from data can help
businesses identify opportunities, make well-informed decisions,
and manage risks. That, in turn, leads to higher profits and sat-
isfied customers. Even though Big Data production is evident,
efficient Big Data processing and analysis remain challenging.
Existing data analytic tools and libraries require an extensive
knowledge of distributed data management from data analysts
who should instead be focusing on tasks like developing and
using machine learning models.

AFrame [13] is a data exploration and analysis library that
delivers a scale-independent analysis experience by providing
a Pandas-like DataFrame interface while transparently scaling
the analytical operations to be executed on a database system.
AFrame leverages database data storage and management in
order to accommodate the rate and volume at which the data
arrives. It allows data scientists to perform data analysis right
where the data is stored. AFrame simplifies user interactions
with large amounts of data, as the framework provides data
scientists’ familiar interface and operates directly on database
systems without requiring multiple system setups.

In this paper, we illustrate the usability of AFrame through a
case study that uses it to perform an end-to-end data analysis.
We highlight some of AFrame’s functionalities that help simplify
Big Data analysis through each of the data analytics lifecycle
stages. The notebook that we use in this paper is also available 1.

The rest of this paper is organized as follows: Section 2 dis-
cusses background and related work. Section 3 details our case
study. We conclude and describe our current work in Section 4.
1https://nbviewer.jupyter.org/github/psinthong/SF_CRIME_Notebook/blob/master/
sf_crimes_paper.ipynb
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2 BACKGROUND AND RELATEDWORK
We are developing AFrame to lighten user workloads and ease
the transitioning from a local workstation to a production envi-
ronment by providing data scientists with their familiar interface,
Pandas DataFrames, and transparently scale its operations to
execute in a distributed database environment. Here we briefly
review Pandas, AFrame’s architecture, and related work.

2.1 Pandas
Pandas [5] is an open source Python data analytic library. Pandas
provides a data structure called DataFrame, designed specifically
for data manipulation and analysis. DataFrames are similar to
a table in Excel with labeled rows and columns. Pandas works
with several popular machine learning libraries such as Scikit-
Learn [11] and Tensorflow [8]. Pandas is one of the most popular
data analytic libraries partly due to its flexible data structure
and the rich set of features that the library provides. However,
Pandas’ shortcoming lies in its scalability, as it only operates on
a single workstation and utilizes a single processing core.

2.2 AFrame
AFrame is a Python library that provides a Pandas DataFrame-
like syntax to interact with distributed data stored in a big data
management system, Apache AsterixDB [9]. AFrame utilizes lazy
evaluation to scale Pandas operations by incrementally construct-
ing database queries from each of Pandas DataFrame operations
and it only sends the queries over to AsterixDB when results
are actually called for. AFrame delivers a Pandas DataFrame-
like experience on Big Data requiring minimum effort from data
scientists allowing them to focus on analyzing the data.

2.3 Related Work
There are several scalable dataframe libraries that try to deliver a
Pandas-like experience and scale operations onto large volumes
of file-based data using different methods. These libraries either
provide a similar Pandas-like interface on a distributed compute
engine, execute several Pandas DataFrames in parallel, or use
memory mapping to optimize the computation and speed up the
data access. To our knowledge, there has not been any effort to de-
velop a Pandas-like interface directly on top of database systems
where large volumes of data are stored. AFrame can leverage
database index and query optimizer to efficiently access and op-
erate on data at scale without moving it into system-specific
environment or create an intermediate data representation. Here
we briefly compare and contrast two of the most well-known
scalable dataframe libraries, Spark [10] and Dask [12].

2.3.1 Spark. Apache Spark [2] is a general-purpose cluster
computing framework. Spark provides a DataFrame API, an in-
terface for data analysts to interact with data in a distributed file
system. However, Spark’s DataFrame syntax is quite different
from Pandas’, as Spark is heavily influenced by SQL’s syntax



while Pandas relies on features of the Python language. As a
result, the Koalas project [4] was introduced to bridge the gap be-
tween Spark and Pandas DataFrames. Koalas is a Python library
implemented on top of the Spark DataFrame API and its syntax is
designed to be largely identical to that of Pandas’. In order to sup-
port Pandas DataFrame features (e.g., row label, eager evaluation)
in a distributed environment, Koalas implements an intermediate
data representation that results at times in expensive operations
and performance trade-offs. Since Koalas operates directly on top
of Spark, users are also required to set up distributed file storage
as well as tuning Spark to suit their data access patterns.

2.3.2 Dask. Dask is an open source Python framework that
provides advanced parallelism for data scientists’ familiar ana-
lytical libraries such as Pandas, NumPy, and Scikit-learn. Dask
DataFrame is a scalable dataframe library that is composed ofmul-
tiple Pandas DataFrames. Dask partitions its data files row-wise
and operates on them in parallel while utilizing all of the available
computational cores. Since Dask uses Pandas internally, it also
inherits the high memory consumption problem that Pandas has.
Dask tries to compensate for this disadvantage by delaying its
expression evaluation in order to reduce the amount of needed
computation. However, Dask does not aim at implementing all of
the Pandas operations because supporting certain Pandas opera-
tions in a distributed environment results in poor performance
trade-offs, as mentioned in its documentation [3].

3 AFRAME CASE STUDY
There are several methodologies that provide a guideline for the
stages in a data science lifecycle, such as the traditional method
called CRISP_DM for data mining and an emerging methodol-
ogy introduced by Microsoft called TDSP [7]. They have defined
general phases in a data analysis lifecycle that can be summa-
rized as follows: business understanding, data understanding and
preparation, modeling, evaluation, and deployment.

Our goal for AFrame is to deliver a scale-independent data
analysis experience. Data analysts should be able to use AFrame
interchangeably with Pandas DataFrames and utilize their fa-
vorite ML libraries to perform each of the data science lifecycle
stages on large volumes of data with minimum effort.

In order to see if AFrame delivers up to our expectations, we
conducted a case study by asking a user to perform a data analysis
using AFrame in places where Pandas DataFrames would oth-
erwise be used (with an exception of training machine learning
models). We used a running example of an analysis of a San Fran-
cisco police department historical incident report dataset [6] to
predict the probability of incidents being resolved. Due to space
limitations, we will only be displaying a subset of the printed
attributes in our Figures.

We present the case study here through each of the previously
mentioned data science lifecycle stages. (Interested readers can
find information about AFrame’s performance in [13].)

3.1 Data understanding and preparation
The goal of this stage in the data science lifecycle is to obtain and
clean the data to prepare it for analysis. Figure 1 is a snapshot
from a Jupyter notebook that shows a process of creating an
AFrame object and displaying two records from a dataset. Input
line 2 labeled ‘In[2]’ shows how to create an AFrame object by
utilizing AFrame’s AsterixDB connector and providing a data-
verse name and a dataset name. For this example, the dataset is
called ‘Crimes_sample’ and it is contained in a dataverse named

‘SF_CRIMES’. The AsterixDB server is running locally on port
19002. Input line 3 displays a sample of two records from the
dataset, and input line 4 displays the underlying SQL++ query
that AFrame generated and extended. More about AFrame’s in-
cremental query formation process can be found in [13].

Figure 1: Acquire data

Next, our user drops some columns from the dataset and ex-
plores the data values, as shown in Figure 2. Input line 5 drops
several columns using the Pandas’ ‘drop’ function and prints out
two records from the resulting data. Our user then prints out the
unique values from the columns ‘pdDistrict’ and ‘dayOfWeek’
as shown in input lines 6 and 7 respectively.

Figure 2: Data cleaning and exploration

3.2 Modeling
The next stage in a data science project lifecycle is to determine
and optimize features through feature engineering to facilitate
machine learning model training. This stage also includes ma-
chine learning model development, which is the process to con-
struct and select a model that can predict the target values most
accurately considering their success metrics.

In Figure 3, the user applies one-hot encoding by utilizing the
Pandas’ ‘get_dummies’ function to create multiple features from
the columns that he previously explored. Input line 8 applies
one-hot encoding to the ‘pdDistrict’ column and line 9 displays
the resulting data with ten new columns each indicating whether
or not the record has that particular feature. Input lines 10 and 11
perform the same operation on the ‘category’ and ‘dayOfWeek’
columns respectively. The user then appends all of their one-hot
encodings to the original data in input line 12.



Figure 3: One-hot encodings

In order to extract important features from the data, users can
also apply AsterixDB’s builtin functions directly on the entire
data or part of the data. This is done through the ‘map’ and ‘apply’
functions. The complete list of all available builtin functions
can be found at [1]. Figure 4 shows an example of using the
map operation on a subset of the data attributes. Input line 13
creates two new columns, ‘month’ and ‘hour’. For ‘month’, the
user applies AsterixDB’s ‘parse_date’ to the ‘date’ column to
generate a date object and then applies the ‘get_month’ function
to extract only the month before appending it as a new column
called ‘month’. Similarly, for the ‘hour’ column, ‘parse_time’ is
applied to the ‘time’ column followed by the ‘get_hour’ function
to extract the hour of day from the data before appending it as a
new column. Finally, to finish up the feature engineering process,
the target column ‘resolution’ is converted into a binary value
column called ‘resolved’ using AsterixDB’s ‘to_number’ function.

Figure 4: Applying functions to create new columns

Once the feature engineering process is done, the data is split
into training and testing sets for use in training and evaluating
machine learning models. Figure 5 shows the process of split-
ting the data. Input line 19 converts the data referenced by an
AFrame object into a Pandas DataFrame. Currently, feeding data
into existing Scikit-learn models from a database system is not

supported. As such, AFrame provides an operation called ‘toPan-
das’ which converts data into Pandas DataFrame objects2. On
input line 20, ‘Y’ is the binary encoded ‘resolved’ column and the
remaining columns will be used to train the models. Input line
22 splits the data into an 80% training set and a 20% testing set.

Figure 5: Preparing data for model training

Input lines 23 - 26 in Figure 6 are standard Scikit-learn model
training steps that take a Pandas DataFrame as their input. Input
line 23 trains a Logistic Regression model on the training data,
while input line 24 calls the ‘predict’ function on the test data
and displays a subset of the results. Instead of returning binary
results indicating whether or not a particular incident will get
resolved, users can utilize Scikit-learn’s ‘predict_proba’ method
to get the raw probability values that the model outputs for each
of the prediction labels (0 and 1 in our case). Input line 25 shows
the probability values that the model outputs for each of the
labels in order (0 followed by 1) on a subset of the records. Our
user decided to use the ‘predict_proba’ function and output the
probability of an incident getting resolved as shown in line 26.

Figure 6: Model training and inferencing

3.3 Evaluation and deployment
In order to deploy the model into a production environment and
apply it to large datasets at full scale, users can export and pack-
age their models using Python’s pickle and then deposit them
into AsterixDB for use as external user-defined functions (UDFs).
In our example, the user deposited their model and created a
function called ‘getResolution’ in AsterixDB that invokes the
2The resulting data is required by Pandas to fit in memory. This currently limits
the training dataset size, but there is no limit to the amount of data to which the
model may be applied (see Section 3.3).



trained model’s ‘predict_proba’ function on a data record. Due
to space limitations, we omit the steps to deposit the model into
AsterixDB and create a new UDF to call it, but the required steps
can be found in [1]. After creating a UDF, users can then uti-
lize their model using AFrame in the same way that they would
use a builtin function. Figure 7 shows the user applying their
Python UDF ‘getResolution’ on an AFrame object. Line 37 uses
the ‘apply’ operation to apply the Python UDF on the previously
transformed data. The results of the function are the probabilities
of crime incidents getting resolved, as displayed in line 38.

Figure 7: Calling the model using the function syntax

At this point in the analysis, our user is done with the training
and evaluation process and wants to apply the model to other
larger sets of data. However, to apply the model to a different
dataset, that dataset has to have the same features arranged in the
same order as the training data. To simplify the model inferencing
process, AFrame allows users to save their data transformation as
a function that can then be applied to other datasets effortlessly.
Line 40 in Figure 8 displays the persist-transformation syntax.
The user has named the resulting function ‘is_resolvable’. The
underlying SQL++ query that transforms and appends their engi-
neered features to a data record before calling the trained model
on it is shown in input line 41.

Figure 8: Persisting the transformation

Finally, applying the data transformation and the ML model
on a large distributed dataset can be done through AFrame using
the apply function. Figure 9 shows the user accessing a differ-
ent dataset, called ‘Crimes’, from AsterixDB and applying the
‘is_resolvable’ function to it. In input line 43, our user filters only
the crime incidents that happened in the Central district, possibly
assisted under the hood by an index on ‘pdDistrict’, before ap-
plying the trained ML model. The model’s prediction results are
appended to the dataset as a new column called ‘is_resolvable’
in line 44. These results can be used to do further analysis or to
visualize them using Pandas’ compatible visualization libraries
by converting the AFrame object into a Pandas DataFrame.

Figure 9: Model inferencing

3.4 Lessons Learned
The case study is not only helpful in proving the usability of
AFrame but it also helps us identify useful and missing features.
For example, the transformation saving mode was created to
record the data transformation steps as a function so that they
can easily be applied to other datasets using the existing function
syntax. Unique Pandas’ functions (e.g., describe, get_dummies)
are implemented in AFrame by internally calling multiple simple
operations in a sequence. This was influenced by the engineered
features that the user manually created.

4 CONCLUSION
In this short paper, we have detailed an end-to-end case study
that utilizes AFrame in a data analysis. We have demonstrated
the flexibility and simplicity of using AFrame to perform data
preparation, modeling, and deployment on different dataset sizes
and moving seamlessly from a small dataset to datasets at scale.
We believe that AFrame can deliver a scale-independent data
preparation and analysis experience while requiring less effort
from data analysts, allowing them to focus on more critical tasks.

Currently, we are extending AFrame by retargeting its in-
cremental query transformation process onto multiple database
systems to make its benefits available to existing users of other
databases. Our re-architected version of AFrame called PolyFrame,
can operate against AsterixDB using SQL++, PostgreSQL using
SQL, MongoDB using MongoDB’s query language, and Neo4j
using Cypher. More information about PolyFrame including its ar-
chitecture and language configuration rules can be found in [14].
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