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ABSTRACT
Estimating the expected impact of an article is valuable for vari-
ous applications (e.g., article/cooperator recommendation). Most
existing approaches attempt to predict the exact number of ci-
tations each article will receive in the near future, however this
is a difficult regression analysis problem. Moreover, most ap-
proaches rely on the existence of rich metadata for each article, a
requirement that cannot be adequately fulfilled for a large num-
ber of them. In this work, we take advantage of the fact that
solving a simpler machine learning problem, that of classifying
articles based on their expected impact, is adequate for many real
world applications and we propose a simplified model that can be
trained using minimal article metadata. Finally, we examine vari-
ous configurations of this model and evaluate their effectiveness
in solving the aforementioned classification problem.
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1 INTRODUCTION
Predicting the attention a scientific article will attract in the next
few years by other articles, i.e., estimating its expected impact1, is
very useful for many applications. For example, consider a recom-
mendation system, which suggests articles to researchers based
on their interests. Due to the large growth rate in the number of
published research works [9], a large number of articles will be
retrieved for almost any subject of interest. However, not all of
them will be of equal importance. The recommendation system
could leverage the expected impact of papers to suggest only the
most important works to the user and avoid overwhelming her
with a large number of trivial options. The benefits would be
similar for other relevant applications, such as expert finding,
collaboration recommendation, etc.

Several approaches, which attempt to predict the exact number
of citations articles will receive in the next few years, have been
proposed in the literature (see Section 4 for indicative examples).
However, this is an extremely difficult regression analysis prob-
lem, due to the many factors (some of which are hard to quantify)
that may affect the impact of an article (details in Section 2.2).
Fortunately, in practice, for many applications, knowing the exact
number of future citations is not critical. For instance, in the case
of the recommendation system, it is important that the system
distinguish the ‘impactful’ works from those that are of lesser

1Since scientific impact has several aspects [3], the term can be defined in diverse
ways. In this work, we focus on the definition provided in Section 2.1.
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importance; all impactful works will be interesting regardless of
the exact number of citations they will receive.

In addition, most existing approaches rely on rich article meta-
data (e.g., authors, venue, topics). Unfortunately, the available
information for many articles in the relevant data sources (e.g.,
Crossref) is erroneous or incomplete, complicating the learning
process of such approaches and creating risks for their effective-
ness. Moreover, even when the required metadata are available,
the generation of the corresponding machine learning features
from them may be extremely time-consuming or even difficult
to be implemented (details in Section 2.3).

In this work, our objective is to take advantage of the previous
observations in an attempt to guide and facilitate the work of
researchers and developers working on applications that can
benefit from predicting the expected impact of scientific articles.
In particular, we propose a simplified machine learning approach
which is based on the binary classification of articles in two cat-
egories (‘impactful’ / ‘impactless’) according to their expected
impact. In addition, we propose the use of a particular set of
features that rely on minimal metadata for each article (only its
publication year and its previous citations). We argue that this
simpler approach is adequate, significantly easier to implement,
and can benefit many applications that require the estimation
of the expected impact of articles. Finally, we perform exper-
iments to investigate the effectiveness of this approach using
various well-established classifiers. In our experimental setup we
seriously take into consideration the fact that our problem is im-
balanced by nature, both to carefully select the appropriate eval-
uation measures and to examine some classification approaches
that are particularly tailored to such scenarios.

2 OUR APPROACH
2.1 Preliminaries
Scientific articles always include a list of references to other
works and the referenced articles describe work related to the
referencing article (e.g., preliminaries, competitive approaches).
As a result, the inclusion of an article in the reference list of
another (i.e., the one citing it) implies that the latter gives credit to
the former2. Based on this view, counting the number of distinct
articles that include an article of interest in their reference list
(i.e., counting its citations) is considered to be an indicator of
its impact in the scientific community. Of course, there are also
many other aspects of scientific impact [3], however the focus
of this work is on this type of citation-based expected impact.
In particular, we focus on the expected impact of an article at a
given time point, which can be defined as follows:

2Note that the “amount” of credit may be significantly different for each referenced
work and that, in some cases, it may also have a negative sign (when the referencing
work criticizes the referenced one).



Definition 2.1 (Expected Article Impact). Consider an article 𝑎
and a time point 𝑡 . Then, 𝑖 (𝑎, 𝑡), the (expected) impact of 𝑎 at 𝑡 , is
calculated as the number of citations that 𝑎will receive during the
period [𝑡, 𝑡 + 𝑦], where 𝑦 is a problem parameter, which defines
a future period of interest.

It should be noted that the problem parameter 𝑦 can be config-
ured based on the characteristics of the dataset used. The optimal
option typically depends on the citation dynamics of the scientific
fields covered by the dataset. However, 𝑦 = 3 or 𝑦 = 5 are two
reasonable and very common configurations. Finally, it should
be highlighted that the expected impact of an article can only be
measured in retrospect, i.e., by monitoring the citations that the
article receives 𝑦 years after the time point of reference.

2.2 Problem definition
Considering the expected impact of articles can be useful for
many applications. This is why there is a line of work of methods
that attempt to predict the exact impact of each article, i.e., the
exact number of citations it is going to receive in the following
few years (see Section 4). However, this is a difficult regression
analysis problem for many reasons. First of all, there are many
factors that may affect the number of citations an article will
receive in the future. These factors are related to the quality of
the work, the hype of its topic, the prestige of its authors or its
venue, the dissemination effort that will be made in social media,
to name only a few. Also, to make matters worse, many of these
factors cannot be easily quantified without losing important
information (e.g., due to dimensionality reduction reasons in
one-hot encodings), affecting the accuracy of the approaches.

Additionally, in practice, many of the aforementioned applica-
tions do not require the prediction of the exact number of future
citations for each article. It is sufficient for them to simply distin-
guish between ‘impactful’ (to-be) and ‘impactless’ articles. This
type of problem is easier and, thus, a traditional classification
approach is likely to achieve adequate effectiveness in solving it.
Hence, in this work, we focus on a binary impact-based article
classification problem that can be formulated as follows:

Definition 2.2 (Impact-based article classification). Consider a
collection of scientific articles 𝐴 and a time point 𝑡 and let 𝑖 =∑
𝑎∈𝐴 𝑖 (𝑎, 𝑡)/|𝐴|. Then, the objective is to classify each 𝑎 ∈ 𝐴 in

one of two classes: in the class of ‘impactful’ articles, if 𝑖 (𝑎, 𝑡) > 𝑖

and to the class of ‘impactless’ articles, otherwise.

In other words, our objective is to identify articles that receive
an above-average number of citations, to classify them as ‘impact-
ful’ and the rest as ‘impactless’. Note that this intuitive distinction
is equivalent with the first iteration of the Head/Tail Breaks clus-
tering algorithm, which is tailored for heavy tailed distributions,
like the citation distribution of articles [2] (a small number of
articles receive an extremely large number of citations).

An important matter that should be highlighted is that this
classification problem is imbalanced by nature. Due to the fact
that the citation distribution of articles is long-tailed, most arti-
cles have an impact (i.e., number of citations) well below average.
Consequently, the class of ‘impactful’ articles will always be a
minority in the collection (the so-called ‘head’ of the citation dis-
tribution). This is important for two reasons; first of all, it affects
the correct choice of evaluation measures in the experimental
setup. For example, using the accuracy (i.e., the ratio of true
positives to the complete set) is problematic: a trivial classifier
that would always assign all articles to the ‘impactless’ class will

always achieve a good performance according to this measure.
For this reason, alternative measures like precision, recall, and F1
of the minority class (i.e., the class of ‘impactful’ articles) should
be used instead. Unfortunately, part of the previous literature
(e.g., [18]) overlooks this issue making it difficult to evaluate the
real effectiveness of the corresponding proposed approaches.

2.3 The proposed feature selection
Many existing machine learning approaches rely on the exis-
tence of various article metadata such as its publication year,
author list, venue, main topics, citations etc. Although nowadays
a large portion of such data becomes available through open
scholarly graphs [6, 15] or datasets (e.g., DBLP, Crossref), there
are many articles for which important information is erroneous,
incomplete, or even completely missing. The main reason for
this is that many such datasets are created by automatically har-
vesting, cleaning, and integrating data from heterogeneous (and
sometimes noisy) primary sources.

However, even when all the required metadata are available,
in many cases the generation of the desired machine learning
features involves time-consuming aggregations and other pro-
cessing tasks and may also be difficult to implement. For ex-
ample, a number of data cleaning issues arise, for approaches
using author-based features since author names have to be dis-
ambiguated in the case of synonyms, or different spellings across
publication venues. Similarly, venue names might be recorded
with different forms (e.g., acronyms vs. full names). Such issues
affect the overall quality and, hence, the utility of these metadata.

It is evident that, relying on rich article metadata is an im-
portant limitation for any machine learning approach to predict
the expected impact of articles. On the other hand, an article’s
publication year is a basic information that is available in the
vast majority of cases. As an indicative example, in the Crossref
public data file of March 20203, only 7.85% of the records were
missing this information. Moreover, due to the Initiative for Open
Citations4 (I4OC), an increasing number of publishers (with Else-
vier being the most recent one) are committed to openly provide
the reference lists of their articles. As a result, the majority of
citation data are now available in open scholarly datasets (e.g., in
Crossref). To summarize, the citations and the publication years
of scientific articles are readily available data.

Based on the above, we propose a set of features that can be
easily calculated using article citations and publication years. In
particular, we calculate the following:

• cc_total: The total number of citations ever received by
the article (i.e., its ‘citation count’).

• cc_1y: Citations received by the article in the last year.
• cc_3y: Citations received by the article in the last 3 years.
• cc_5y: Citations received by the article in the last 5 years.

The intuition behind these features is based on the idea of
preferential attachment [2] and of its time-restricted version used
in recent impact-based article ranking approaches [8]: articles
that are likely to be highly cited in the following few years are
most likely those, which were intensively cited in the recent past.

It should be noted that, although the minimum value of the
features is zero in all cases, the largest value of each of them could
be very diverse. This is why it is a good practice to normalize
them before using them as input to the classifier.

3https://doi.org/10.13003/83B2GP
4https://i4oc.org/
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Sample set Samples Impactful samples

PMC 2011 − 2013 (3 years) 229, 207 57, 016(24.88%)
PMC 2011 − 2015 (5 years) 229, 207 61, 898(27.01%)
DBLP 2011 − 2013 (3 years) 1, 695, 533 387, 506(22.85%)
DBLP 2011 − 2015 (5 years) 1, 695, 533 339, 351(20.01%)

Table 1: Used sample sets

Classifier Examined parameter values

LR & cLR ‘max_iter’: 60, 80, 100, 120, 140, 160, 180, 200, 220, 240
‘solver’: ‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’

DT & cDT ‘max_depth’: 1 − 32
‘min_samples_split’: 2, 5, 10, 20, 50, 100, 200
‘min_samples_leaf’: 1, 4, 7, 10

RF & cRF ‘max_depth’: 1, 5, 10, 50
‘n_estimators’: 100, 150, 200, 250, 300
‘criterion’: ‘gini’, ‘entropy’
‘max_features’: ‘log2’, ‘sqrt’

Table 2: Parameter values examined per classifier.

3 EVALUATION
3.1 Setup
Datasets. For our experiments, we collected citations and publi-
cation years for scientific articles from two sources:

• PMC: The data were gathered from NCBI’s PMC FTP di-
rectory5 and are relevant to 1.12 million open access scien-
tific articles from life sciences published between 1896 and
2016. Moreover, we removed data from the last year (they
were incomplete, not the entire year was represented).

• DBLP : The data were collected from AMiner’s DBLP Cita-
tion Network dataset6 [19] and are relevant to 3 million
articles published between 1936 and 2018. Moreover, we
removed data from the last two, incomplete years.

To create the labeled samples required for our analysis, we follow
the hold-out evaluation approach [7]: For each dataset we select
the year 𝑡 = 2010 as a (virtual) present year and we split the
dataset in two parts: the first one (articles published until 2010,
with 2010 included) to calculate the feature vectors described in
Section 2.3 for all included articles; the second one to calculate the
label for each sample, based on its future citations (see Section 2.2).
We set 𝑦 = 3 and 𝑦 = 5 for the article impact future period (see
Section 2.1), which corresponds in both our datasets to the periods
2011 − 2013, and 2011 − 2015, respectively. Table 1 summarizes
the statistics of the sample sets that have been created based on
the aforementioned process.
Classifiers. We selected to use a set of well-known classifiers,
along with their cost-sensitive versions7. The reason we selected
to include cost-sensitive versions is because they target the prob-
lem of imbalanced learning by using different misclassification
costs for samples of different classes [5]. As a result, we have
configured and evaluated the following classification methods:

• LR: Logistic regression
• cLR: Cost-sensitive logistic regression
• DT : Decision trees
• cDT : Cost-sensitive decision trees
• RF : Random forest

5ftp://ftp.ncbi.nlm.nih.gov/pub/pmc
6https://aminer.org/citation
7We used Scikit-learn’s ‘balanced’ mode for 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 to automatically adjust
weights inversely proportional to class frequencies in the input data.
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Figure 1: Toy example showcasing why cost-sensitive ap-
proaches may achieve worse precision.

• cRF : Cost-sensitive random forest
For all methods we used their Scikit-learn [16] implementa-

tions and we have followed a two-fold, exhaustive grid search ap-
proach to identify the optimal values of their parameters accord-
ing to the precision, recall, and F1 of the minority class. Table 2
summarizes the parameter space examined, while Tables 5 & 6
in the Appendix enlist all the identified optimal configurations.
Each optimal configuration is named as [𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 ] [𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ] ,
where [𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 ] is the name of the corresponding classifier
(e.g., LR, cLR) and [𝑚𝑒𝑎𝑠𝑢𝑟𝑒] stands for the evaluation measure
for which the configuration is optimal (e.g., ‘prec’ for precision).

3.2 Results
Because of the imbalanced nature of the classification problem
we study, it is very important to carefully select the measures
that will be used for the evaluation of the effectiveness of the
examined approaches. For example, as it was discussed in Sec-
tion 2.2, accuracy that is commonly used for generic classification
approaches, is not a good option, since it is mostly affected by the
misclassification of samples from the majority class. However,
in most imbalanced problems, like the one we have here, the
minority class has the most importance.

Therefore, we do not report the accuracy of the examined
approaches. In any case, all configurations achieved accuracy
between 0.73 and 0.99. Following the best practices for the evalua-
tion of imbalanced classification approaches, we instead measure
the precision, recall, and F1 of the minority class. We indicatively
report the same measures for the majority class, as well. However
our main objective is to perform well according to the measures
calculated for the minority class. Note that, each of these three
measures may be preferable for different applications.

Tables 3b & 4b summarize the results of the performed experi-
ments. The results are very similar for both data sets (PMC and
DBLP) and for both values of the parameter 𝑦. A general obser-
vation is that, when we focus on precision, cost-insensitive clas-
sification approaches perform adequately well and, thus, there is
no need to work with cost-sensitive versions. However, the same
experiments highlight that the latter approaches can significantly
improve the effectiveness based on the recall and F1.

This behavior is not surprising: By default, in several classi-
fiers, the optimization process targets at accuracy maximization,
since all samples equally contribute to the loss function to be
minimized. Consequently, in areas of the hyperspace where the
samples of different classes are not easily separable, the samples
of the majority class are favored (i.e., correctly classified) due to
their dominance in numbers. Consider, for instance, the two mi-
nority class samples (cross marks) and the six majority class ones
(cyclic marks) between the two alternative hyperplanes of the toy
example in Figure 1: Classifying all of them to the majority class
would induce 3 times less cost to the classifier than classifying

ftp://ftp.ncbi.nlm.nih.gov/pub/pmc
https://aminer.org/citation


Precision Recall F1
Classifier (impactful|rest) (impactful|rest) (impactful|rest)

LR𝑝𝑟𝑒𝑐 0.85 |0.79 0.23 |0.99 0.36 |0.88
LR𝑟𝑒𝑐 0.85 |0.79 0.23 |0.99 0.36 |0.88
LR𝑓 1 0.85 |0.79 0.23 |0.99 0.36 |0.88
cLR𝑝𝑟𝑒𝑐 0.57 |0.85 0.52 |0.87 0.55 |0.86
cLR𝑟𝑒𝑐 0.57 |0.85 0.52 |0.87 0.55 |0.86
cLR𝑓 1 0.57 |0.85 0.52 |0.87 0.55 |0.86
DT𝑝𝑟𝑒𝑐 0.66 |0.82 0.38 |0.93 0.48 |0.87
DT𝑟𝑒𝑐 0.66 |0.82 0.38 |0.93 0.48 |0.87
DT𝑓 1 0.66 |0.82 0.38 |0.93 0.48 |0.87
cDT𝑝𝑟𝑒𝑐 0.60 |0.85 0.52 |0.89 0.56 |0.87
cDT𝑟𝑒𝑐 0.50 |0.87 0.63 |0.79 0.56 |0.83
cDT𝑓 1 0.52 |0.86 0.60 |0.81 0.55 |0.84
RF𝑝𝑟𝑒𝑐 0.70 |0.82 0.38 |0.95 0.50 |0.88
RF𝑟𝑒𝑐 0.71 |0.82 0.37 |0.95 0.48 |0.88
RF𝑓 1 0.71 |0.82 0.36 |0.95 0.48 |0.88
cRF𝑝𝑟𝑒𝑐 0.56 |0.85 0.53 |0.86 0.54 |0.85
cRF𝑟𝑒𝑐 0.47 |0.87 0.65 |0.76 0.55 |0.81
cRF𝑓 1 0.48 |0.87 0.65 |0.77 0.55 |0.81

(a) PMC

Precision Recall F1
Classifier (impactful|rest) (impactful|rest) (impactful|rest)

LR𝑝𝑟𝑒𝑐 0.97 |0.82 0.25 |1.00 0.39 |0.90
LR𝑟𝑒𝑐 0.96 |0.82 0.26 |1.00 0.40 |0.90
LR𝑓 1 0.96 |0.82 0.25 |1.00 0.40 |0.90
cLR𝑝𝑟𝑒𝑐 0.70 |0.88 0.57 |0.93 0.63 |0.90
cLR𝑟𝑒𝑐 0.70 |0.88 0.57 |0.93 0.63 |0.90
cLR𝑓 1 0.71 |0.88 0.56 |0.93 0.63 |0.90
DT𝑝𝑟𝑒𝑐 0.80 |0.88 0.55 |0.96 0.65 |0.92
DT𝑟𝑒𝑐 0.72 |0.89 0.61 |0.93 0.61 |0.91
DT𝑓 1 0.72 |0.89 0.61 |0.93 0.61 |0.91
cDT𝑝𝑟𝑒𝑐 0.58 |0.92 0.74 |0.84 0.65 |0.88
cDT𝑟𝑒𝑐 0.52 |0.93 0.79 |0.78 0.63 |0.85
cDT𝑓 1 0.58 |0.92 0.75 |0.84 0.65 |0.88
RF𝑝𝑟𝑒𝑐 0.72 |0.88 0.56 |0.94 0.63 |0.91
RF𝑟𝑒𝑐 0.72 |0.88 0.56 |0.94 0.63 |0.91
RF𝑓 1 0.77 |0.87 0.54 |0.95 0.63 |0.91
cRF𝑝𝑟𝑒𝑐 0.64 |0.89 0.63 |0.89 0.64 |0.89
cRF𝑟𝑒𝑐 0.57 |0.92 0.76 |0.83 0.65 |0.87
cRF𝑓 1 0.58 |0.92 0.76 |0.84 0.65 |0.88

(b) DBLP

Table 3: Precision, recall, and F1 based on future citations in [2011-2013] (3 years). Configurations in Tables 5 & 6.

Precision Recall F1
Classifier (impactful|rest) (impactful|rest) (impactful|rest)

LR𝑝𝑟𝑒𝑐 0.89 |0.78 0.26 |0.99 0.40 |0.87
LR𝑟𝑒𝑐 0.89 |0.78 0.26 |0.99 0.40 |0.87
LR𝑓 1 0.89 |0.78 0.25 |0.99 0.39 |0.87
cLR𝑝𝑟𝑒𝑐 0.60 |0.82 0.49 |0.88 0.54 |0.85
cLR𝑟𝑒𝑐 0.60 |0.82 0.48 |0.88 0.54 |0.85
cLR𝑓 1 0.60 |0.82 0.49 |0.88 0.54 |0.85
DT𝑝𝑟𝑒𝑐 0.75 |0.81 0.38 |0.95 0.50 |0.87
DT𝑟𝑒𝑐 0.75 |0.80 0.35 |0.96 0.48 |0.87
DT𝑓 1 0.75 |0.81 0.39 |0.95 0.51 |0.87
cDT𝑝𝑟𝑒𝑐 0.60 |0.82 0.49 |0.88 0.54 |0.85
cDT𝑟𝑒𝑐 0.50 |0.84 0.61 |0.78 0.55 |0.81
cDT𝑓 1 0.53 |0.84 0.60 |0.81 0.56 |0.82
RF𝑝𝑟𝑒𝑐 0.72 |0.80 0.37 |0.95 0.49 |0.87
RF𝑟𝑒𝑐 0.73 |0.81 0.41 |0.95 0.53 |0.87
RF𝑓 1 0.74 |0.81 0.41 |0.95 0.52 |0.87
cRF𝑝𝑟𝑒𝑐 0.57 |0.82 0.49 |0.86 0.52 |0.84
cRF𝑟𝑒𝑐 0.50 |0.84 0.61 |0.77 0.55 |0.81
cRF𝑓 1 0.50 |0.84 0.61 |0.77 0.55 |0.81

(a) PMC

Precision Recall F1
Classifier (impactful|rest) (impactful|rest) (impactful|rest)

LR𝑝𝑟𝑒𝑐 0.96 |0.84 0.24 |1.00 0.39 |0.91
LR𝑟𝑒𝑐 0.96 |0.84 0.24 |1.00 0.39 |0.91
LR𝑓 1 0.97 |0.84 0.24 |1.00 0.38 |0.91
cLR𝑝𝑟𝑒𝑐 0.70 |0.90 0.61 |0.93 0.65 |0.92
cLR𝑟𝑒𝑐 0.73 |0.90 0.58 |0.94 0.65 |0.92
cLR𝑓 1 0.70 |0.90 0.60 |0.93 0.65 |0.92
DT𝑝𝑟𝑒𝑐 0.87 |0.87 0.42 |0.98 0.56 |0.92
DT𝑟𝑒𝑐 0.73 |0.90 0.56 |0.95 0.63 |0.92
DT𝑓 1 0.77 |0.89 0.52 |0.96 0.62 |0.92
cDT𝑝𝑟𝑒𝑐 0.59 |0.93 0.72 |0.88 0.65 |0.90
cDT𝑟𝑒𝑐 0.47 |0.94 0.82 |0.77 0.60 |0.85
cDT𝑓 1 0.59 |0.93 0.72 |0.88 0.65 |0.90
RF𝑝𝑟𝑒𝑐 0.83 |0.89 0.52 |0.97 0.64 |0.93
RF𝑟𝑒𝑐 0.74 |0.90 0.56 |0.95 0.64 |0.92
RF𝑓 1 0.80 |0.90 0.56 |0.96 0.66 |0.93
cRF𝑝𝑟𝑒𝑐 0.62 |0.91 0.66 |0.90 0.64 |0.91
cRF𝑟𝑒𝑐 0.59 |0.91 0.67 |0.89 0.63 |0.90
cRF𝑓 1 0.55 |0.93 0.76 |0.84 0.64 |0.89

(b) DBLP

Table 4: Precision, recall, and F1 based on future citations in [2011-2015] (5 years). Configurations in Tables 5 & 6.

them to the minority class. In this way the cost-insensitive classi-
fier also achieves good precision for the minority class (no false
positives in this example). The drawback is that this results in
many false negatives for the minority class (the most important
one). Cost-sensitive approaches alleviate this issue improving
the recall and F1 of the minority class, with the counter-effect of
a larger number of false positives for the minority class.

Focusing on the differences of the examined classification
approaches, it seems that cost-insensitive Logistic Regression
is, by far, the best option for applications focusing on precision,
achieving values between 0.85 and 0.97 for all datasets. However,
this is achieved by allowing very significant losses in recall and
F1 (values below 0.27 and 0.41 for all datasets, respectively). On

the other hand, cost-sensitive Random Forest and Decision Tree
classifiers seem to be the best options when recall and F1 are
more important (albeit their losses in precision are significant).

4 RELATEDWORK
The vast majority of works that attempt to estimate the expected
impact of scientific articles focus on predicting the exact number
of citations each article will receive in a given future period, a
problem know as Citation Count Prediction (CCP). Most of these
works incorporate a wide range of features based on the article’s
content, novelty, author list, venue, topic, citations, reviews, to
name only a few. The corresponding predicting models are based



on various regression models like Linear Regression [22, 24], k-
NN [22], SVR [10, 14, 22, 24], Gaussian Process Regression [21],
CART Model [21, 22], ZINB Regression [4], or various types
of neural networks [1, 11–13, 20, 24]. In most works, one or
more regression models are tested on the complete data set, with
the notable exception of [10], which first attempts to identify
the current citation trend of each article (e.g., early burst, no
burst, late burst, etc) and then applies a different model for each
case. As it was elaborated in Section 2.2, CCP is a very difficult
problem and there are many, not easily quantified factors that can
significantly affect the performance of such approaches. Also,
such approaches rely on article metadata that are difficult to
collect and that they should be undergo complex to implement
and time-consuming processing (see also Section 2.3).

In another line of work, based on the fact that co-authorship
and citation-based features seemed to be effective for earlier ap-
proaches, the authors of [17] follow a link-prediction-inspired
approach to solve CCP. They also investigate the effectiveness
of their approach in a relevant classification problem based on
a set of arbitrarily determined classes. However, training their
approach requires a heavy pattern mining analysis of the underly-
ing citation network and also considers author- and venue-based
features, which face the already discussed issues. It should be
noted that there are also some link prediction approaches that
aim to reveal missing citations between a set of articles (e.g.,[23]),
these approaches are irrelevant to the problem of impact predic-
tion though. Furthermore, in [18] an impact-based classification
problem is studied, but the features of the proposed approach rely
on difficult to collect article metadata (e.g., information about
academic and funding organizations). As a result, this approach
cannot be easily used in practice. Finally, there are methods that
attempt to estimate the rank of articles based on their expected
impact. A thorough survey and experimental study of such meth-
ods can be found in [7]. This problem is easier than CCP, since
only the partial ordering of the articles according to their ex-
pected impact should be estimated, but it is still more difficult
than the problem we focus on.

5 CONCLUSION
In this work, we propose a simplified approach that can signifi-
cantly simplify the work of researchers and developers working
on applications that rely on the prediction of the expected impact
of scientific articles. The proposed approach is based on classify-
ing the articles in two categories (‘impactful’ / ‘impactless’) based
on a set of features that can be calculated using a minimal set of
article metadata. Furthermore, we experimentally evaluated this
approach using various well-established classifiers showing that
the results are more than adequate. The aforementioned exper-
iments have been performed with caution taking into account
the imbalanced nature of the classification problem at hand.

In the future, we plan to further investigate the imbalanced
nature of the problem by examining other approaches like meth-
ods that perform over-sampling of the minority class, others that
perform under-sampling of the majority class, or methods com-
bining these two approaches (e.g., SMOTEEN). Additionally, we
plan to examine a wider range of parameters for the examined
approaches, for instance, examining a range of custom weights
for cost-sensitive approaches. Finally, we plan to take full ad-
vantage of the Head/Tail Breaks approach to study a non-binary
version of the classification problem.
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A USED PARAMETER CONFIGURATIONS
Tables 5 & 6 summarize the configuration for each used approach.
The names of the parameters are based on the input parameters of
the corresponding Scikit-learn functions. Omitted input parame-
ters were not configured (their default values had been selected).

https://doi.org/10.5281/zenodo.3516918


Classifier Configuration for 𝑦 = 3 Configuration for 𝑦 = 5

LR𝑝𝑟𝑒𝑐 ‘max_iter’: 200, ‘solver’: ‘sag’ ‘max_iter’: 160, ‘solver’: ‘sag’
LR𝑟𝑒𝑐 ‘max_iter’: 80, ‘solver’: ‘sag’ ‘max_iter’: 80, ‘solver’: ‘sag’
LR𝑓 1 ‘max_iter’: 180, ‘solver’: ‘sag’ ‘max_iter’: 240, ‘solver’: ‘sag’
cLR𝑝𝑟𝑒𝑐 ‘max_iter’: 100, ‘solver’: ‘sag’ ‘max_iter’: 60, ‘solver’: ‘sag’
cLR𝑟𝑒𝑐 ‘max_iter’: 120, ‘solver’: ‘sag’ ‘max_iter’: 140, ‘solver’: ‘sag’
cLR𝑓 1 ‘max_iter’: 180, ‘solver’: ‘sag’ ‘max_iter’: 140, ‘solver’: ‘sag’
DT𝑝𝑟𝑒𝑐 ‘max_depth’: 3, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2 ‘max_depth’: 4, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2
DT𝑟𝑒𝑐 ‘max_depth’: 1, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2 ‘max_depth’: 3, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2
DT𝑓 1 ‘max_depth’: 1, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2 ‘max_depth’: 8, ‘min_samples_leaf’: 10, ‘min_samples_split’: 200
cDT𝑝𝑟𝑒𝑐 ‘max_depth’: 1, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2 ‘max_depth’: 1, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2
cDT𝑟𝑒𝑐 ‘max_depth’: 2, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2 ‘max_depth’: 2, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2
cDT𝑓 1 ‘max_depth’: 7, ‘min_samples_leaf’: 4, ‘min_samples_split’: 20 ‘max_depth’: 7, ‘min_samples_leaf’: 4, ‘min_samples_split’: 50
RF𝑝𝑟𝑒𝑐 ‘criterion’: ‘gini’, ‘max_depth’: 1, ‘max_features’: ‘log2’,

‘n_estimators’: 200
‘criterion’: ‘gini’, ‘max_depth’: 1, ‘max_features’: ‘log2’,
‘n_estimators’: 200

RF𝑟𝑒𝑐 ‘criterion’: ‘gini’, ‘max_depth’: 10, ‘max_features’: ‘log2’,
‘n_estimators’: 300

‘criterion’: ‘gini’, ‘max_depth’: 10, ‘max_features’: ‘sqrt’,
‘n_estimators’: 300

RF𝑓 1 ‘criterion’: ‘entropy’, ‘max_depth’: 10, ‘max_features’: ‘sqrt’,
‘n_estimators’: 200

‘criterion’: ‘entropy’, ‘max_depth’: 10, ‘max_features’: ‘sqrt’,
’n_estimators’: 300

cRF𝑝𝑟𝑒𝑐 ‘criterion’: ‘entropy’, ‘max_depth’: 1, ‘max_features’: ‘log2’,
‘n_estimators’: 150

‘criterion’: ’entropy’, ‘max_depth’: 1, ‘max_features’: ’log2’,
‘n_estimators’: 100

cRF𝑟𝑒𝑐 ‘criterion’: ‘gini’, ‘max_depth’: 5, ‘max_features’: ‘sqrt’,
‘n_estimators’: 150

‘criterion’: ‘entropy’, ‘max_depth’: 5, ‘max_features’: ‘log2’,
‘n_estimators’: 100

cRF𝑓 1 ‘criterion’: ‘entropy’, ‘max_depth’: 10, ‘max_features’: ‘log2’,
‘n_estimators’: 150

‘criterion’: ‘gini’, ‘max_depth’: 5, ‘max_features’: ‘sqrt’,
‘n_estimators’: 300

Table 5: Parameter configurations for PMC.

Classifier Configuration for 𝑦 = 3 Configuration for 𝑦 = 5

LR𝑝𝑟𝑒𝑐 ‘max_iter’: 80, ‘solver’: ‘sag’ ‘max_iter’: 100, ‘solver’: ’sag’
LR𝑟𝑒𝑐 ‘max_iter’: 80, ‘solver’: ‘sag’ ‘max_iter’: 140, ‘solver’: ’sag’
LR𝑓 1 ‘max_iter’: 220, ‘solver’: ‘saga’ ‘max_iter’: 220, ‘solver’: ‘sag’
cLR𝑝𝑟𝑒𝑐 ‘max_iter’: 200, ‘solver’: ‘sag’ ‘max_iter’: 180, ‘solver’: ‘sag’
cLR𝑟𝑒𝑐 ‘max_iter’: 140, ‘solver’: ‘sag’ ‘max_iter’: 160, ‘solver’: ‘sag’
cLR𝑓 1 ‘max_iter’: 100, ‘solver’: ‘sag’ ‘max_iter’: 60, ‘solver’: ‘newton-cg’
DT𝑝𝑟𝑒𝑐 ‘max_depth’: 6, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2 ‘max_depth’: 3, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2
DT𝑟𝑒𝑐 ‘max_depth’: 3, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2 ‘max_depth’: 1, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2
DT𝑓 1 ‘max_depth’: 3, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2 ‘max_depth’: 4, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2
cDT𝑝𝑟𝑒𝑐 ‘max_depth’: 14, ‘min_samples_leaf’: 10, ‘min_samples_split’: 2 ‘max_depth’: 4, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2
cDT𝑟𝑒𝑐 ‘max_depth’: 2, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2 ‘max_depth’: 2, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2
cDT𝑓 1 ‘max_depth’: 11, ‘min_samples_leaf’: 10, ‘min_samples_split’:

200
‘max_depth’: 4, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2

RF𝑝𝑟𝑒𝑐 ‘criterion’: ‘entropy’, ‘max_depth’: 1, ‘max_features’: ‘log2’,
‘n_estimators’: 150

‘criterion’: ‘gini’, ‘max_depth’: 5, ‘max_features’: ‘sqrt’,
‘n_estimators’: 100

RF𝑟𝑒𝑐 ‘criterion’: ‘entropy’, ‘max_depth’: 1, ‘max_features’: ‘log2’,
‘n_estimators’: 150

‘criterion’: ‘entropy’, ‘max_depth’: 1, ‘max_features’: ‘log2’,
‘n_estimators’: 150

RF𝑓 1 ‘criterion’: ‘gini’, ‘max_depth’: 5, ‘max_features’: ‘log2’,
‘n_estimators’: 100

‘criterion’: ‘entropy’, ‘max_depth’: 10, ‘max_features’: ‘sqrt’,
‘n_estimators’: 250

cRF𝑝𝑟𝑒𝑐 ‘criterion’: ‘entropy’, ‘max_depth’: 1, ‘max_features’: ‘log2’,
‘n_estimators’: 250

‘criterion’: ‘entropy’, ‘max_depth’: 1, ‘max_features’: ‘log2’,
‘n_estimators’: 100

cRF𝑟𝑒𝑐 ‘criterion’: ‘gini’, ‘max_depth’: 5, ‘max_features’: ‘log2’,
‘n_estimators’: 100

‘criterion’: ‘gini’, ‘max_depth’: 1, ‘max_features’: ‘log2’,
‘n_estimators’: 150

cRF𝑓 1 ‘criterion’: ‘entropy’, ‘max_depth’: 10, ‘max_features’: ‘log2’,
‘n_estimators’: 150

‘criterion’: ‘entropy’, ‘max_depth’: 10, ‘max_features’: ‘sqrt’,
‘n_estimators’: 150

Table 6: Parameter configurations for DBLP.
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