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ABSTRACT
In this paper we present our work on developing an automated
system for land cover classification. This system takes a multiband
satellite image of an area as input and outputs the land cover map
of the area at the same resolution as the input. For this purpose
convolutional machine learning models were trained in the task of
predicting the land cover semantic segmentation of satellite images.
This is a case of supervised learning. The land cover label data were
taken from the CORINE Land Cover inventory and the satellite
images were taken from the Copernicus hub. As for the model,
U-Net architecture variations were applied. Our area of interest
are the Ionian islands (Greece). We created a dataset from scratch
covering this particular area. In addition, transfer learning from the
BigEarthNet dataset [1] was performed. In [1] simple classification
of satellite images into the classes of CLC is performed but not seg-
mentation as we do. However, their models have been trained into
a dataset much bigger than ours, so we applied transfer learning us-
ing their pretrained models as the first part of out network, utilizing
the ability these networks have developed to extract useful features
from the satellite images (we transferred a pretrained ResNet50 into
a U-Res-Net). Apart from transfer learning other techniques were
applied in order to overcome the limitations set by the small size of
our area of interest. We used data augmentation (cutting images
into overlapping patches, applying random transformations such
as rotations and flips) and cross validation. The results are tested on
the 3 CLC class hierarchy levels and a comparative study is made
on the results of different approaches.
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1 INTRODUCTION
Modern AI technologies, such as deep learning, can be utilized in
various fields of natural science to automate and underpin proce-
dures traditionally carried out by humans. Remote sensing nowa-
days provides a great amount of data of high quality which are
updated on a daily basis. Another important thing is that these
data are easily produced and are open to the public in contrast to
other sources, such as aerial photography that are of higher quality
but are more expensively and less massively produced. For some
problems (in our case land cover recognition) the resolution of the
open remote sensing data (10m for sentinel-2) is adequate. The big
data of remote sensing can be fed into machine learning models
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to develop automated systems that analyse this data and carry out
useful tasks. Labeled data are the most useful ones, as they can be
utilised for the purposes of supervised learning that solves a great
range of problems.

CLC provides a huge labeled dataset. It contains maps for the
most part of Europe for the last three decades. Our goal is to train
models to predict the labels of the CLC dataset. Most research done
in this field is about assigning one or more land cover labels into a
whole satellite image patch (which can take an area of several square
kilometres). Our approach to the problem is more general, trying
to construct a semantic segmentation of the satellite image into the
full range of the land cover classes provided by the Corine Land
Cover inventor, at the maximal resolution provided by sentinel-2
satellite images, which is 10m. The classes of CLC are hierarchical.
We are testing the ability of the models to predict the classes on
each one of the hierarchical levels. As expected, we see that the
superclasses on the higher levels are discriminated with greater
accuracy than the subclasses on the lower levels.

Corine Land Cover has a wide variety of applications, underpin-
ning various Community policies in the domains of environment,
but also agriculture, transport, spatial planning. Developing a sys-
tem that automates the production of CLC maps to some extent
is important because CLC needs to be updated every few years.
Creating these maps is a burdensome and time-consuming job for
the human and even so the accuracy of the produced maps isn’t
perfect. An automatic land cover classification system could help
develop such maps in the future, track down sudden or short term
changes that happen to the land cover (for example due to natural
disasters or due to fast track rural and urban development). It could
also be applied to areas that are not included in the CLC.

State of the art deep learning models were used and the training
and testing were done in the area of Ionio. This is a case of work on
a relatively small area with special geological and natural features.
It is also an area of varying morphology and landscapes and small
scale land cover characteristics that can hardly be detected on the
resolution provided by sent-2 images. Similar approaches can be
used for training and testing in other areas covered by the sentinel-2
satellites. As a first step we trained a simple U-Net from scratch in
the area of interest. Recently, a similar research was done in the TU
Berlin, developing the BigEarthNet. They perform simple classifica-
tion of satellite images into the classes of CLC but not segmentation
as we do. However, their models have been trained into a dataset
much bigger than ours, so we applied transfer learning using their
pretrained models as the first part of out network, utilizing the
ability these networks have developed to extract useful features
from the satellite images (we transferred a pretrained ResNet50 into
a U-Res-Net). Apart from transfer learning other techniques were
applied in order to overcome the limitations set by the small size of
our area of interest. We used data augmentation (cutting images



into overlapping patches, applying random transformations such
as rotations and flips) and cross validation.

2 RELATEDWORK
Land Cover Recognition gathers a lot of interest in the research
community. In our work we apply transfer learning from the mod-
els trained in BigEarthNet [1]. The BigEarthNet dataset contains
590,326 non-overlapping image patches of size 1200m ×1200m dis-
tributed over 10 european countries (Austria, Belgium, Finland,
Ireland, Kosovo, Lithuania, Luxembourg, Portugal, Serbia, Switzer-
land). Each image patch is annotated by multiple land-cover classes
(i.e., multi-labels) that are provided from the CORINE Land Cover
database of the year 2018 (CLC 2018). They train models that take
each patch as input and predict the classes appearing in this patch.
They solve a simpler problem than ours, because the resolution of
the output of their models is 1200m, while the resolution of our
predicted maps is 10m. However, their models have been trained on
a dataset much bigger than ours and have learned to extract useful
features from the images (encoding) that are later on decoded to
solve their task. We are using the pretrained encoder of a res-net-50
trained on BigEarthNet as the encoder part of a unet-like architec-
ture to solve our semantic segmentation problem. This approach
has also been adopted by [3]. UNet architecture was introduced
in [21]. ResNetUnet, the architecture we are using, is commonly
used for such problems. In [5] a sophisticated ResNetUnet that per-
forms multitasking achieved state of the art results for the ISPRS
2DPotsdam dataset. One of the subproblems solved in this multi-
tasking is finding the class boundaries, which is also proposed in
[10]. However, as far as our problem is concerned, these methods
are applied on high resolution images of urban areas and may be
of little use for our problem. In order to conquer the limitations set
by our small dataset, data augmentation is applied as in [12], [13],
[22]. In our work we used Sentinel-2 bands with 10m resolution
and bands with 20m resolution. Others have used multisource data
including optical data and Sentinel-1 radar measurements [14] ,[15],
[16]. Multi-temporal data viewing the same area on different times-
tamps is another approach taken in [16],[17],[18],[19]. In order to
deal with missing labels active learning [19],[20], self-learning [18]
and weakly supervised learning [6], [7], [8] is performed.

3 METHODOLOGY
3.1 Dataset
Our dataset was created by multispectral satellite images of the
Ionian Islands downloaded from Copernicus for the period of 2018
and part of the CLC 2018 that covers the Ionian Islands. CLC vec-
tor files were georeferenced together with the Copernicus images,
turned into raster with 10m resolution and altogether were clipped
in the same bounds creating tiffs for each one of the islands. These
tiffs were cut into patches of size 1,28x1,28 km (128x128 pixels) with
some high degree of overlap. Xdata consists of these patches having
the satellite image bands as features for each pixel and Ydata con-
sists of the corresponding CLC patches. Our networks are trained
to solve the task of predicting the CLC label for each pixel of the
input patch, given the band measurements for each pixel of the
input patch. So we are trying to find a function f such that Ydata =
f (Xdata). This is a case of supervised learning. Our area of interest

is distributed over 6 Ionian islands (Corfu, Paxi, Lefkada, Kalamos,
Kefalonia, Zante) and the coast of Parga.

Kalamos South Corfu

Parga North Corfu

Kefalonia Lefkada

North Zante Paxi

Figure 1: Satellite images on the area of interest

For each area we have the sentinel-2 10m resolution bands (R,G,B,
infrared), the sentinel-2 20m resolution bands (b05, b06, b07, b8A,
b11 and b12) and the corine land cover class label for each pixel. In
our problem the satellite image bands are the inputs to our network
and the clc classes the expected output.

Corine Land Cover classes are hierarchical into three levels. Our
approach is training the models on the full range of the corine land
cover classes and then testing them on each level separately.

The area of interest has to be splitted into training and test sets.
Due to the small size of our dataset we chose not to use a validation



Kefalonia(RGB
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Kefalonia(infrared
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Figure 2: Structure of our dataset

Figure 3: CLC color legend

set for the fine tuning of hyperparameters such as the number of
epochs. The training process was stopped when the loss function
started to converge and not when it was minimal for the validation
set. We are performing cross validation so the area of interest has
to be divided into a number of subsets of approximately same size .
The area of interest was partitioned into the following 6 subsets: 1.
north Corfu, 2. south Corfu, 3. west Kefalonia, 4. east Kefalonia, 5.
Lefkada, 6. Paxi+North Zante+Kalamos+Parga The splitting into
training and validation sets is done 6 times, so that each time a
different subset is the validation set and the remaining 5 are the
training set.

Each area is cut into overlapping patches. The overlaps are a
form of data augmentation. Patch size is 1.28 km x 1.28 km and
the hop between adjacent patches is 0.64 km in each direction
(longitude and latitude). Two memory optimisations were applied.
Firstly, patches are stored by defining only their limits in the original
satellite image and the cutting is only performed on dataloading.
Secondly, patches containing only sea are discarded ( e.g. the blue
square in the right image below). This is a good practice because
it turns out that the models are able to learn to recognise the sea
almost perfectly even without those patches. It also reduces class
imbalancement, as sea patches are the most frequent ones in our
area.

For the transfer learning experiments data needed to be stan-
dardised using the same mean and std values as the base model.
On dataloading random flips and rotations were applied for the
purposes of data augmentation.

Overlapping patches

1.28 km x 1.28 km
patch

Figure 4: Cutting the original satellite images into patches.

3.2 Models
Two different approaches were followed. The first approach was
to train a baseline UNet from scratch into the area of interest. The
second approach was to perform transfer learning. The transfer
learning UNet model has a ResNet-50 architecture on the encoder
part and the weights of the encoder are initialised to the values
of the weights of a ResNet-50 trained on the BigEarthNet . The
figure below shows the exact architecture of the transfer learning
model. There are approximately 66.000.000 trainable parameters on
this model. A more complex version of this model that applied no
compression on the outputs of the encoder that were passed to the
decoder through shortcuts had 91.000.000 trainable parameters and
improved fitting on the training set but didn’t seem to generalise
better than the model presented below.

The baseline UNet model that was trained from scratch solved
an easier problem, as the output and the ground truth land cover
images had a resolution of 100m.

3.3 Training
We are trying to solve a semantic segmentation problem and a
composite dice and a binary cross entropy loss with logits criterion
is used.The two loss criteria are summed, each one with a weight
factor of 0.5. We experimented with positive weights pc in the bce:
𝑙𝑐 (𝑥,𝑦) = 𝐿𝑐 = {𝑙1,𝑐 , . . . , 𝑙𝑁,𝑐 }⊤,

𝑙𝑛,𝑐 = −𝑤𝑛,𝑐

[
𝑝𝑐𝑦𝑛,𝑐 · log𝜎 (𝑥𝑛,𝑐 ) + (1 − 𝑦𝑛,𝑐 ) · log(1 − 𝜎 (𝑥𝑛,𝑐 ))

]
where c is the class number.

Setting 𝑝𝑐 = ( 𝑛𝑢𝑚𝑏𝑒𝑟𝑜 𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑜 𝑓 𝑐𝑙𝑎𝑠𝑠𝑐

𝑛𝑢𝑚𝑏𝑒𝑟𝑜 𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑜 𝑓 𝑐𝑙𝑎𝑠𝑠𝑐
)
𝑎
, for different

values of a in (0, 1] for class balancing deteriorated our results.
Adam optimiser is used to achieve fitting in the training data. initial
𝐿𝑅 = 5 · 10−4 and it gradually decreases with the use of a sched-
uler.The complexity of our model requires the use of regularization
techniques. We applied dropout, with rate 0-0.2 for the outer layers
and 0.3-0.4 for the inner hidden layers. For the first epochs of the
training, the weights of the base transfer learning model remain
frozen. We unfreeze them when the learning process starts to con-
verge, dropping at the same time the learning rate. As we can see
below, unfreezing the base model on epoch 80 causes some instabil-
ity. However, after some epochs the loss returns to the low values
it had before the unfreezing. The pretrained encoder seems to work
properly without further training, but the unfreezing brings some



Figure 5: Architecture of the transfer learning model

Figure 6: Architecture of the baseline UNet model

slight improvements so we perform it. Training was executed on
google colab.

Figure 7: Learning curve

3.4 Experiments
Several versions of the problem are being examined. Firstly, training
from scratch was done on the area of interest. A baseline model
shown in figure 6 was used. The produced maps had a resolution
100m. The visual results and the metrics for the validation set are
presented below:

Kefalonia (target) Kefalonia (prediction)

Figure 8: Validation results for the model that was trained
from scratch

The pixel level classification metrics below are measured on the
third level of the clc class hierarchy for the classes that were found
on the validation set.

accuracy = 0.787 𝑓 1𝑚𝑎𝑐𝑟𝑜 = 0.160 𝑓 1𝑚𝑖𝑐𝑟𝑜 = 0.787 𝑓 1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
0.771

precision score = [1. 0.198 1. 1. 0. 1. 1. 0.0086 1. 0.2435. 0.32 0.347
0.321 0.727 0.435 0.479 0. 0. 1. 0.0259 1. 0. 0.992 ]

recall score = [0. 0.304 0. 0. 0. 0. 0. 0.0013 0. 0.1885 0. 0.194 0.4066
0.4337 0.1948 0.665 0.708 0. 1. 0. 0.0025 0. 1. 0.997 ]

For the transfer learning model a more systematic testing was
performed. As mentioned above, 6-fold cross validation was applied.
Metrics and maps are calculated for each one of the validation
folds. The metrics are taken with respect to each one of the 3
clc class hierarchical levels separately over all pixels (pixel level
classification).

The results for each one of the 6 folds are presented below. For the
first three we give the validation scores and the map visualisation
and for the other three just the visual result, for brevity reasons.



Fold 1:

target prediction

Figure 9: Validation results for the transfer learning model,
west Kefalonia

CLASS LEVEL 1 :

Classification Report
class 1.Artificial

Surfaces
2.Agricultural
areas

3.Forest
and sem-
inatural
areas

4.Wetlands 5.Water
bodies

support 175093 1922887 2332193 5416 8933755
precision 0.52 0.7729 0.8075 1 0.9974
recall 0.3001 0.747 0.8537 0.0001846 0.9985

accuracy = 0.92753
𝑓 1𝑚𝑎𝑐𝑟𝑜 = 0.67921
𝑓 1𝑚𝑖𝑐𝑟𝑜 = 0.92753
𝑓 1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 0.92662

CORINE CLASS LEVEL 2 :

Classification Report
class support precision recall
1.1 Urban fabric 119963 0.5082 0.4122
1.2 Industrial, commer-
cial and transport units

40513 1 2.468e-05

1.3 Mine, dump and con-
struction sites

2591 1 0.0003858

1.4 Artificial, non-
agricultural vegetated
areas

12026 0.0002674 8.315e-05

2.1 Arable land 129947 0.134 0.02698
2.2 Permanent crops 217427 0.123 0.186
2.3 Pastures 234101 0.4023 0.081
2.4 Heterogeneous agri-
cultural areas

1341412 0.5679 0.6165

3.1 Forest 590332 0.6192 0.5724
3.2 Shrub and/or herba-
ceous vegetation associ-
ations

1654002 0.6504 0.7213

3.3 Open spaces with lit-
tle or no vegetation

87859 0.2044 0.1991

4.1 Inland wetlands 5416 1 0.0001846
5.2 Marine waters 8933755 0.9974 0.9985

accuracy = 0.85329
𝑓 1𝑚𝑎𝑐𝑟𝑜 = 0.4124
𝑓 1𝑚𝑖𝑐𝑟𝑜 = 0.85329
𝑓 1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 0.8522

CORINE CLASS LEVEL 3 :



Classification Report
class support precision recall
1.1.1 Continuous urban
fabric

3443 1 0.0002904

1.1.2 Discontinuous ur-
ban fabric

116520 0.4734 0.3953

1.2.1 Industrial or com-
mercial units

28859 1 3.465e-05

1.2.3 Port areas 2606 1 0.0003836
1.2.4 Airports 9048 1 0.0001105
1.3.1 Mineral extraction
sites

2591 1 0.0003858

1.4.2 Sport and leisure
facilities

12026 0.0002674 8.315e-05

2.1.1 Non-irrigated
arable land

129947 0.134 0.02698

2.2.1 Vineyards 18644 1 5.363e-05
2.2.3 Olive groves 198783 0.123 0.2034
2.3.1 Pastures 234101 0.4023 0.081
2.4.2 Complex cultiva-
tion patterns

536157 0.3528 0.4831

2.4.3 Land principally
occupied by agriculture,
with significant areas of
natural vegetation

805255 0.4042 0.3624

3.1.2 Coniferous forest 74557 0.002304 1.341e-05
3.1.3 Mixed forest 515775 0.5519 0.5836
3.2.1 Natural grassland 401405 0.4262 0.5664
3.2.3 Sclerophyllous
vegetation

1248545 0.5923 0.6059

3.2.4 Transitional wood-
land/shrub

4052 4.215e-05 0.0002467

3.3.2 Bare rock 27305 1 3.662e-05
3.3.3 Sparsely vegetated
areas

60554 0.1394 0.1944

4.1.1 Inland marshes 5416 1 0.0001846
5.2.3 Sea and ocean 8933755 0.9974 0.9984

accuracy = 0.81346
𝑓 1𝑚𝑎𝑐𝑟𝑜 = 0.37624
𝑓 1𝑚𝑖𝑐𝑟𝑜 = 0.81346
𝑓 1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 0.81504

Fold 2:

CLASS LEVEL 1 :

Classification Report
class 1.Artificial

Surfaces
2.Agricultural
areas

3.Forest
and sem-
inatural
areas

4.Wetlands 5.Water
bodies

support 70026 1004333 3066378 - 9949503
precision 0.823 0.7099 0.9494 - 0.9975
recall 0.4614 0.8556 0.8895 - 0.9993

Results for the Wetlands class are omitted due to zero support.
accuracy = 0.96251
𝑓 1𝑚𝑎𝑐𝑟𝑜 = 0.83431

target prediction

Figure 10: Validation results for the transfer learningmodel,
east Kefalonia

𝑓 1𝑚𝑖𝑐𝑟𝑜 = 0.96251
𝑓 1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 0.96409

CORINE CLASS LEVEL 2 :

Classification Report
class support precision recall
1.1 Urban fabric 56640 0.8264 0.5547
1.3 Mine, dump and con-
struction sites

2552 1 0.0003917

1.4 Artificial, non-
agricultural vegetated
areas

10834 0.3934 0.04513

2.1 Arable land 21436 0.6883 0.5296
2.2 Permanent crops 209584 0.6226 0.654
2.3 Pastures 37121 0.3445 0.6391
2.4 Heterogeneous agri-
cultural areas

736192 0.611 0.7511

3.1 Forest 1116452 0.7122 0.7187
3.2 Shrub and/or herba-
ceous vegetation associ-
ations

1878253 0.7847 0.7261

3.3 Open spaces with lit-
tle or no vegetation

71673 0.8346 0.1002

5.2 Marine waters 9949503 0.9975 0.9993
accuracy = 0.91362
𝑓 1𝑚𝑎𝑐𝑟𝑜 = 0.6004
𝑓 1𝑚𝑖𝑐𝑟𝑜 = 0.91362
𝑓 1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 0.91511



CORINE CLASS LEVEL 3 :

Classification Report
class support precision recall
1.1.2 Discontinuous ur-
ban fabric

56640 0.8264 0.5547

1.3.1 Mineral extraction
sites

2552 1 0.0003917

1.4.2 Sport and leisure
facilities

10834 0.3934 0.04513

2.1.1 Non-irrigated
arable land

21436 0.6883 0.5296

2.2.3 Olive groves 209584 0.6226 0.654
2.3.1 Pastures 37121 0.3445 0.6391
2.4.2 Complex cultiva-
tion patterns

210391 0.704 0.552

2.4.3 Land principally
occupied by agriculture,
with significant areas of
natural vegetation

525801 0.4826 0.6791

3.1.2 Coniferous forest 419030 1 2.386e-06
3.1.3 Mixed forest 697422 0.5146 0.8313
3.2.1 Natural grassland 252838 0.7181 0.5809
3.2.3 Sclerophyllous
vegetation

1401252 0.6837 0.7481

3.2.4 Transitional wood-
land/shrub

224163 1 4.461e-06

3.3.2 Bare rock 13180 1 7.587e-05
3.3.3 Sparsely vegetated
areas

58493 0.86 0.1228

5.2.3 Sea and ocean 9949503 0.9975 0.9993
accuracy = 0.88019
𝑓 1𝑚𝑎𝑐𝑟𝑜 = 0.559
𝑓 1𝑚𝑖𝑐𝑟𝑜 = 0.88019
𝑓 1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 0.89214

Fold 3:

target prediction

Figure 11: Validation results for the transfer learningmodel,
Lefkada

CLASS LEVEL 1 :

Classification Report
class 1.Artificial

Surfaces
2.Agricultural
areas

3.Forest
and sem-
inatural
areas

4.Wetlands 5.Water
bodies

support 176535 1869077 1861405 12270 5354057
precision 0.7811 0.8004 0.7135 0.005529 0.9907
recall 0.3617 0.6425 0.8799 0.0006519 0.9982

accuracy = 0.88929
𝑓 1𝑚𝑎𝑐𝑟𝑜 = 0.61471
𝑓 1𝑚𝑖𝑐𝑟𝑜 = 0.88929
𝑓 1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 0.89035

CORINE CLASS LEVEL 2 :

Classification Report
class support precision recall
1.1 Urban fabric 108422 0.6693 0.5016
1.2 Industrial, commer-
cial and transport units

3147 1 0.0003177

1.3 Mine, dump and con-
struction sites

4267 1 0.0002343

1.4 Artificial, non-
agricultural vegetated
areas

60699 0.002079 1.647e-05

2.1 Arable land 108101 0.2607 0.003996
2.2 Permanent crops 552365 0.7296 0.0475
2.3 Pastures 166819 0.001908 5.994e-06
2.4 Heterogeneous agri-
cultural areas

1041792 0.4505 0.6323

3.1 Forest 393277 0.2725 0.4209
3.2 Shrub and/or herba-
ceous vegetation associ-
ations

1417396 0.6113 0.7278

3.3 Open spaces with lit-
tle or no vegetation

50732 0.2842 0.002089

4.2 Coastal wetlands 12270 0.005533 0.0006519
5.2 Marine waters 5354057 0.9907 0.9982

accuracy = 0.78517
𝑓 1𝑚𝑎𝑐𝑟𝑜 = 0.37775
𝑓 1𝑚𝑖𝑐𝑟𝑜 = 0.78517
𝑓 1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 0.78474

CORINE CLASS LEVEL 3 :



Classification Report
class support precision recall
1.1.2 Discontinuous ur-
ban fabric

108422 0.6693 0.5016

1.2.3 Port areas 3147 1 0.0003177
1.3.1 Mineral extraction
sites

4267 1 0.0002343

1.4.2 Sport and leisure
facilities

60699 0.002079 1.647e-05

2.1.1 Non-irrigated
arable land

108101 0.2607 0.003996

2.2.1 Vineyards 7541 1 0.0001326
2.2.3 Olive groves 544824 0.7296 0.04818
2.3.1 Pastures 166819 0.001908 5.994e-06
2.4.2 Complex cultiva-
tion patterns

244647 0.4023 0.2524

2.4.3 Land principally
occupied by agriculture,
with significant areas of
natural vegetation

797145 0.3345 0.5491

3.1.1 Broad-leaved for-
est

20546 1 4.867e-05

3.1.2 Coniferous forest 137230 0.000408 7.287e-06
3.1.3 Mixed forest 235501 0.1906 0.4898
3.2.1 Natural grassland 150340 0.49 0.5003
3.2.3 Sclerophyllous
vegetation

1197070 0.5248 0.6725

3.2.4 Transitional wood-
land/shrub

69986 1 1.429e-05

3.3.1 Beaches, dunes,
sands

12323 0.2842 0.008601

3.3.3 Sparsely vegetated
areas

38409 1 2.603e-05

4.2.1 Salt marshes 2929 0.003458 0.001706
4.2.2 Salines 9341 1 0.000107
5.2.1 Coastal lagoons 85666 0.7482 0.2571
5.2.3 Sea and ocean 5268391 0.98 0.998

accuracy = 0.73935
𝑓 1𝑚𝑎𝑐𝑟𝑜 = 0.32759
𝑓 1𝑚𝑖𝑐𝑟𝑜 = 0.73935
𝑓 1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 0.74674

Fold 4:

target prediction

Figure 12: Validation results for the transfer learningmodel,
North Corfu

Fold 5:

target prediction

Figure 13: Validation results for the transfer learningmodel,
South Corfu

Fold 6:

target prediction

target prediction

target prediction
target prediction

Figure 14: Validation results for the transfer learning model
(north Zante, Parga, Paxoi, Kalamos)

In the experiments presented above our method was to keep
a continuous area as a validation set, for example a whole island.
Now we present a different approach where the validation patches
are randomly distributed over the area of interest. This is also a
realistic problem, where the experts sparsely assign land cover



labels on the area of interest and the remaining unlabeled areas are
predicted by a model trained on the neighbouring labeled ones. To
make sure that the training and the validation set have no common
elements we skipped data augmentation via overlaps, but the flips
and rotations are still used. We split the area of interest into train
and validation with a ratio of 70, 30 respectively.

The metrics for the validation are presented below.

CLASS LEVEL 1 :

Classification Report
class 1.Artificial

Surfaces
2.Agricultural
areas

3.Forest
and sem-
inatural
areas

4.Wetlands 5.Water
bodies

support 113717 1349974 1291539 7743 743203
precision 0.8639 0.8457 0.8078 1 0.9744
recall 0.06163 0.8162 0.8998 0.0001291 0.9916

accuracy = 0.85792
𝑓 1𝑚𝑎𝑐𝑟𝑜 = 0.68526
𝑓 1𝑚𝑖𝑐𝑟𝑜 = 0.85792
𝑓 1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 0.85891

CORINE CLASS LEVEL 2 :

Classification Report
class support precision recall
1.1 Urban fabric 77380 0.855 0.08965
1.2 Industrial, commer-
cial and transport units

4145 1 0.0002412

1.3 Mine, dump and con-
struction sites

1825 1 0.0005476

1.4 Artificial, non-
agricultural vegetated
areas

30367 1 3.293e-05

2.1 Arable land 55779 1 0.00285
2.2 Permanent crops 445942 0.523 0.6887
2.3 Pastures 53487 1 1.87e-05
2.4 Heterogeneous agri-
cultural areas

794766 0.5563 0.5009

3.1 Forest 270234 0.6143 0.5493
3.2 Shrub and/or herba-
ceous vegetation associ-
ations

949394 0.65 0.8134

3.3 Open spaces with lit-
tle or no vegetation

71911 0.5789 0.07298

4.1 Inland wetlands 4506 1 0.0002219
4.2 Coastal wetlands 3237 1 0.0003088
5.2 Marine waters 743203 0.9744 0.9916

accuracy = 0.67743
𝑓 1𝑚𝑎𝑐𝑟𝑜 = 0.40289
𝑓 1𝑚𝑖𝑐𝑟𝑜 = 0.67743
𝑓 1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 0.68708

CORINE CLASS LEVEL 3 :

Classification Report
class support precision recall
1.1.1 Continuous urban
fabric

7396 1 0.0001352

1.1.2 Discontinuous ur-
ban fabric

69984 0.855 0.09912

1.2.1 Industrial or com-
mercial units

2855 1 0.0003501

1.2.3 Port areas 669 1 0.001493
1.2.4 Airports 621 1 0.001608
1.3.1 Mineral extraction
sites

1825 1 0.0005476

1.4.1 Green urban areas 207 1 0.004808
1.4.2 Sport and leisure
facilities

30160 1 3.316e-05

2.1.1 Non-irrigated
arable land

55779 1 0.00285

2.2.1 Vineyards 10122 1 9.878e-05
2.2.2 Fruit trees and
berry plantations

9040 1 0.0001106

2.2.3 Olive groves 426780 0.5224 0.7187
2.3.1 Pastures 53487 1 1.87e-05
2.4.2 Complex cultiva-
tion patterns

267127 0.3909 0.5091

2.4.3 Land principally
occupied by agriculture,
with significant areas of
natural vegetation

527639 0.471 0.3283

3.1.1 Broad-leaved for-
est

12029 1 8.313e-05

3.1.2 Coniferous forest 76451 1 0.09269
3.1.3 Mixed forest 181754 0.4287 0.5532
3.2.1 Natural grassland 174214 0.4769 0.741
3.2.3 Sclerophyllous
vegetation

701163 0.5691 0.7445

3.2.4 Transitional wood-
land/shrub

74017 1 1.351e-05

3.3.1 Beaches, dunes,
sands

7253 1 0.0001379

3.3.2 Bare rock 7519 1 0.000133
3.3.3 Sparsely vegetated
areas

57139 0.5789 0.09184

4.1.1 Inland marshes 4506 1 0.0002219
4.2.1 Salt marshes 1788 1 0.000559
4.2.2 Salines 1449 1 0.0006897
5.2.1 Coastal lagoons 25642 1 3.9e-05
5.2.3 Sea and ocean 717561 0.9416 0.9925

accuracy = 0.59871
𝑓 1𝑚𝑎𝑐𝑟𝑜 = 0.28225
𝑓 1𝑚𝑖𝑐𝑟𝑜 = 0.59871
𝑓 1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 0.62438
Finally we are going to present some examples that show the

performance of our model. All the predictions presented are on
validation data.The number on the top of each image on the left
indicates the fold number (6-fold cross validation).

In some of the above examples we see the difficulty of our prob-
lem, deriving from the low resolution of the input images and the



Figure 15: Finding uncommon classes (villages andmarshes)

ambiguity of the corine labels. In some cases the model made the
right predictions, even though it is a difficult task even for the
human observing the rgb input image.

Figure 16: Examples of correct prediction of land cover
classes/ concord between the predicted and the labeled class
boundaries .

Figure 17: Examples that show inaccuracies of the corine
land cover that were corrected by our model.

4 CONCLUSION
• Our models provide a basis for the creation of land cover
maps based on the CLC nomenclature. The visual results
show the ability of our models to find the boundaries be-
tween classes and the accuracy on the higher levels of the
class hierarchy is pretty good. The accuracy on common sub-
classes is also good. However, the performance on predicting



uncommon classes and discriminating subclasses of the same
superclass on the lower levels of the CLC class hierarchy
isn’t adequate and human supervision may be needed for
this task.

• The CLC dataset contains imperfections. These limit the
accuracy of our models. However, in some cases the model
can outperform the accuracy of the dataset in cases where
the dataset has a lower quality than it’s average.

• Usually the land cover is mixed or can not be described ac-
curately by the existing CLC classes. This leads to discord
between the labeled data and the predictions, even for kinds
of land cover that have been seen on the training set. We
also observe that sometimes there are multiple class labels
that could describe the land cover and despite the seeming
disagreement between the model output and the labels they
are close to each other. This indicates the need for a more so-
phisticated loss criterion and performance metrics that give
different penalties to different types of confusion between
classes, taking into account the hierarchical structure of the
classes and the similarities and overlaps between classes.

• Increasing the resolution of the output from 100m to 10m
can give better results but bigger models are required (more
parameters).

• The main contribution of transfer learning was speeding up
the training processes and possibly improving the results.
The encoder part of the network didn’t have to be trained,
at least for the first epochs of the training, resulting in de-
creased epoch duration.

• Using a bigger dataset could boost the performance of our
models in the area of interest, especially in the task of pre-
dicting uncommon classes.
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