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ABSTRACT
When observing a phenomenon, severe cases or anomalies are of-
ten characterised by deviation from the expected data distribution.
However, non-deviating data samples may also implicitly lead to se-
vere outcomes. In the case of unsupervised severeweather detection,
these data samples can lead to mispredictions, since the predictors
of severe weather are often not directly observed as features. We
posit that incorporating external or auxiliary information, such as
the outcome of an external task or an observation, can improve
the decision boundaries of an unsupervised detection algorithm. In
this paper, we increase the effectiveness of a clustering method to
detect cases of severe weather by learning augmented and linearly
separable latent representations. We evaluate our solution against
three individual cases of severe weather, namely windstorms, floods
and tornado outbreaks.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Machine
learning; • Applied computing → Physical sciences and en-
gineering.
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1 INTRODUCTION
Anomalies occur in the majority of datasets. They are fairly rare
and are often challenging to detect in an unsupervised setting. Due
to their lower frequency, the majority of normal samples introduces
implicit bias that results in biased predictions. From an unsuper-
vised perspective, one can assume that these rare occurrences can
be observed in the outliers of the data distribution. Yet, depending
on the application, searching for samples that deviate from the
expected data distribution may not improve the detection of an
unsupervised method.

In some applications, the occurrence of anomalies might be ex-
pected or it may not be trivial to detect deviation from the observed
data distribution. An example of such application is detecting cases
of severe weather. A heavy rain or windstorm may be considered
as normal, depending on the geographic region or the season, etc.
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Figure 1: Data sample of GHT variable at 700 hPa pressure
level

These otherwise normal circumstances may lead to natural disas-
ters, even in costly damages or fatalities. However, they can not
always be predicted by observing a physical quantity.

To predict these types of occurrences, we need to incorporate
external or auxiliary information that can effectively augment the
observable features. In this paper, we investigate the effects of in-
corporating external information in the form of an auxiliary task
outcome. We achieve this by utilising a deep learning method called
“Evidence Transfer” that incrementally manipulates the latent rep-
resentations of an autoencoder according to external categorical
evidence [3]. Evidence transfer allows for joint representation learn-
ing, based on external categorical evidence retrieved from textual
sources and weather re-analysis data. Evidence transfer success-
fully manipulates the initial learned representations, resulting in
increased effectiveness during individual severe weather detection.

2 DATA AND METHODS
2.1 Weather Re-analysis Data
ERA-Interim [4] re-analysis data are produced with a sequential
data assimilation scheme during which prior information from
a forecast model is combined with the available observations in
order to estimate the state of the global atmosphere, allowing for
a better description of past atmospheric conditions. Weather re-
analysis data are gridded data (as shown in Figure 1) depicting
atmospheric variables in various timestamps and pressure levels



(gravity-adjusted height), leading to 4D variables. They cover a
time period of up to 40 years, with less than 1° spatial fineness and
6-hour temporal resolution for global region.

In our experiments, we used ERA-interim data covering the time
period from January 1 1979 to May 31 2018 with 6-hour temporal
resolution (retrieved from the Research Data Archive of National
Center for Atmospheric Research in Boulder, Colorado1). The spa-
tial resolution is ≈ 0.7° × 0.7°, containing atmospheric variables
across 37 vertical pressure levels ranging from 1ℎ𝑃𝑎 to 1000ℎ𝑃𝑎.
We reduce the region of gridded data from global region to a Carte-
sian domain that covers Europe. In order to reduce the domain
of our data we used the pre-processor of Weather Research and
Forecast (WRF) Model [8], named WPS. The new spatial resolution
of our data is of 64 × 64 cells of 75𝑘𝑚 × 75𝑘𝑚 in the west-east and
south-north axes.

In our study, the atmospheric variable of interest is the geopoten-
tial height (GHT) which can be seen as a gravity-adjusted height.
GHT is often used for its predictive properties [6, 7, 9], as well as,
to extract weather patterns for other downstream tasks [5]. Severe
weather can be predicted via sequences of patterns in the geopo-
tential height (e.g. a cyclone can be observed as a circular pattern).
To highlight useful high-level features, such as circular shapes and
edges, we extract embeddings through a pre-trained VGG-16 net-
work on ImageNet. We feed the VGG-16 network with 3 different
levels of GHT = 500, 700 and 900 ℎ𝑃𝑎 in similar fashion to using
the RGB channels of an image. Therefore, a single data sample of
shape 3 × 64 × 64 is transformed into an embedding of 64 × 64,
resulting in a total of 4096 features.

2.2 Textual Evidence
We augment the weather-based embeddings by making use of tex-
tual evidence for historic severe weather events, found inWikipedia.
For example, to find severe heavy rain occurrences we search
for recorded floods. We extract categorical evidence from textual
sources of Wikipedia pages which associate a date to a severe
weather event.

For our experiments we extract the following cases of extreme
events in Europe: (1) costly or deadly hailstorms, (2) floods, (3)
tornadoes and tornado outbreaks and (4) severe windstorms.

Each of these event types is treated as a binary classification task
for predicting a specific severe weather case. The occurrence date
is used to both reference the weather re-analysis data, as well as
the individual tasks. Since the events listed in Wikipedia do not
typically supply exact times, we label the whole day of reference
as severe, therefore, the minimum span of an event is one day or
four 6-hour samples (we remind that the weather re-analysis data
are provided in 6-hour increments).

For each of the aforementioned lists we extract the following
fields (for simplicity purposes, “Event” is used to represent each in-
dividual case of severe weather): Event Name, Event Type, Affected
Countries, Location, Country Coordinates (Latitude), Country Co-
ordinates (Longitude), Event Description. The fields regarding the
event (name, type, location, description) are extracted from the
Wikipedia pages, while the coordinates are retrieved from querying

1http://rda.ucar.edu/datasets/ds627.0/

Figure 2: Overview of the use of Evidence Transfer for joint
representation learning over weather and textual evidence
to improve the detection of severe weather events.

the GeoNames 2 API. For the majority of extracted events, country
names are used to reference the spatial extension of an event which
is stored in the “Affected Countries” field. More detailed spatial
information such as city names or state names are stored in the
“Location” field when they are available 3.

2.3 Evidence Transfer
Evidence transfer [3] is a deep learning method that incrementally
manipulates the latent representations of an autoencoder accord-
ing to external categorical evidence. In the context of evidence
transfer, any categorical variable can be utilised as evidence. The
most straight forward case of evidence is using the outcome of
an auxiliary task. Evidence transfer has been developed with the
notion that in practice the availability of external data is either not
guaranteed, or we may observe the outcome of external processes
without having explicit access to the corresponding dataset. It is
a generic method for combining external evidence in the process
of representation learning. It makes no assumptions regarding the
nature or source of external evidence. It is effective when intro-
duced with meaningful evidence, robust against non-corresponding
evidence and modular due to its transfer learning nature.

Evidence transfer is a two step method. During the initialisation
step, an autoencoder is trained to reconstruct the input data of the
primary task. To ensure robustness, an intermediate step is required.
During the intermediate step a small biased evidence autoencoder
is trained to reconstruct each categorical evidence source. Evidence
autoencoder is called “biased”, due to introduced limitation in the
amount of iterations. Meaningful evidence is able to converge for
small amount of iterations, leading to a latent projection of the

2https://www.geonames.org
3Dataset available at: https://github.com/davidath/severe-weather-dataset
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evidence, however non-corresponding evidence is not able to gen-
eralise and therefore produce a uniform-like distribution. During
severe weather case detection, we avoid this step, since we know
that textual evidence is retrieved from meaningful sources.

During the transfer step, the initial latent representation are
manipulated according to external evidence through the joint opti-
misation of reconstructing the input, as well as, reducing the cross
entropy between an extended softmax layer of the latent space
and the external evidence. The loss function of the initialisation
step is shown in Equation 1. In Equation 2 we show the evidence
transfer step loss, where𝑉 is the set of categorical evidence sources
and 𝑄 are the extended softmax layers. Structural Similarity Index
(SSIM) is used as reconstruction loss function in order to retain the
structural information of the data.

ℓ𝐴𝐸 = L(𝑋,𝑋 ′) = 1

𝑁
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2.4 Class Balancing
In our experiments, the original data consist of 57584 weather re-
analysis samples in 6-hour increments, while the total amount
of severe weather samples without duplicate dates are only 3136
(less than 6% of the samples). To deal with imbalanced learning,
we experiment with three different sampling strategies: (1) over-
sampling the minority class, (2) under-sampling the majority class,
(3) combination of over-sampling and under-sampling.

To over-sample the minority class, we use SMOTE [2]. SMOTE
generates minority class samples by joining the line segments of
k-nearest neighbors. To under-sample the majority class, we per-
form random under-sample, although more sophisticated under-
sampling methods such as the ENN [10] (removes data samples that
deviate from the majority of k-nearest neighbors) can also be used.
A combination of both strategies can be achieved by combining
the over-sampling with under-sampling, such as the SMOTEENN
method [1].

In order to test the effectiveness of each sampling strategy we
experiment with using the primary task of learning representations
to detect severe weather samples by combining all severe cases into
a single class. Wemanipulate the initial learned space by incorporat-
ing the ground-truth labels (i.e the binary task labels of predicting
severe from non-severe weather samples). Incorporating evidence
that exactly replicates the outcome of the primary task is not real-
istic, however we use this scenario in order to investigate the best
choice of sampling strategy without introducing implicit uncer-
tainty from the choice of external categorical evidence. However,
to test its generalisation, we split the ground-truth into train and
test and only use the evidence labels during training with evidence
transfer.

Quantitative evaluation with the micro average of precision,
recall and F1 score metrics for the full dataset (train and test) are
presented in Table 2. Our experiments indicate that under-sampling
the majority class is the most fitting for our case. By reducing
the redundancy in the majority class, evidence transfer can more

effectively manipulate the initial representations. It additionally
allows the linear separation into two classes, while during over-
sampling and combination, the implicit bias overcomes the latent
space by resulting in a single inseparable cluster.

2.5 Method overview
For all of our experiments, we follow the training procedure of
evidence transfer. First, we train a denoising stacked autoencoder
to reconstruct the primary task dataset, i.e. the weather re-analysis
data. The initialisation step is completely unsupervised, no labels
are used during this step. We consider an initial solution to our
primary task, the “baseline” solution, during which we perform
an unsupervised detection method on the initially retrieved la-
tent representations. We perform the same unsupervised detection
method on incrementally manipulated latent representations from
evidence transfer in order to compare its effectiveness. We supply
the additional evidence sources based on the textual severe weather
dataset.

During experimental investigation of the best sampling strategy,
one class SVM was used as an unsupervised detection method.
For the cases of detecting individual severe weather cases we use
𝑘-means clustering with 𝑘=2 (prediction of severe or non-severe
weather) as an unsupervised detection method, except a single case
where agglomerative clustering was used instead (ground-truth:
windstorm, evidence: tornado).

3 EXPERIMENTAL EVALUATION
We experiment with individually detecting windstorms, floods and
tornado outbreaks 4. We avoid using the hail events due to lim-
ited amount of samples. We rotate between the different severe
cases by selecting one case as the ground truth and alternate be-
tween using the rest as external evidence. For example, we select
windstorm weather samples and a portion of non-severe samples
as our primary task – ground truth, while another case, e.g flood,
is selected as the auxiliary task – external evidence. We further
under-sample the remaining non-severe weather cases in order to
match the number of severe weather samples.

In Table 1, we report experimental results in terms of preci-
sion, recall and F1-score for the anomalous class. Introducing ex-
ternal evidence leads to linearly separable representations that
increases the effectiveness of clustering, and therefore detecting
the severe weather samples. Even though evidence transfer is a
scalable method that can use multiple sources of evidence, in this
case, it is not as effective, due to ground truth and external evidence
contradicting each other for some portion of the data samples.

In our experiments, the final dataset consists of non-severe sam-
ples (≈500 after under-sampling to balance the individual severe
class), one severe class as the primary task or ground truth and
one as the external evidence. As an example, consider the task of
predicting windstorm samples as ground truth and the task of pre-
dicting flood samples as external evidence. For the task of predicting
windstorms, non-severe samples and flood samples are labelled as
“normal”. However, for the task of predicting floods, non-severe
samples and windstorm samples are labelled as “normal”. Therefore,
external evidence contradicts the ground truth during non-severe
4Code available at: https://github.com/davidath/severe-weather-detect
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Table 1: Experimental evaluation of evidence transfer for individual severe weather case detection.

Windstorm (Baseline) Flood (Baseline) Tornado (Baseline)
Metric Flood Tornado Metric Windstorm Tornado Metric Windstorm Flood

Precision 0.61 0.66 Precision 0.49 0.61 Precision 0.26 0.24
Recall 0.71 0.87 Recall 0.50 0.57 Recall 0.62 1.00

F1-Score 0.66 0.75 F1-Score 0.49 0.59 F1-Score 0.36 0.38
Windstorm (Evidence Transfer) Flood (Evidence Transfer) Tornado (Evidence Transfer)

Metric Flood Tornado Metric Windstorm Tornado Metric Windstorm Flood
Precision 0.84 (+0.23) 0.79 (+0.13) Precision 0.68 (+0.19) 0.72 (+0.11) Precision 0.32 (+0.06) 0.28 (+0.04)
Recall 0.74 (+0.03) 1.00 (+0.13) Recall 0.92 (+0.42) 0.69 (+0.12) Recall 0.98 (+0.36) 0.69 (-0.31)

F1-Score 0.79 (+0.13) 0.88 (+0.13) F1-Score 0.78 (+0.29) 0.71 (+0.12) F1-Score 0.49 (+0.13) 0.40 (+0.02)

Table 2: Experimental evaluation of evidence transfer for se-
vere weather case detection with three sampling strategies.

Baseline
Metric Oversample Undersample Combine

Precision 0.51 0.53 0.51
Recall 0.51 0.53 0.51

F1-Score 0.51 0.53 0.51
Evidence Transfer

Metric Oversample Undersample Combine
Precision 0.59 (+0.08) 0.82 (+0.29) 0.55 (+0.04)
Recall 0.59 (+0.08) 0.82 (+0.29) 0.55 (+0.04)

F1-Score 0.59 (+0.08) 0.82 (+0.29) 0.55 (+0.04)

samples. Introducing more sources of external evidence increases
the contradiction for non-severe samples, leading to increased un-
certainty during clustering.

However, both quantitatively, as shown in Table 1, as well as
qualitatively (ground-truth: windstorm, evidence: flood, depicted
in Figure 3) introducing a single source of evidence improves the
outcome of clustering method by pushing the latent representa-
tions to become linearly separable and therefore improving the
effectiveness for both 𝑘-means and agglomerative clustering.

4 FUTUREWORK AND CONCLUSIONS
In this paper, we investigated using evidence transfer to improve
a primary task of detecting individual cases of severe weather. By
incorporating auxiliary tasks extracted from textual sources, we
effectively manipulated the latent space of an autoencoder using
evidence transfer, in order to increase the effectiveness of severe
weather detection. Making latent representations incrementally lin-
early separable resulted in improving the effectiveness of 𝑘-means
and agglomerative clustering. Additionally, we investigated the best
sampling method for our imbalanced class of detecting severe cases
with non-observable predictors, by evaluating the effectiveness of
evidence transfer in one class SVM (with linear kernel) prediction.

Future work is directed towards utilising the temporal aspect of
weather re-analysis data. For our experiments, we mostly focused

(a) Baseline of “Windstorm - Flood” Combination

(b) Evidence transfer combination of “Windstorm - Flood”

Figure 3: t-SNE 2d projections of the initial and Evidence
Transfer representations of originally 10 features. The ini-
tial latent space consists of a "mixed" cluster that can be seen
as a single class in an unsupervised setting. However, after
evidence transfer, the latent representations are linearly sep-
arable allowing for improved decision boundaries.



on using embeddings extracted from an image recognition task.
However, retrieving temporally-aware embeddings from raw data,
e.g. via a recurrent autoencoder, could improve the individual de-
tection of severe weather cases by exploiting the temporal aspect of
the data. Additionally, since the under-sampling strategy appears
to perform better for this problem, it would be beneficial to increase
the total amount of severe weather samples from additional sources.
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