
11

Evaluating Deep Learning Models for Anomaly Detection
in an Industrial Transporting System

Kyrylo Kadomskyi

Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska st., Kyiv, 01601, Ukraine

Abstract
Cyber-Physical Production Systems (CPPS) require robust techniques for detecting

anomalies and root causes in the system. The model-based diagnosis is a commonly used

approach in which a dynamic process model captures spatio-temporal features of the

system’s behavior. Because of the infeasibility of precise mathematical or expert modeling,

algorithms have been developed for learning such models from system observations. These

algorithms are characterized by high domain-specialization and yield relatively poor

performance in other use cases.

In this paper the CPPS data is used, on which existing models have proven ineffective. The

perspective of applying deep learning approach to constructing a process model in such

systems is investigated. The main idea is to go from models with fixed structure to more

universal techniques for learning optimal structure from dynamic observations. The

challenges of evaluating dynamic system models of this class are identified, and evaluation

criteria are proposed for representative comparison and benchmarking of the models. It is

shown that deep learning models provide increase in anomaly detection score but require

additional verification of model robustness.

Keywords 1
Anomaly detection, autoencoder, model evaluation, cyber-physical production systems,

industrial IoT

1. Motivation

Industrial AI is an emergent research field that is actively revolutionizing production plants.

Increasing product variety, product complexity and pressure for efficiency lead to systems that

contain a growing set of sensors to facilitate automation [1]. In this context diagnosis of complex

production processes has gained new attention due to research agendas such as Cyberphysical
Production Systems (CPPS) [2, 3]: the initiative of Industrial Internet of Things (IIoT) and Industrie

4.0. In these agendas the most important goals of self-diagnosis are identification of anomalous

system behavior, suboptimal energy consumption, or wear in CPPS [4, 5].
The most accepted method is model based diagnosis [4] where the features of normal and

anomalous system’s behavior are captured by the process model. Modern CPPS are adaptable and

changeable, which makes both precise mathematical modelling and manual expert modelling costly
and ineffective [6]. Thus, to build the model the process features must be extracted from sensory

measurements. As the process often is highly dynamic and variable, the most informative features are

spacio-temporal and include sequential events, timing and duration of specific process stages, or the

boundaries on observed values specific to each given stage.
To achieve this, novel dynamic modelling techniques are being developed [3, 4, 7, 8] and are

currently replacing traditional methods, such as Statistical Process Control (SPC) and Bayesian

inference with time dependency. While showing good results in certain applications, this models yield

IT&I-2020 Information Technology and Interactions, December 02–03, 2020, KNU Taras Shevchenko, Kyiv, Ukraine

EMAIL: cyril.kadomsky@gmail.com (K. Kadomskyi)

ORCID: 0000-0002-6163-3704

©️ 2020 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

12

relatively poor performance in other similar use cases [9, 7, 8]. The hypothesis is that this effect is due
to limited nature and fixed structure of spatio-temporal features learned by the model, which are

imposed by the structure of the model itself. Then the informativeness of learned features will vary in

different physical systems, which can explain the observed effect.

In this study Deep Learning (DL) models, such as autoencoders [10], are applied to remove the
mentioned limitation by automatically selecting the most relevant features and structure to represent

the data. Evaluating these models on the dataset that has proven challenging for applying novel

dynamic models is conducted aiming for accurate benchmarking of the two approaches. This in turn
provides the possibility to assess the limits of model-based anomaly detection in given class if CPPS.

As results of traditional evaluation techniques in CPPS applications may not be representative [9],

the challenges of evaluating dynamic system models in CPPS are identified by analyzing data
collected from DL models, and robustness criteria are proposed to increase evaluation

representativeness.

2. The System and the data

Currently several projects are aimed at utilizing new technical possibilities to meet the challenges
of Industrial IoT and Industrie 4.0. Under the European Union’s Horizon 2020 research project

IMPROVE [11] a number of experiments in industrial systems were made, and environments were

designed specifically to test novel methods for self-diagnosis (including monitoring, anomaly

detection) and self-optimization [12]. The High Rack Storage System or HRSS is a demonstrator
system built in SmartFactoryOWL in Lemgo, Germany. The system transports pallets between its

different shelves, as shown in Figure 1.

Figure 1: A schematic representation of the system. The system consists of two stationary (‘BLO’,
‘BRU’) and two movable (‘BHL’, ‘BHR’) conveyer belts, as well as vertical rails (‘HL’, ‘HR’). The arrows
show three of possible transporting paths.
Source: https://www.kaggle.com/inIT-OWL/high-storage-system-data-for-energy-optimization.

Measurements of position, power and voltage are made at each of the system’s drives during full
transporting cycles. Anomalies in this system include shortening of cycles, pauses, abnormal timing,

duration, or sequence of different process stages, as well as increase or decrease in one or multiple

signals at certain stages. The task is to detect HRSS anomalies and to localize them with time-step

precision by constructing the model of normal system behavior in an unsupervised manner.
A time series dataset [13] was collected in this system under IMPROVE project and is being

actively used to test novel approaches to anomaly detection [9, 14]. The data contains 18 real-valued

signals sampled 15–20 times per second. It includes time series of 106 normal cycles (25,907
observations) and 111 cycles containing labelled anomalies (23,645 observations). The dataset is

unbalanced with 76.0% of negative examples. Statistical distributions of the classes (i.e. normal and

anomalous measurements) are not distinguishable in feature space, which excludes direct applying of

traditional Machine Learning (ML) methods for anomaly detection (e.g. linear models, decision trees,
SVM, etc.). At the same time PCA analysis shows that 10 main principal components cover 98.1% of

data variation, so linear dimensionality reduction techniques can be useful. Data quality issues that

13

may affect model performance include high noisiness, strong outliers, and difference in feature ranges
by several orders of magnitude.

3. Background research

As the statistical separation of classes is not possible in this task, constructing a model from

process measurements involves learning spatio-temporal patterns and events, which are typically
characterized by timing and duration of different process stages.

To address this goal the use of dynamic process models such as Hybrid Timed Automata (HTA)

has been proposed [9]. To apply a discrete state HTA model to continuous process measurements the

unsupervised data preprocessing with self-organizing maps (SOM) and watershed transformations
were utilized. This method detects anomalies with timestep precision. Yet, having proven effective in

other CPPS applications [7, 8], it yields low performance on HRSS data with 30.76% F1 score and

26.7% recall (1516 true positives).
In another study the Deep Learning architectures were applied to the same data [14]: Siameese

LSTM model was used for binary classification of full process cycles into ‘normal’ and ‘anomaous’

classes. Targeting minimal false-positive score this model yields 25.6% F1 measure, 88.2% precision,
and 15.0% recall, while being unable to localize anomalies within a cycle.

In both studies anomaly detection rates are low, comparing to other CPPS applications, thus

learning a model from the process measurements in HRSS plant remains a challenging task. To

address this task, features of HRSS system must be identified that explain observed drop in efficiency.
As the results of the two studies are not directly comparable, the perspective of applying DL models

in this class of CPSS also remains an open question. Answering it requires strict evaluation of DL

models, as well as assessment of the effect of architectural variations. As the representativeness of
evaluation results remains unknown [9], additional measures must be developed to assess model

robustness.

4. The method

In this study a set of autoencoder architectures are applied to the task of anomaly detection [10] in
a setup shown in Figure 2. The DL model, i.e. autoencoder, is trained in unsupervised manner to

reconstruct normal time series targeting minimal reconstruction loss. Then the trained model is used

to reconstruct unseen time series with anomalies, where the reconstruction error is expected to peak at
anomalous intervals. To evaluate the model, the distributions of reconstruction error in normal and

anomalous intervals are analyzed for being statistically distinguishable. Finally, from the error

distributions a decision-rule classifier for anomaly detection is built in a supervised mode.

Figure 2: Solution architecture

This method detects anomalies with time step precision, and most of evaluated models can be

applied in real time.

Measurements,
time series

Preprocessing, feature
engineering

Decision tree

Distance
measure

Autoencoder

Anomaly
prediction

Reconstructed
time series

Features

14

5 modifications of LSTM autoencoder and 3 modifications of ConvNet autoencoder were
modelled and evaluated in a setup allowing for direct benchmarking against background research. For

results to be representative, models’ robustness must be assessed. From the analysis of evaluation

results, two challenges were identified that must be met to achieve model robustness and the

representativeness of evaluation.
1. One distinct feature of HRSS plant is low process variation in normal conditions with 12.6%

mean absolute deviation from the averaged process cycle. Under such conditions, an

autoencoder model can reach local minima of reconstruction error without reconstructing
individual features of distinct cycles (i.e. different process runs). In this case model’s output is

close to the average training cycle with reconstruction loss close to vnormal. Such model

performs well on HRSS data where process variation is low, but it will not be useful in most
CPPS applications where process variation is higher.

2. The presence of anomalies may affect model’s performance in reconstructing neighboring

normal intervals. This is expected behavior in models with internal time-dependency, which

are used in this study. In this case model’s robustness is limited by the type and the length of
anomalies, which typically are not known at training time.

4.1. Robustness criteria

To address the mentioned challenges two robustness criteria are proposed for representative model

evaluation.
RC1. Reconstructed variation rate is calculated in unsupervised mode using the training set of

normal process cycles, by comparing step-vise standard deviation of reconstructed signal

𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑
𝑛𝑜𝑟𝑚𝑎𝑙 to standard deviation of the model input 𝑠𝑖𝑛𝑝𝑢𝑡

𝑛𝑜𝑟𝑚𝑎𝑙 :

𝑅𝐶1 =
𝜎(𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑

𝑛𝑜𝑟𝑚𝑎𝑙)

𝜎(𝑠𝑖𝑛𝑝𝑢𝑡
𝑛𝑜𝑟𝑚𝑎𝑙)

 (1)

RC2. Reconstruction sensitivity to anomalies is assessed in supervised mode on the set of

anomalous cycles (i.e. evaluation set) as the correlation between error of reconstructing normal
intervals and the strength of anomalies in the same process cycle or time window:

𝑅𝐶2 = corr (M|𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑
𝑛𝑜𝑟𝑚𝑎𝑙 − 𝑠𝑖𝑛𝑝𝑢𝑡

𝑛𝑜𝑟𝑚𝑎𝑙|, 𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒), (2)

where 𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 is domain specific and includes type, time length and strength of the

anomaly.

In HRSS plant two distinct types of anomalies are present.

 Type 1: amplitude deviations from normal signal

 Type 2: deviations in timing, duration, or sequence of process stages
In practice anomalous cycle duration and long-term type-2 anomalies have noticeable effect on

RC2, as shown in Figure 3.

Figure 3: Evaluation results for two different autoencoder models which demonstrate low (left) and
high (right) values of RC2, respectively. Results were obtained from LSTM 2 and ConvNet 2 models.

15

4.2. Evaluation techniques

To evaluate the DL models, HRSS dataset is split into three parts.

 Training set contains randomly selected 2/3 of normal cycles and is used to train the

autoencoder.

 Test set contains remaining normal cycles and is used to validate autoencoder and test it for

overtraining.

 Evaluation set contains all cycles with anomalies and is used to assess anomaly detection
performance and to justify the selection of decision threshold.

4.2.1. Choice of performance measures

The architecture consists of two parts: the autoencoder which is used to reconstruct input time

sequence, and the classifier used for anomaly detection. So, two performance indicators are required.
The performance of signal reconstruction was measured with MAE loss function, which is more

outlier-resistant and more suitable for high-dimensional data comparing to MSE.

Anomaly detection performance was measured with F1 score and confusion matrix. The F1 score
has the advantage of accounting for both false positives and false negatives. Comparing to accuracy

and correlation-based measures, which also account for true negatives, F1 score better suits an

unbalanced dataset. Also, F1 score with confusion matrix enable direct comparison with the

background research.

4.2.2. Selecting decision threshold

In anomaly detector the threshold must be set for the signal reconstruction error. Let 𝐿𝑛 be the

distribution of signal reconstruction loss obtained on the training set (i.e. in normal cycles); let 𝐿𝑛
𝑣 and

𝐿𝑎
𝑣 be the distributions of loss obtained on validation data: in normal intervals and in anomalies

respectively. Then optimal value for the classification threshold can be assessed from 𝐿𝑛, 𝐿𝑛
𝑣 and 𝐿𝑎

𝑣

in two ways:

 Unsupervised: 𝑇 = E(𝐿𝑛) + 2𝜎(𝐿𝑛).

 Supervised: 𝑇 = argmax 𝑆(𝐿𝑛
𝑣 , 𝐿𝑎

𝑣 , 𝑇), where 𝑆 is a performance measure for anomaly

detection.

Experiments on HRSS data show that the optimal threshold value for different architectural

modifications varies in a broad range. While the first assessment can be far from optimal, the second
assessment may not be possible in most applications where labelled anomalous data is not available.

4.2.3. Evaluation steps

Evaluation steps include:

1. calculating performance measures.
2. assessing the statistical separation between autoencoder response to normal and anomalous

signals (𝐿𝑛, 𝐿𝑛
𝑣 and 𝐿𝑎

𝑣).

3. assessing robustness criteria RC1 and RC2.

4. selecting the optimal model by maximal performance, among models that have passed
robustness tests.

5. Models

The DL models being tested are divided in two groups by DL architecture type: LSTM and

Convolutional. In each group the first model is a traditional architecture used for anomaly detection.
Other models are built to assess the effect of architectural modifications on model performance.

16

The choice of the model’s hyper-parameters affects both experimental performance and
robustness. Hyper-parameters include the number, types and sizes of layers, compression rate of

autoencoder, the use of dropouts, as well as internal layer parameters (e.g. kernel size, activation

function). As no computationally effective techniques exist for finding the optimal architecture

construction through hyper-parameter choices, this task remains tedious and highly intuition driven
[15, 16]. In this study a grid search approach was applied for each model type, obtaining the models

shown in Table 1.

Table 1
Architecture modifications in the autoencoder. All models have decoder layers symmetrical to
encoder. Models were compiled with 'tanh' function for layer activation, and 'sigmoid' function for
recurrent activation. In the “CR” column the compression rate of the encoder is given.

Model Description

Model hyper-parameters

Layers in encoder CR
Transformations at

the bottleneck

LSTM 1 Classic LSTM
architecture [17, 18]

2 LSTM layers (filters: 30, 60) 60 Final LSTM output
repeated for each
timestep

LSTM 2 Model without time
compressing

2 LSTM layers (filters: 60, 4) 3 No transformation

LSTM 3 Model with time
pooling

3 LSTM layers (filters: 25, 25, 6),
2 pooling layers (factor 3, 2)

12 No transformation

LSTM 4 Model with time
pooling and
convolutional layers

3 LSTM layers (filters: 25, 25, 6),
3 pooling layers (factor 3, 3)

24 1 convolutional layer
(6 filters, kernel
size 3)

LSTM 5 Model with time
pooling and locally
connected layers

3 LSTM layers (filters: 25, 25, 6),
2 pooling layers (factor: 3, 2)

12 1 locally connected
layer (6 filters, kernel
size 5)

LSTM 6 Model with time
pooling and dense
layers

3 LSTM layers (filters: 25, 25, 6),
3 pooling layers (factor: 3, 2, 2),
1 convolutional layer (6 filters,
kernel size 3)

48 Flattening,
dense layer (75
filters), dense layer
(150 filters)

ConvNet 1 Classic convolutional
model

3 convolutional layers
(filters: 32, 16, 6; kernel size 5),
3 pooling layers (factor 2)

16 1 convolutional layer
(6 filters, kernel
size 5)

ConvNet 2 Extended
convolutional model

3 convolutional layers (filters:
64, 32, 6; kernel size: 5, 10, 20),
3 pooling layers (factor 3, 2, 2)

24 1 convolutional layer
(6 filters, kernel
size 5)

ConvNet 3 Convolutional model
with dense layers

3 convolutional layers (filters:
64, 32, 6; kernel size: 5, 10, 20),
3 pooling layers (factor 3, 2, 2)

48 Flattening,
dense layer (75
filters), dense layer
(150 filters)

6. Experimental setup

The models were implemented using Keras with Tensorow backend. Training was performed

using ‘Adam’ optimizer and MAE loss function with learning rate of 𝛼 = 0.005, 𝛽1 = 0.9, 𝛽2 =

17

0.999, and fuzzy factor 𝜀 = 10−7 [19]. The time series of complete process cycles, padded to

constant length of 300 timesteps, were used as both input and target. Training was run with 130

epochs for LSTM models and 300 epochs for ConvNet models, in mini-batch mode with batch size

32. To rule out the effect of batch-averaging on robustness criteria RC1, training was repeated in
stochastic mode (batch size 1). In this setup the number of epochs was reduced by the factor of 5, as

epochs are more time-consuming in this mode, but epoch-to-epoch convergence is faster. As no

significant influence of the batch size on evaluation criteria was observed in experiments, only results
obtained in mini-batch mode are presented. As the reconstruction loss fluctuates between training

epochs, averaging across last 10 epochs was used for reliable performance estimate.

Data pre-processing included the following steps:

 Introducing velocity features, calculated with second order accurate central differences.

 Dimensionality reduction from 24 to 12 components with PCA, which preserves 98.2% of data
variance.

 Normalization and scaling to the range (0,1), which unifies value ranges of features.

 Time smoothing with gaussian kernel of width 15 and standard deviation 3.

 Unifying time series length by padding.

7. Results

Reconstruction rates of all models fall into a narrow range, as shown in Table 2, with exception of

classic LSTM autoencoder (LSTM 1), which proved unable to accurately reconstruct the process.
Thus, reconstruction loss measure cannot be used to assess the efficiency of autoencoder model in

CPPS anomaly detection task. Instead, statistical analysis of the loss distributions must be applied.

Table 2
Model evaluation results. Column 1 shows anomaly detection score obtained in the case of
supervised optimal threshold selection using labelled anomalies, column 2 gives the score obtained
with unsupervised threshold estimate. Separate assessments for type 1 and type 2 anomalies are
obtained in the case of optimal threshold selection. Reconstruction score is assessed relative to the
amplitude variation in normal signal. In some models RC1 varies significantly during the process
cycle, starting with 0.1-7.5%. For such models, the mean value is given, marked with asterisk “*”,
while model’s robustness drops significantly at the beginning of each cycle.

Model

Performance Robustness

Anomaly detection, F1 score, %
Reconstruction,

MAE, %
RC1 RC2 Overall estimate Type 1

anomalies
Type 2

anomalies 1 2

Target
value

100 100 100 100 100 100
none or

low

LSTM 1 52.6 38.3 25.6 81.8 42.5 ± 1.5 0.0012 none

LSTM 2 46.3 36.3 34.2 59.0 12.0 ± 0.53 51.2 low

LSTM 3 69.2 67.9 37.7 85.9 13.4 ± 0.92 27.14* low

LSTM 4 62.3 59.2 34.5 78.5 14.7 ± 0.83 36.5* low

LSTM 5 75.4 75.3 39.3 92.9 12.63 ± 0.27 0.014 none

LSTM 6 75.7 75.2 40.2 93.2 12.8 ± 0.41 0.0064 none

ConvNet 1 38.8 25.8 30.8 55.1 10.9 ± 0.81 0.652 medium

ConvNet 2 48.3 42.7 33.6 62.8 14.9 ± 0.75 26.5 high

ConvNet 3 69.9 68.0 44.3 85.2 10.4 ± 0.41 42.6 high

18

Figure 4: Error distributions 𝐿𝑛, 𝐿𝑛

𝑣 and 𝐿𝑎
𝑣 for three models with close performance estimates in

normal signal reconstruction: a) ConvNet 1 model: the classes are not separated;
b) LSTM 2 model: the classes are overlapping; c) LSTM 4: the classes are well separated

Figure 4 shows the statistical distributions of autoencoder’s responses to normal and anomalous
data. The performance of anomaly detection is defined by the quality of class separation, but it is also

highly dependent on the method of selecting decision threshold. Empirically defined optimal

threshold for the tested models varies in wide range from 0.20 to 1.12 (Table 2, column “1”). Optimal

threshold selection is only possible in a supervised mode with the use of labelled anomalies, while in
most practical applications unsupervised threshold selection must be applied (Table 2, column “2”).

While some models achieve high scores in detecting type 2 anomalies, they proved not being

sensitive to type 1 anomalies, e. g. 20% amplitude deviations from the normal signal. Then high
overall detection score is explained by large relative abundance of type 2 anomalies in HRSS data.

For evaluation results to be representative, the detection rates in different anomaly types must be

assessed separately.
Figure 5 shows results of reconstructing a single process cycle containing a type 2 anomaly.

Graphs a and b are obtained from robust models (having high RC1 value and low RC2 value), graph c

demonstrates an extreme case of zero RC1 value, and graph d is the case of high RC2 value. In the

cases a, and b the model captures features of the individual observed cycle, so it is expected to show
comparable performance in other typical CPSS applications. In the case c the model output follows

the averaged train data, regardless of the observed process features. High anomaly detection score in

this case is not representative and is only observed due to low variance in training cycles in HRSS. In
the case d presence of type 2 anomaly strongly affects reconstruction of preceding normal interval,

making the task of statistically separating them in time (as well as the resulting performance estimate)

inadequate.

a) b)

c)

19

Figure 5: Reconstruction of a signal containing type 2 anomaly: a) using LSTM 2 model;
b) using LSTM 3 model; c) using LSTM 5 model; d) using ConvNet 2 model

Evaluation results indicate that increasing complexity of DL models (top down in Table 2) leads to

higher performance measure. However, this is not the case with robustness. Deep LSTM models with

heterogeneous layers (LSTM 5 and LSTM 6) tend to average out all variation in the signal (i.e., have
low RC1), while deeper convolutional networks lose ability to reconstruct normal signal in presence of

type 2 anomalies (i.e., have high RC2). It may be concluded that traditional performance metrics for

model evaluation are misleading in case of HRSS, favoring models with low robustness according to
criteria RC1 and RC2.

Considering both performance measure and proposed robustness criteria, the LSTM 4 model is

selected as the best choice for HRSS data. Model’s architecture is demonstrated in Figure 6.
Comparing to traditional LSTM autoencoder architectures [17, 18], this model introduces two

distinct architectural features. First, input time-series are not flattened into a vector, and thus the

model has lower compression rate. Experimental evidence (Table 2) suggests that preserving time

dimension in encoder generally leads to better performance in anomaly detection task. Second, an
additional convolution layer is added at model’s bottleneck to capture long-term features in input

time-series.

The obtained LSTM 4 model provides 62.3±2.1% overall anomaly detection rate (F1 score) and
59.1% recall with 3350 true positives, as shown in Table 3. Comparing to the baseline efficiency [9],

an increase by 102% in anomaly detection score and an increase by 121% in recall are achieved.

Table 3
Confusion matrix obtained with the selected model.

Labelled Predicted negative Predicted positive

Negative 16237 1738

Positive 2320 3350

a) b)

c) d)

20

Figure 6: Selected autoencoder architecture

8. Conclusions

The problem of the model-based anomaly detection in industrial CPPS was addressed in the Deep
Learning paradigm by applying autoencoder architectures. The specific case of HRSS plant was

studied, in which construction and evaluation of process models had proven to be a challenging task.

The major challenges of applying Deep Learning models were identified as low process variation in

the training set, and presence of two distinct types of anomalies, detecting which requires different
algorithms or settings.

It was shown that increasing model complexity, both in LSTM and convolution-based models,

allow to increase anomaly detection performance but has strong robustness tradeoff. This indicates
that model evaluation in systems of this class cannot rely completely on performance metrics. For

evaluation results to be representative, detection rates of different anomaly types must be assessed

separately, and additional robustness criteria must be considered. Such criteria were proposed based

on statistical analysis of both the data and the model output in supervised training context.
In the studied industrial transporting system (HRSS) applying deep learning models and

autoencoder techniques allowed for 102% performance gain, F1 score, while preserving model’s

robustness. Wider assessment of perspectives of CPPS applications requires further experimental
research in cases of higher variance in the normal process as well as different types of anomalies.

9. Acknowledgements

This research utilizes the data collected at SmartFactoryOWL Lemgo, Germany, under the

European Union’s Horizon 2020 research project IMPROVE [12]. The data was made publicly
available by inIT [13] under a Creative Commons License Attribution-ShareAlike 4.0 International

(CC BY-NC-SA 4.0).

10.References

[1] Factories of the future: multi-annual roadmap for the contractual PPP under HORIZON 2020,
Publications Office of the European Union, Luxembourg, 2013.

21

[2] E. A. Lee, Cyber physical systems: design challenges. In: Proceedings of the 11th IEEE
international symposium on Object Oriented Real-Time Distributed Computing (ISORC),

Orlando, FL, 2008, pp. 363–369. doi: 10.1109/ISORC.2008.25.

[3] O. Niggemann, C. Frey, Data-driven anomaly detection in cyber-physical production systems,

AT – Automatisierungstechnik, 2015, vol. 63, issue 10. doi: 10.1515/auto-2015-0060.
[4] L. Christiansen, A. Fay, B. Opgenoorth, J. Neidig, Improved diagnosis by combining structural

and process knowledge, in: Proceedings of the 16th IEEE conference on Emerging Technologies

Factory Automation, ETFA, Toulouse, France, 2011, pp. 1–8. doi:
10.1109/ETFA.2011.6059056.

[5] S. Windman, S. Jiao, O. Niggemann, H. Borcherding, A stochastic method for the detection of

anomalous energy consumption in hybrid industrial systems, in: Proceedings of the 11th
international IEEE conference on Industrial Informatics, INDIN, Bochum, Germany, 2013. doi:

10.1109/INDIN.2013.6622881.

[6] B. Vogel-Heuser, C. Diedrich, A. Fay, S. Jeschke, M. Kowalewski, S. Wollschlaeger,

P. Goehner, Challenges for software engineering in automation, Journal of Software Engineering
and Applications 7 (2014) 440–451. doi: 10.4236/jsea.2014.75041.

[7] N. Hranisavljevic, O. Niggemann, A. Maier, A novel anomaly detection algorithm for hybrid

production systems based on deep learning and timed automata, in: Proceedings of the 27th
international workshop on Principles of Diagnosis, DX-2016, Denver, Colorado, 2016.

[8] A. von Birgelen, O. Niggemann, Enable learning of hybrid timed automata in absence of discrete

events through self-organizing maps, in: O. Niggemann, P. Schüller (eds.), IMPROVE –
Innovative modelling approaches for production systems to raise validatable efficiency.

Technologien für die intelligente automation (Technologies for intelligent automation), vol. 8,

Springer Vieweg, Berlin, Heidelberg, 2008. doi: 10.1007/978-3-662-57805-6_3.

[9] A. von Birgelen, O. Niggemann, Using self-organizing maps to learn hybrid timed automata in
absence of discrete events, in: Proceedings of the 22nd IEEE international conference on

Emerging Technologies and Factory Automation, ETFA, Limassol, Cyprus, 2017, pp. 1–8. doi:

10.1109/ETFA.2017.8247695.
[10] C. Zhou, R. C. Paffenroth, Anomaly detection with robust deep autoencoders, in: Proceedings of

the 23rd ACM SIGKDD international conference on Knowledge Discovery and Data Mining,

KDD '17, Halifax NS, Canada, 2017, pp. 665–674. doi: 10.1145/3097983.3098052.

[11] IMPROVE. Creating the factory of the future with 4.0 solutions, 2016. URL: http://improve-
vfof.eu/.

[12] Physical factory / demonstrators IMPROVE, 2016. URL: http://improve-

vfof.eu/background/physical-factory-demonstrators.
[13] inIT, High storage system data for energy optimization, 2018. URL:

https://www.kaggle.com/inIT-OWL/high-storage-system-data-for-energy-optimization.

[14] M. Cerliani. Predictive maintenance with LSTM siamese network, 2019. URL:
https://towardsdatascience.com/predictive-maintenance-with-lstm-siamese-network-

51ee7df29767.

[15] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, R. M. Patton, Optimizing deep learning

hyper-parameters through an evolutionary algorithm, in: Proceedings of the workshop on
Machine Learning in High-Performance Computing Environments, MLHPC '15, Austin, Texas,

2015, article no. 4. doi: 10.1145/2834892.2834896.

[16] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, The journal of machine
learning research, 13 (2012), pp. 281–305.

[17] A. Sagheer, M. Kotb. Unsupervised pre-training of a deep LSTM-based stacked autoencoder for

multivariate time series forecasting problems, Scientific Reports 9, 19038 (2019). doi:
10.1038/s41598-019-55320-6.

[18] A. H. Mirza, S. Cosan, Computer network intrusion detection using sequential LSTM neural

networks autoencoders, in: Proceedings of the 26th Signal Processing and Communications

Applications Conference, SIU, Izmir, Turkey, 2018, pp. 1–4. doi: 10.1109/SIU.2018.8404689.
[19] D. P. Kingma, J. Ba. Adam: a method for stochastic optimization, in: Proceedings of the 3rd

international conference for Learning Representations, CoRR, San Diego, CA, 2014,

abs/1412.6980.

	1. Motivation
	2. The System and the data
	3. Background research
	4. The method
	4.1. Robustness criteria
	4.2. Evaluation techniques
	4.2.1. Choice of performance measures
	4.2.2. Selecting decision threshold
	4.2.3. Evaluation steps

	5. Models
	6. Experimental setup
	7. Results
	8. Conclusions
	9. Acknowledgements
	10. References

