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Abstract 
While effective prediction methods of the future dynamics of the COVID-19 pandemic can 

significantly improve the quality of the outbreak`s containment, the number of such models 

specifically for Ukraine is rather low. We applied a compartment epidemiological model with 

heuristics along with machine learning techniques in order to create an effective method 

of modeling and prediction of the COVID-19 epidemic in Ukraine. The stages of the 

proposed method are building a SEIRD compartment model with vital dynamics, 

estimating its parameters, calculating and predicting the difference between the SEIRD 
model solution and the observed data using the ARIMA model, and adjusting model 

prediction using this newly obtained data on the residuals. The proposed method was 

tested on the data on the epidemic`s dynamic in Ukraine obtained from a Ukrainian finance 

analytics website. The validation results indicate the method`s aptitude to real-world usage. 
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1. Introduction 

As the coronavirus pandemic continues to rattle the world, humanity craves for means to alleviate 
the situation if not overcome the crisis entirely. Quality estimations and predictions of future 

dynamics of the disease spread will ensure better prevention and thorough preparation for 

exacerbations of the problem (such as expected rises in infection cases after the holidays or lockdown 

lifts). Rational use of resources may help avoid future boiling points for the healthcare and other 
systems critical to the delivery of the COVID-19 response. 

While the patterns of the epidemic`s dynamics may be similar across countries, each country has 

specifics in demographics, economics, epidemic containment methods, amount of available resources, 
and cultural particularities, and therefore should be considered separately by researchers and scientists 

aiming for creating models with potential for practical usage.  As shown in Figure 1, the World 

Health Organization reports that Ukraine has one of the highest numbers of daily increase in the 
number of infected individuals. Multiple models have been proposed as methods for modeling and 

prediction of the epidemic around the world. In contrast, the papers count for Ukraine remains 

relatively low. Perfecting the techniques of epidemic modeling specifically for Ukrainian statistics by 

independent researchers will accelerate the process of finding optimal tools and algorithms for the 
best possible results in models` performance. Networking and spreading awareness on novice helpful 

solutions and findings are crucial to this process. 

The SEIR model replicates the “time-history” of any epidemic or pandemic outbreak, and it 
presents the model of dynamic interaction between people with four different health conditions or 

phases of the pandemic, namely the susceptible (S), exposed (E), infective (I), and recovered (R). 
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SEIRD model, as a generalization of the SEIR model, has an additional variable – Deceased 
individuals. A “Formal Characterization and Model Comparison Validation” based on the SEIRD 

model, which uses the data from Korea and Spain, is proposed by Casas et al. [3]. The proposed 

model showed the predicted parameterization with empirical evidence and a decision support system 

(DSS) is implemented to study the nature of the pandemic in Catalonia [3]. 

 
Figure 1: Rating of countries by the number of daily new infection and death cases provided by the 
World Health Organization 

 
A data-driven model to predict the spread of Covid-19 for an upcoming week using the SEIRD 

model is studied and tested for datasets obtained from Italy, India, and Russia [2].  The proposed 

model [2] produces results in which the parameters are calculated from the data to plan for the future 
requirement of PPEs for hospital staff and healthcare devices.  Contrarily, the transmission dynamics 

of Covid-19 were evaluated based on a SEIRD compartmental modeling approach by Mukaddes et al 

[4]. However, external influences such as weather, herd immunity were not considered as a part of the 

study. A generalized SEIR model study on the Italian Covid-19 dataset was carried out by Godio et al. 
[5] with parameters adjusted via Swarm Optimization Algorithm. The authors [5] claim that the 

method followed aims to enhance the reliability of predictions. This research is spearheading in the 

regions of Spain and South Korea, however, has its limitations that include the conditions of partial 
infections due to exposure [6], or it classifies the category of symptomatic and asymptomatic cases [7] 

due to the nature of the epidemic spread. 

2. Materials and Methods 

2.1. Database 

The proposed method was tested on the data on the epidemic`s dynamic in Ukraine obtained from 

a Ukrainian finance analytics website [8]. The dataset includes daily information on the number of 
infected, recovered, and deceased individuals. The data is updated daily, enabling researchers to 

update model parameters frequently to achieve the highest accuracy possible. The first available 

observation dates back to March 3. Dataset consists of such columns: 
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1. Cumulative infected people as of each date (the total number of diagnosed people until 
each date); 

2. Cumulative recovered people from the start of the outbreak (the total number of no longer 

ill people who gained immunity until each date); 

3. Deceased people from the start of the outbreak. 
 

Table 1 
Statistics of the COVID outbreak in Ukraine as of key dates in government responses to the COVID-
19 pandemic  

Date\Key statistics Infected Increase in 
Infected 

Recovered Deceased 

March 12 
March 23 

April 6 
May 7 
June 1 
July 22 

August 26 
September 28 

1 
73 

1319 
13691 
24012 
60995 

110085 
201305 

0 
10 
11 

507 
664 
829 

1670 
2671 

0 
1 

28 
2396 

19548 
33172 
53454 
88453 

0 
3 

38 
340 

1173 
1534 
2354 
3996 

 
The key dates in the dynamics of the outbreak are stay-at-home advisories enactments and other 

government-enforced restrictions (March 12, March 23, April 6, July 22, August 26) and their lifts 

(May 7, June 1). The last day of observation used while building this method is September 28. The 
observed data as of those dates is reported in Table 1. The data as of later dates (up until October 19) 

is used for validation of the proposed method. Since lockdown and other introduced measures didn`t 

significantly drop the outbreak`s spread rate, they aren`t considered in the proposed model, and basic 
model parameters are proposed to take as fixed. Due to the small number of cases of re-infection, all 

recovered individuals are assumed to have absolute immunity against COVID-19. 

 

 
Figure 2: COVID-19 mortality rate dynamics and its trend line 
 
As reflected in Figure 2, the COVID-19 mortality rate has decreased and stabilized over time, 

which was reflected in the dynamic model. This can be explained by continuous scientific efforts to 

cure the disease more efficiently as well as the proportion of asymptomatic and undiagnosed cases 

that aren’t reflected in statistics. The relatively stable mortality rate observed in later months proves 
the disease to be lethal to a small portion of the population and is expected to stay at this level or 

slightly decrease. The data instances used while working with the model are represented in percents of 

the country`s population. 
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2.2. The Hybrid Dynamic Model Framework 

Upon investigation, we introduce a novice model based on an enhanced SEIRD model and 

ARIMA model. As shown in Figure 2, the stages of the proposed method are building a SEIRD 

compartment model with vital dynamics, estimating its parameters, calculating and predicting the 
difference between the SEIRD model solution and the observed data using the ARIMA model, and 

finally adjusting model prediction using this newly obtained data on the residuals. 

 

 
Figure 3: The workflow of the proposed algorithm 

 
This model consists of such stages: 

1. At the first one, we estimate SEIRD model parameters using historical data, trying to lessen 

the difference between the model`s output and observed data. This model is responsible for long-
term prediction (i.e., 60 days or 100 days). 

2. Calculate residuals between observed infected, recovered, and deceased percentage of the 

population and corresponding solutions of the SEIRD model. 

3. Build three ARIMA models on the time-series of each of these residuals. Prediction of these 
ARIMA models will compensate residuals between the SEIRD model and historical data in order 

to make predictions mode accurate. 

4. Validate the prediction of the obtained model using the data on the number of infected, 
recovered, and deceased individuals as of the most recent days, data on which was not included 

while working with the model on previous stages. 

2.3. SEIRD Model with Vital Dynamics and Dynamic Mortality Rate 

A basic compartment model in epidemiology is the SIR model [9, 10], which studies the 
population`s flow between three compartments: Susceptible, Infected, and Recovered. It has already 

been applied to the recent COVID-19 pandemic and showed good results [11]. The next level of 

complexity is introducing vital dynamics (birth and mortality rates) to the model [12]. Since the 
coronavirus disease has quite a long incubation period, it is logical to model the pandemic with 

another compartment – Exposed individuals who already are infected but cannot spread the virus 

further yet. Such model is called a SEIR compartment model. One more introduced compartment that 

completes our compartment structure is Deceased individuals. 
A SEIRD model simulates the flow of the population between Susceptible, Exposed, Infected, 

Recovered, and Deceased groups (or compartments). While traditionally compartment models are 

built for closed systems, in this method, the total population size is not fixed due to the introduction of 
birth and mortality rates. This allows us to model the pandemic more accurately. The COVID-19 
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mortality rate is represented by an inverse exponential function with two parameters rather than a 
constant. Based on the analysis shown in Figure 1, it was proved to be useful to model mortality rate 

as an inverse exponential function, which is another heuristic to the proposed method for the same 

reason. 

 The compartments of the model are as follows:  

• 𝑆(𝑡): Susceptible individuals - stock of healthy people who may be infected; population 

inflow due to births is taken into account.  

• 𝐸(𝑡): Exposed individuals - virus carriers in the latent stage, during which they 
are not virus spreaders. Usually corresponds to an asymptomatic phase of the disease. 

• 𝐼(𝑡): Infectious individuals - virus carriers able to spread the disease to individuals in contact 

with them. 

• 𝑅(𝑡): Recovered individuals - stock of healthy people who are immune to COVID-19. 

• 𝐷(𝑡): Deceased individuals - population loss due to the disease, natural deaths included. 

The model itself is comprised of a system of differential equations: 

𝑑𝑆

𝑑𝑡
= 𝛬𝑁 − µ𝑆 −

𝛽𝑆𝐼

𝑁
  

𝑑𝐸

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− (µ + 𝜎)𝐸 

 
𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − ( ç + µ)𝐼         

 
𝑑𝑅

𝑑𝑡
=  (1 − µ𝐶𝑂𝑉𝐼𝐷

(𝑡)) 𝐼 − µ𝐼  

𝑑𝐷

𝑑𝑡
=  µ𝐶𝑂𝑉𝐼𝐷(𝑡)𝐼 

  
with constraints at time t=0 S=𝑆0, E= 𝐸0,I= 𝐼0,R = 𝑅0, D=𝐷0 and parameters 

• 𝛬 – population`s birth rate; 

• µ – population`s mortality rate; 

• 𝛽 – rate of virus transmission, which is the probability of transmitting disease between a 

susceptible and an infectious individual; 

• 𝜎 – rate of latent individuals becoming infectious (average duration of incubation is 1/𝜎); 

• ç – recovery rate, which can be initially estimated as  = 1/𝐷, where 𝐷 is the average duration 
of infection; 

• µ𝐶𝑂𝑉𝐼𝐷(𝑡) – death rate due to COVID-19, which is estimated by an inverse exponential 

formula µ𝐶𝑂𝑉𝐼𝐷(𝑡) = 𝛼𝑒−𝜉𝑡 . 

The population size 𝑁(𝑡)  =  𝑆(𝑡)  +  𝐸(𝑡)  +  𝐼(𝑡)  +  𝑅(𝑡) is not fixed due to its global birth and 
mortality rates taken into account at any given time t. 

2.4. Parameter Estimation Using Basin-hopping Algorithm  

To use the model proposed in the previous section, firstly, we need to specify its parameters so it 

will fit the historical data. Moreover, we estimate not only the model parameters but also initial 
conditions for susceptible and exposed compartments of the model. The reason of it that we still don’t 

know the percentage of the population that is insusceptible to the virus (they will suffer from the 

disease in a mild form and don’t infect others). Regarding the exposed population, we also don’t have 
the exact number of exposed passengers that came to Ukraine at the time of the COVID outbreak.  

As soon as the dataset consists of cumulative data, we calculated the number of currently infected 

individuals as a difference between cumulative infected and recovered ones. After this step, data was 

rescaled from the absolute numbers to the percent of the population.  
To fit model parameters and initial conditions, we use the Basin-hopping algorithm [13]. This 

iterative heuristic algorithm is a generalization of the simulated annealing algorithm, which was 

inspired by molecular processes that occur in metalwork. The procedure of annealing is used to 
achieve the optimal molecular arrangements of metal particles. While cooling, heated material comes 

into shape with minimal system energy - and therefore, less or no defect. After choosing an initial 

(1) 
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state, the algorithm picks the neighboring state and proceeds to decide on moving to it or staying and 
then iterates this process until finding the global optimum or reaching the iterations limit. As a 

generalization to simulated annealing algorithm, Basin-hopping global optimization technique 

randomly perturbates coordinates and proceed to find the global optimum in a similar manner. 

One of the key reasons for choosing this instrument is the algorithm`s ability to reach global 
optima even after finding several local ones, as it is not restricted to the best candidates at each step. 

As a measure of quality between differential equation solution and historical data, we use MAE/mean 

metrics that were described and investigated in [14]. Thus, as an objective function of the Basin-
hopping algorithm, we select the sum of 

𝑀𝐴𝐸(𝐼𝐴,𝐼)

𝐼𝐴
+

𝑀𝐴𝐸(𝑅𝐴,𝑅)

𝑅𝐴
+

𝑀𝐴𝐸(𝐷𝐴,𝐷)

𝐷𝐴
 

where 𝐼𝐴(𝑡) is the actual percentage of the population that stays infected at day  𝑡, 𝑅𝐴(𝑡) is the 

actual percentage of the population that overcame the disease  till day 𝑡, 𝐷𝐴(𝑡) is the actual percentage 

of the population that was deceased till day  𝑡, 𝐼𝐴, 𝑅𝐴 and 𝐷𝐴 is the average values of infected, 

recovered, and deceased values over time domain, 𝑀𝐴𝐸(⋅,⋅) is calculated according to equation (2). 

2.5. ARIMA Models for Residual Estimation 

In this step, the difference between data by SEIRD algorithm and observed data is estimated and 

corrected using the ARIMA model (stands for Auto-Regressive Integrated Moving Average). 

The structure of this model includes autoregression and moving average as the main components. 
The autoregression algorithm uses a certain number of past data instances (also called the number of 

lagged observations) to make a prediction about variable value at each new point, exploring trends 

and co-dependencies of observations.  
Differentiation of raw data is performed to ensure stationarity of variable: each value at time t is 

subtracted from the value at time t-1.  

The third part, moving average, also makes use of dependencies in the data, but this time between 

an observation and a residual error from applying the moving average algorithm to a number of 
lagged observations.  

To each of these parts corresponds a parameter [15], where each parameter is an integer value: 

p: Lag order, or number of past observations considered by the model; 
d: Degree of differencing, or how many times raw observations are differenced; 

q:  Order of moving average, or window size for moving average algorithm. 

In our case, an algorithm that finds the best set of parameters and runs statistical tests of 

stationarity and seasonality is used.     
The obtained prediction of residuals is subtracted from data predicted by the compartment model 

in order to increase its performance. 

2.6. Validation 

During the validation stage, we gather new data that was not used in SEIRD model parameter 

estimation and ARIMA models fitting. We will use such measures of quality: 

1. Mean average error, given by equation 

𝑀𝐴𝐸(𝑦, 𝑦̂) =
1

𝑇
∑|𝑦(𝑡) − 𝑦̂(𝑡)|

𝑇

𝑡=1

 (2) 

2. Mean squared error, given by equation 

𝑀𝑆𝐸(𝑦, 𝑦̂) =
1

𝑇
∑(𝑦(𝑡) − 𝑦̂(𝑡))

2
𝑇

𝑡=1

 (3) 

3. Mean squared logarithmic error, given by equation 

(2) 
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𝑀𝑆𝐸(𝑦, 𝑦̂) =
1

𝑇
∑(𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑦(𝑡) + 1) −𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑦̂(𝑡) + 1) )2

𝑇

𝑡=1

 (4) 

4. Normalized mean average error, given by equation 

𝑁𝑜𝑟𝑚𝑀𝐴𝐸(𝑦, 𝑦̂) =
𝑀𝐴𝐸(𝑦, 𝑦̂)

(𝑦)
 (5) 

5. Normalized mean squared error, given by equation 

𝑁𝑜𝑟𝑚𝑀𝐴𝐸(𝑦, 𝑦̂) =
𝑀𝑆𝐸(𝑦, 𝑦̂)

(𝑦) ⋅ (𝑦̂)
 (6) 

where (𝑥) denotes mean value of time series 𝑥. Moreover, we calculate maximum deviation 

between the main prediction line and two scenarios (optimistic and adverse) that are calculated from 
ARIMA models using a 95% confidence level. The equation of this measure is  

𝑀𝑎𝑥𝐷𝑒𝑣(𝑦, 𝑦̂) =
|𝑦(𝑡) − 𝑦̂(𝑡)|

𝑦(𝑡)
  (7) 

3. Results 

In this section, we will provide results of hybrid model approbation on data from the Ukrainian 
finance analytics website [8]. 

3.1. SEIRD Model 

In this subsection, we estimate some parameters and initial conditions of the SEIRD model using 

the Basin-hopping algorithm and build rough long-term predictions of pandemic development. We 
optimize only initial values of susceptible and exposed fraction of the population, whilst infected, 

recovered, and deceased initial conditions are set to zero. Global birth and death rate are also not 

optimized and are set according to actual values for the annual 2020 birth and death rate in Ukraine. 
 

Table 2 
Optimized parameters and initial conditions of the SEIRD model 

Parameter Description Minimum 
value 

Maximum 
value 

Optimized 
value 

𝜎 Rate of latent individuals becoming 
infectious 

0 0.1 0.0047 

𝛽 Probability of transmitting disease 
between a susceptible and an 

infectious individual 

0 1 0.1529 

  ç Recovery rate, which can be initially 
estimated as = 1/𝐷, where 𝐷 is the 

average duration of infection 

0 0.1 0.0172 

𝛼 Starting death rate from COVID 0 0.3 0.1695 
𝜉 Decaying speed of death rate due to 

enhancements in treatment 
0 0.1 0.0121 

𝑆0 Initial fraction of susceptible 
population 

0.4 1 0.5541 

𝐸0 Initial fraction of exposed population 0 0.05 0.0008 

 
In Table 2, boundaries and optimized values for the SEIRD model parameters and initial values 

are shown. As we can see from the table, the initial fraction of the susceptible population is more than 

half of it - 55%, which correlates with recent research that most of the population will suffer from the 
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disease in a mild form or even asymptomatically. Interestingly recovery rate is very low, which means 

that if a person suffers from the disease in a severe form, it takes a lot of time to recover.  The rate of 

becoming infectious is also shallow, which proves that it takes a lot of time for the disease to be able 

to spread itself since acquiring a new host - the incubation period of COVID-19 is quite large. While 

all of the parameters have a real-life context to them and represent rates of transitions between 

compartments and initial conditions of the SEIRD model, they were estimated using mathematical 

algorithms, and that worked with available data that doesn’t entirely reflect the reality. Therefore, the 

estimated values of some parameters such as the incubation period and recovery rate may differ from 

the data collected at hospitals and estimates of other researchers. 

The pure SEIRD model can be used for the long-term rough predictions of the pandemic dynamic. 

 

 
 

 
Figure 4: (a) Long-term prediction of the infected and recovered fraction of population (b) Long-term 

prediction of the deceased fraction of population 
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In Figure 4, long-term predictions for infected, recovered, and deceased fractions of the population 

are displayed. Based on the figures, we can conclude that number of infected people will continue to 

rise till summer 2021with a relatively stable rate. 

 

Table 3 

Quality measures of fitted SEIRD model 

Category / 

measure 

MAE MSE MSLE Normalized 

MAE 

Normalized 

MSE 

 

Infected 2.03 ⋅ 10−4 4.79 ⋅ 10−8 4.68 ⋅ 10−8 1.66 ⋅ 10−2 3.28 ⋅ 10−4 

Recovered 8.45 ⋅ 10−5 7.94 ⋅ 10−9 7.81 ⋅ 10−9 1.04 ⋅ 10−2 1.20 ⋅ 10−4 

Deceased 8.07 ⋅ 10−6 9.00 ⋅ 10−11  8.99 ⋅ 10−11 1.37 ⋅ 10−2 2.59 ⋅ 10−4 

 
Based on Figure 4 and Table 3, we can conclude that the SEIRD model fits historical data quite 

well. The best fit is observed for recovered and infected compartments of the model. Unnormalized 

measures are the lowest for the infected fraction population, which is the most informative data time-

series among the studied ones. 

3.2. ARIMA Models 

At this step, we calculate residuals between the fitted SEIRD model and historical data and train 

ARIMA models on the residuals for each category (infected, recovered, deceased). While having its 

limitations [16], ARIMA can help capture any non-noisy patterns. To estimate optimal ARIMA 

parameters P and Q, we use the Akaike information criterion, and to estimate the optimal D 

parameter, we use the Augmented Dickey-Fuller test [17]. 

Table 4 

Parameters of ARIMA models for each category 

Category/parameter The order of the 

autoregressive model 

(P) 

 The degree of 

differencing (D) 

the order of the 

moving-average 

model (Q) 

Infected 0 2 2 

Recovered 0 2 0 

Deceased 0 2 0 

 
In Table 4, the estimated parameters of ARIMA models for each category are presented. Worth 

mentioning that for all three categories, P and Q parameters are the same, which is a good sign that 

tells us that the behavior of residuals time series is the same and can be simulated using similar (or 

even the same) models. After training ARIMA models, we evaluate predictions for all three categories 

60 days ahead. 

The analysis of modeling and prediction of the number of infected individuals (Figure 5) shows 

that the number of observed cases of the disease grew steadily during the first half of the outbreak 

(mid-July) and is very accurately modeled with our method.  

The deviation of the predicted number of infected individuals from the observed data in the second 

half of July and August is most likely caused by the insufficient number of tests for COVID-19 

performed during this period.  

The inconsistency in testing and changing levels of quarantine severity explain further deviations 

of observed data from the output of the SEIRD model. The prediction, corrected by ARIMA residual 

estimation, steadily increases, with optimistic and pessimistic scenarios (lower and upper bounds of 

the grey area, respectively) deviating by less than 0.1%. 
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As shown in Figure 6, until early August, the losses from COVID-19 are quite accurately modeled. 

It is safe to assume that some people who passed away due to the disease were undiagnosed or 

misdiagnosed.  

 

 
Figure 5: The observed number of infected individuals (blue), number of infected individuals 

modeled with SEIRD model (yellow), and predicted number of infected individuals (green) by SEIRD 

model and corrected by ARIMA residual prediction with 95% confidence interval (grey) 
 

 
Figure 6: The observed number of deceased individuals (blue), number of deceased individuals 

modeled with the SEIRD model (yellow), and predicted number of deceased individuals (green) by 

SEIRD model and corrected by ARIMA residual prediction with 95% confidence interval (grey) 
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Therefore the data on those cases was not taken into account in COVID statistics, which explains 

the observed number of deceased people being slightly lower. In later months we observe a gradual 

rise – the medical system isn`t well prepared for the pressure of the pandemic and struggles to cope 

with the growing inflow of patients.  

Hopefully, there will be a decline in the COVID death rate due to the development and spreading 

of treatment protocols and medical research that allow selecting the most effective medicine. In the 

meanwhile, despite all the measures of previous months, the predicted number of deceased 

individuals rises quite sharply. 

 

 
Figure 7: The observed number of recovered individuals (blue), number of recovered individuals 

modeled with SEIRD model (yellow), and predicted number of recovered individuals (green) by 

SEIRD model and corrected by ARIMA residual prediction with 95% confidence interval (grey) 
 

The proposed method describes the observed number of recovered individuals very accurately 

(Figure 7) with some minor deviations, while in the future stages of the outbreak, the number of 

people recovered is expected to be lower than the SEIRD model suggests.  It can be explained by a 

lack of techniques and materials to treat the patients and the already beginning congestion of the 

medical system of the country. 

3.3. Validation 

Validation of any method is an essential step that helps understand how the final model will 

perform in the future with new previously unseen data. The method was validated on the most recent 

data - the last three weeks (from 29.09.2020 to 19.10.2020) of the pandemic. The validation dataset 

was taken from the same source and therefore has the same structure. 

As shown in Table 5, all measures of the prediction quality for the infected, recovered, and 

deceased fractions of the population are very low. Normalized MAE values show that: 

1. Average difference between the actual number of infected individuals and predicted one is 

only 3.6%;  
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2. Average difference between the actual number of recovered individuals and predicted one is 

only 11%; 

3. Average difference between the actual number of deceased individuals and predicted one is 

only 8.4%; 

4. Based on the maximum deviation column, we can conclude that for the next 60 days starting 

from the last day of model training: 

5. Maximum deviation between the predicted and actual number of infected individuals will not 

exceed 8.6% with the probability of 95%.   

6. Maximum deviation between the predicted and actual number of recovered individuals will 

not exceed 15.4% with the probability of 95%.   

7. Maximum deviation between the predicted and actual number of deceased individuals will 

not exceed 15.5% with the probability of 95%.   

 

Table 5 

Quality measures of the fitted model for validations set 

 MAE MSE MSLE Normalized 

MAE 

Normalized 

MSE 

Max. 

deviation 

Infected 1.13 ⋅ 10−4 2.51 ⋅ 10−8 2.50 ⋅ 10−8 3.59 ⋅ 10−2 2.62 ⋅ 10−3 8.6% 

Recovered 2.76 ⋅ 10−4 9.25 ⋅ 10−8 9.21 ⋅ 10−8 1.1 ⋅ 10−1 1.66 ⋅ 10−2 15.4% 

Deceased 9.28 ⋅ 10−6 1.24 ⋅ 10−10 1.24 ⋅ 10−10 8.41 ⋅ 10−2 1.11 ⋅ 10−2 15.5% 

4. Discussion and Conclusions 

The proposed hybrid model consists of a dynamic SEIRD model with vital dynamics and decaying 

COVID mortality rate and three ARIMA models that cancel out dynamic model residuals and 

enhance prediction quality. The model was tested on Ukrainian COVID statistic data. Obtained 

validation results allow us to draw conclusions that the proposed hybrid model has good prediction 

ability and decent performance. Obtained long-term predictions reflect the general dynamic of the 

outbreak and are especially useful for the healthcare system workers and government officials. 

Obtained short-term predictions allow us not only to forecast the future number of infected, 

recovered, and deceased patients but only estimate forecast error under adverse or optimistic 

circumstances.  

Key method`s standouts include: 

1. Using a Basin-hopping algorithm to fit parameters and initial conditions of the model for this 

specific disease. 

2. Including into the SEIRD model exponentially decaying mortality rate, which reflects historic 

dynamics over the year of 2020. 

3. Correction of model residuals using the ARIMA model with automatically selected 

parameters.  

Here are some perspective ways of further development of the proposed method: 

1. Parameter estimation with different algorithms and boundaries; 

2. Testing the method on COVID statistics other countries; 

3. Develop alternative methods for residue prediction. 

Enhancing the proposed hybrid model depends on profound research results about COVID-19. 

That’s why monitoring recent research in the field and quickly adjusting the model according to the 

new data is crucial.  

In conclusion, the proposed method has proved its predictive capability and can be used as an 

effective tool for prediction and analysis of the dynamics regarding the number of infected, recovered 

and deceased individuals due to the COVID-19 pandemic in Ukraine. The predicted optimistic and 

pessimistic scenarios of the infection spread for the nearest future are very similar, so we can 
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conclude with sufficient confidence. Unfortunately, these conclusions give reasons to believe that the 

most difficult times are still ahead of us. Such results are extremely important in terms of planning 

disease containment measures on all levels - from governmental to personal. The analysis of obtained 

data indicates the forthcoming of a crisis - most importantly, in medical and economical spheres, and 

naturally suggests that all possible rational preemptive actions should be taken immediately. 
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