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Abstract  
In this paper we consider equilibrium problems in metric Hadamard spaces. We propose and 

study new adaptive algorithms for their approximate solution. For pseudomonotone 

bifunctions of Lipschitz type, theorems on the weak convergence of sequences generated by 

the algorithms are proved. The proofs are based on the use of Fejer properties of algorithms 

with respect to the set of solutions to the problem. A new regularized adaptive extraproximal 

algorithm is also proposed and studied. To regularize the basic extraproximal scheme, the 

classical Halpern scheme was used. The proposed algorithms are applicable to 

pseudomonotone variational inequalities in Hilbert spaces.  
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1. Introduction 

A popular direction of modern nonlinear analysis is the study of equilibrium problems (Ky Fan 
inequalities) of the form [1-9]: 

find x С :   , 0F x y    y С  ,                                     (1) 

where С is nonempty subset of vector space H  (usually Hilbert space), :F C C R   is function 

such that  , 0F x x   x С   (called bifunction). We can formulate mathematical programming 

problems, variational inequalities, and many game theory problems in form (1).  

The study of algorithms for solving equilibrium and related problems is actively continuing [5-8, 
10-30]. In this article, we will focus only on methods of the extraproximal type. The following 

analogue of G. Korpelevich extragradient method [15] for equilibrium problems [16] is called 

extraproximal 

 

 

,

1 ,

prox ,

prox ,

n n

n n

n nF x

n nF y

y x

x x







 






 

where  0,n   , prox  is proximal operator for function  . In [19] two step proximal method 

for solving equilibrium problems in Hilbert space was proposed 
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where  0,n   , which is adaptation for L. D. Popov method [20] for general equilibrium 

programming problems (see also [21, 22]). Note that a version of this algorithm for variational 

inequalities became known among machine learning specialists under the name “Extrapolation from 

the Past” [31]. 
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Recently, there has been an increased interest in the construction of theory and algorithms for 
solving mathematical programming problems in metric Hadamard spaces [32] (also known as 

 0CAT  spaces). A strong motivation for studying these problems is the ability to rewrite some 

nonconvex problems in the form of convex (more precisely, geodesically convex) in a space with a 
specially selected metric structure [32, 33]. Some authors began to study equilibrium problems in 

Hadamard spaces [33-37]. For example, in [35], concluding from the results of [16], the authors 

proposed and substantiated an analogue of the extraproximal method for pseudomonotone equilibrium 
problems in Hadamard spaces. 

In this paper, which continues and refines articles [36, 37], two new adaptive two-stage proximal 

algorithms for the approximate solution of equilibrium problems in Hadamard spaces are described 

and studied. The proposed rules for choosing the step size do not calculate the values of the bifunction 
at additional points and do not require knowledge of the Lipschitz constants of the bifunction.  

For pseudo-monotone bifunctions of Lipschitz type, theorems on the weak convergence of 

sequences generated by the algorithms are proved. The proofs are based on the use of Fejer properties 
of algorithms with respect to the set of solutions to the problem. A new regularized adaptive 

extraproximal algorithm is also proposed and studied. To regularize the basic adaptive extraproximal 

scheme [37], the classical Halpern scheme [38] was used, a version of which for Hadamard spaces 
was studied in [32]. It is shown that the proposed algorithms are applicable to pseudomonotone 

variational inequalities in Hilbert spaces. 

2. Preliminaries 

Here are some concepts and facts related to metric Hadamard spaces. Details can be found in [32, 
39, 40].  

Let   ,X d  be a metric space and  x , y X . Geodesic path connecting points x  and y  is 

isometry  : 0, ,d x y X     such that  0 x  ,   ,d x y y  . Set   0, ,d x y X     is 

denoted by  ,x y  and called geodesic segment with ends x  and y  (or simply geodesic). Metric 

space  ,X d  is called geodesic space if it is possible to connect any two points of X  by geodesic 

and it is unique geodesic space if  for any two points from X  there exists exactly one geodesic to 

connect them. Geodesic space  ,X d  is called  0CAT  space if for any three points 0y , 1y , 

2y X  such that  2

1 0,d y y   2

2 0,d y y   21
1 22
,d y y  the following inequality holds: 

 2

0,d x y       2 2 2

1 2 1 2

1 1 1
, , ,

2 2 4
d x y d x y d y y      x X  . 

It is known that  0CAT  space is unique geodesic [32]. For two points x  and y  from  0CAT  

space  ,X d  and  0,1t  we denote by  1tx t y   unique point z  of   ,x y  such that 

     , 1 ,d z x t d x y   and    , ,d z y td x y . Set C X  is called convex if for all x , y C  

and  0,1t  holds  1tx t y C   . The following inequality is useful property for   0CAT  

space  ,X d   

  2 1 ,d tx t y z            2 2 2, 1 , 1 ,td x z t d y z t t d x y    ,  , ,x y z X ,  0,1t . (2)  

Important examples of  0CAT  spaces are Euclidean spaces, R -trees, Hadamard manifolds 

(complete connected Riemannian manifolds of non-positive curvature) and Hilbert sphere with 
hyperbolic metric [32, 39, 40]. 

Complete  0CAT  space is called Hadamard space.  
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As in a Hilbert space, the operator of metric projection onto a closed convex set is well defined in 

Hadamard spaces C  [32]. For each x X  there exists unique element CP x  from set C  with the 

property    , min ,C
z C

d P x x d z x


 , moreover the characterization takes place [32]: 

Cy P x      y C  and      2 2 2, , ,d y z d x z d y x    z C  . 

Let  ,X d  be a metric space and  nx  be a bounded sequence of elements from X . Let 

    , lim ,n n
n

r x x d x x


 . The number      inf ,n x X nr x r x x  is called asymptotical radius 

 nx  and set          : ,n n nA x x X r x x r x    is asymptotic center  nx . It is known that  

in Hadamard space   nA x  it consists of one point [32]. Sequence  nx  of elements from 

Hadamard space  ,X d  converges weakly to an element x X  if     
knA x x  for any 

sequence  
knx . It is known that any sequence of elements from closed convex bounded subset K  of 

Hadamard space has subsequence which converges weakly to element from K  [32, 39]. The well-

known analogue of Opial lemma is useful in proving the weak convergence of sequences of elements 

of the Hadamard space. 

Lemma 1 ([32, p. 60]). Let sequence  nx  of elements from Hadamard space  ,X d  converges 

weakly to an element x X . Then for all  \y X x  we have    lim , lim ,n n
n n

d x x d x y
 

 . 

Let  ,X d  be an Hadamard space. Function  : X R R      is called convex if for all 

points x , y X  and  0,1t  holds  

  1tx t y         1t x t y   . 

For example, in Hadamard space functions  ,y d y x  are convex [32]. If there exists 0   such 

that for all x , y X  and  0,1t  the following inequality is satisfied  

  1tx t y             21 1 ,t x t y t t d x y      , 

then function   is called strongly convex. It is known that for convex functions lower semicontinuity 

and weakly lower semicontinuity are equivalent [32, p. 64] and strongly convex semicontinuous 
function reaches its minimum at unique point. 

For convex proper and lower semicontinuous function  : X R R      proximal operator 

is defined by [32] 

    21
2

prox arg min ,y Xx y d y x   . 

Since functions  21
2

,d x    are strongly convex the definition of proximal operator is correct, i.e. 

for all x X  there exists unique element prox x X  . 

3. Equilibrium problems in Hadamard space 

Let  ,X d  be a Hadamard space. Consider an equilibrium problem for nonempty closed convex 

set С X  and bifunction :F C C R    [34-37]: 

find x С :   , 0F x y    y С  .                                           (3) 

Assume that following conditions are satisfied: 

1.  , 0F x x   for all x С ; 
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2. functions  , :F x C R   are convex and lower semicontinuous for all x C ; 

3. functions  , :F y C R   are upper weakly semicontinuous for all y C ; 

4. bifunction :F C C R   is pseudomonotone, i.e. 

for all x , y C  from  , 0F x y   it follows that  , 0F y x  . 

5. bifunction :F C C R   is Lipschitz type, i.e. there exist 0a  , 0b  , such that 

         2 2, , , , ,F x y F x z F z y ad x z bd z y      , ,x y z C  .                      (4) 

Remark 1. If    , ,F x y Ax y x  , where :A C H , С  is nonempty subset of Hilbert space 

H , then problem (3) takes form of variational inequality  

find x С :   , 0Ax y x    y С  .                                      (5) 

If set C H  is convex and closed and operator :A C H  pseudomonotone, Lipschitz 

continuous and sequential weakly semicontinuous, then for (5) conditions 3–5 are satisfied. 

Consider dual equilibrium problem: 

find x С :   , 0F y x    y С  .                                           (6) 

We denote sets of solutions for problems (3) and (6) by S  and 
*S . If conditions 1–4 are satisfied 

we have 
*S S  [34]. Moreover, set 

*S  is closed and convex.  

Further we assume that S  . 

4. Adaptive algorithms 

For approximate solution of (3) we consider extraproximal algorithm with adaptive choice of step 

size [37]. 

Algorithm 1. 

Initialization. Choose element 1x С ,  0,1  ,  1 0,   . Set  1n  . 

Step 1. Calculate 

      21
2,

prox arg min , ,
nn nn n y C n nF x

y x F x y d y x
 

   . 

If n nx y , then stop and nx S . Otherwise, go to step 2. 

Step 2. Calculate 

      21
1 2,

prox arg min , ,
nn nn n y C n nF y

x x F y y d y x
 

   . 

Step 3. Calculate 

     

   

      

1 1

2 2
1 1

1 1

, if     , , , 0,

, ,
min , ,    otherwise.

2 , , ,

n n n n n n n

n n n n n

n

n n n n n n

F x x F x y F y x

d x y d x y

F x x F x y F y x



 


 

 

 

  


    
 

    

 

Set : 1n n   and go to step 1. 

Remark 2. On each step of algorithm 1 we need to solve two convex problems with strongly 

convex functions.  

In proposed algorithm parameter 1n   depends on location of points nx , ny , 1nx  , values 

 1,n nF x x  ,  ,n nF x y  and  1,n nF y x  . No information about constants a  and b  from inequality 
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(4) is used. Obviously, the sequence  n  is non-decreasing. Also, it is lower bounded by  

 
1min ,

2max ,a b



  
 
  

. Indeed, we have 

     1 1, , ,n n n n n nF x x F x y F y x          2 2

1max , , ,n n n na b d x y d x y . 

Let us prove the important inequality. 

Lemma 2. For x С  and  ,
prox

F x
x x






 , where 0  , the following inequality takes place 

   , ,F x x F x y         2 2 21
, , ,

2
d y x d x x d x y



       y С  .            (7) 

Proof. From the definition     21
2

arg min , ,y Cx F x y d y x




   it follows that 

       2 21 1
, , , ,

2 2
F x x d x x F x p d p x

 

        p С  .                       (8) 

Setting in (8)  1p tx t y   , y С ,  0,1t , we obtain 

         2 21 1
, , , 1 1 ,

2 2
F x x d x x F x tx t y d tx t y x

 

            

     , 1 ,tF x x t F x y              2 2 21
, 1 , 1 ,

2
td x x t d y x t t d x y



     . 

Thereby, 

       1 , 1 ,t F x x t F x y     

            2 2 21
1 , 1 , 1 ,

2
t d x x t d y x t t d x y



        .   (9) 

Dividing in (9) by 1 t  and passing to the limit as 1t   we obtain (7). ■ 

From Lemma 2 it follows that for sequences  nx ,  ny , generated by Algorithm 1 the following 

inequalities hold 

   , ,n n nF x y F x y        2 2 21
, , ,

2
n n n n

n

d y x d x y d y y


      y С  .            (10) 

   1, ,n n nF y x F y y         2 2 2

1 1

1
, , ,

2
n n n n

n

d y x d x x d x y


       y С  .      (11) 

Inequality (10) provides a justification for the stopping rule for Algorithm 1. Indeed, for n nx y  

from (10) it follows  

 , 0nF x y     y С  , 

i.e., nx S .  

Let us prove an important estimate relating the distances between the points generated by 

Algorithm 1 to an arbitrary element of the set of solutions S . 

Lemma 3. For sequences  nx ,  ny , generated by Algorithm 1, the following inequality takes 

place 
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       2 2 2 2

1 1

1 1

, , 1 , 1 ,n n
n n n n n n

n n

d x z d x z d x y d y x
 

 
 

 

 

   
       

   
,             (12) 

where z S . 

Proof. Let z S . From pseudomonotonicity of bifunction F  it follows that 

 

 , 0nF y z  .                                                                (13) 

From (13) and (11)  

 12 ,n n nF y x        2 2 2

1 1, , ,n n n nd z x d x x d x z   .                          (14) 

From the calculation rule for 1n   we conclude 

           2 2

1 1 1

1

, , , , ,
2

n n n n n n n n n n

n

F x x F x y F y x d x y d x y



  



    .              (15) 

Evaluating the left side of (14) from below using (15), we get 

         2 2

1 1

1

2 , , , ,n
n n n n n n n n n

n

F x x F x y d x y d x y


 


 



     

      2 2 2

1 1, , ,n n n nd z x d x x d x z   .        (16) 

For a lower bound     12 , ,n n n n nF x x F x y    in (16) we use (10). We have 

          2 2 2 2 2

1 1 1

1

, , , , ,n
n n n n n n n n n n

n

d x y d y x d x x d x y d x y





  



      

      2 2 2

1 1, , ,n n n nd z x d x x d x z   .   (17) 

By regrouping (17), we get (12). ■ 

To prove the convergence of Algorithm 1, we need an elementary lemma about number sequences. 

Lemma 4. Let  na ,  nb  be two sequences of non-negative numbers which satisfy  

1n n na a b    for all  n N . Then exists a limit lim n
n

a


 and   1nb l . 

Let us formulate one of the main results of the work. 

Theorem 1. Let  ,X d  be an Hadamard space, C X  be a non-empty convex closed set, for 

bifuntion :F C C R   conditions 1–5 are satisfied and S  . Then sequences   nx ,  ny  

generated by Algorithm 1 converge weakly to the solution z S  of equilibrium problem (3), 

moreover,    1lim , lim , 0n n n n
n n

d y x d y x 
 

  . 

Proof.  Let z S . Assume 

 ,n na d z x ,     2 2

1

1 1

1 , 1 ,n n
n n n n n

n n

b d x y d y x
 

 
 



 

   
      
   

. 

Inequality (12) takes form 1n n na a b   . Since there exists lim 0n
n




 ,  

1

1 n

n



 

 1    0,1 ,  n. 

From Lemma 4 we conclude that exists a limit  2lim , n
n

d z x


 and 

    2 2

1

1

, ,n n n n

n

d x y d y x






   . 

Whence we get boundedness of the sequence  nx   and 
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     1 1lim , lim , lim , 0n n n n n n
n n n

d y x d x y d x x 
  

   .                             (18) 

Consider subsequence  
knx  which converges weakly to the point z C . Then from (18) it 

follows that  
kny  converges weakly to z . Let us show that z S . We have 

          2 2 2

1 1 1

1
, , , , ,

2k k k k k k k

k

n n n n n n n

n

F y y F y x d y x d x x d x y


        

   1, ,
k k k kn n n nF x x F x y    

           2 2 2 2 2

1 1 1

1

1
, , , , ,

2 2k k k k k k k k

k k

n n n n n n n n

n n

d x y d x y d y x d x x d x y


 
  



       

           2 2 2 2 2

1 1 1

1

1
, , , , ,

2 2k k k k k k k k k k

k k

n n n n n n n n n n

n n

d x x d x y d y x d x y d x y


 
  



        

      2 2 2

1 1

1
, , ,

2 k k k k

k

n n n n

n

d y x d x x d x y


       y С  .                 (19) 

Passing to the limit in  (19) taking into account (18) and weakly upper semicontinuity of function 

 , :F y C R  , we get    , lim , 0
kn

k
F z y F y y


     y С  , i.e., z S .  

Applying Opial lemma for Hadamard spaces (Lemma 1) we obtain the convergence of sequence  

 nx  to the point z S . Indeed, we argue by contradiction. Let exists the subsequence  
kmx , which 

converges weakly to some point  z C  and z z . It is clear that z S . We have 

         lim , lim , lim , lim , lim ,
k k kn n n n m

n k k n k
d x z d x z d x z d x z d x z

    
      

   lim , lim ,
km n

k n
d x z d x z

 
  , 

which is impossible. Therefore  nx  converges weakly to z S . From (18) it follows that sequence 

 ny  also converges to z S . ■ 

Remark 3. We see from proof for Theorem 1 that for sequence  nx  starting from some number 

N  Fejer condition is satisfied with respect to the set of solutions S . 

In recent paper [36] for solution of problem (3) the following algorithm was proposed 

      

      
1

21
1 2,

21
1 2,

prox arg min , , ,

prox arg min , , ,

nn n

nn n

n n y C n nF y

n n y C n nF y

y x F y y d y x

x x F y y d y x





  

 

   


  

                       (20) 

where values 0n   were set according to the requirement     1

2 2
inf ,sup 0,n n n n a b

 


 . I.e. the 

information about constants from condition (4) was used. Based on the scheme (20) and works [28, 

29, 37], we construct a two-stage proximal algorithm with adaptive choice of the value n . 

Algorithm 2. 

Initialization. Choose element 1x , 0y C ,  1
3

0,  ,  1 0,   . Set 1n  . 

Step 1. Calculate       
1

21
1 2,

prox arg min , ,
nn nn n y C n nF y

y x F y y d y x
   

   . 

Step 2. Calculate       21
1 2,

prox arg min , ,
nn nn n y C n nF y

x x F y y d y x
 

   . 

If 1n n nx x y   , then stop and nx S . Otherwise, go to step 3. 
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Step 3. Calculate 

     

   

      

1 1 1 1

2 2
1 1 1

1 1 1 1

, if     , , , 0,

, ,
min , ,    otherwise.

2 , , ,

n n n n n n n

n n n n n

n

n n n n n n

F y x F y y F y x

d y y d x y

F y x F y y F y x



 


   

  

   

  


    
 

    

 

Set : 1n n   and go to the step 1. 

Let us present the main results on the convergence of the Algorithm 2.   

Lemma 5. For sequences  nx ,  ny , generated by Algorithm 2 the following inequality takes 

place 

     2 2 2

1 1

1

, , 1 ,n
n n n n

n

d x z d x z d x y





 



 
    

 
 

   2 2

1

1 1

1 2 , 2 ,n n
n n n n

n n

d y x d x y
 

 
 



 

 
   
 

, 

where z S . 

Theorem 2. Let  ,X d  be a Hadamard space, C X  be a nonempty convex closed set, for 

bifunction :F C C R   conditions 1–5 are satisfied and S  . Then sequences   nx ,  ny  

generated by Algorithm 2 converge weakly to the solution z S  of problem (3). 

5. Regularized adaptive algorithms 

To ensure the convergence of the approximating sequences in the metric of space to the solution 
of the equilibrium problem (3), we consider the extraproximal Algorithm 1, regularized using the 

well-known Halpern scheme [32, 38], with adaptive choice of the step size.   

Algorithm 3. 

Initialization. Choose elements a C , 1x С , numbers  0,1  ,  1 0,   , and 

sequence  n , such that  0,1n  , lim 0n
n




 , 
1 nn





  . Set  1n  . 

Step 1. Calculate       21
2,

prox arg min , ,
nn nn n y C n nF x

y x F x y d y x
 

   . 

Step 2. Calculate       21
2,

prox arg min , ,
nn nn n y C n nF y

z x F y y d y x
 

   . 

Step 3. Calculate  1 1n n n nx a z     . 

Step 4. Calculate 

     

   

      

2 2
1

, if     , , , 0,

, ,
min , ,    otherwise.

2 , , ,

n n n n n n n

n n n n n

n

n n n n n n

F x z F x y F y z

d x y d z y

F x z F x y F y z



 




  


    
 

    

 

Set  : 1n n   and go to step 1. 



329 

 

The following known facts have an important role in proving the convergence of Algorithm 3. 

Lemma 6 ([41]). Let sequence of numbers  na  has subsequence  
kna  with property 1k kn na a   

for all k N . Then exists non-decreasing sequence  km  of natural numbers such that km   

and 1k km ma a  , 1kk ma a   for all 1k n . 

Lemma 7. Let  na  be a sequence of non-negative numbers satisfying the inequality 

 1 1n n n n na a        for all n N , 

where sequences  n  and  n  have properties:  0,1n  , 
n   , lim 0n

n



 . Then 

lim 0n
n

a


 . 

First, takes place 

Lemma 8. For sequences  nx ,  ny  and  nz  generated by Algorithm 3 inequality holds 

     2 2

1, 1 ,n n nd x z d x z     

       2 2

1 1

1 1 , 1 1 ,n n
n n n n n n

n n

d z y d y x
 

   
  

   
         

   
 

     2 2, 1 ,n n n nd a z d a z     ,         (21) 

where z S . 

Proof. Let z S . From  1 1n n n nx a z      and inequality for strong convexity (2) the 

estimation follows 

 2

1,nd x z           2 2 2, 1 , 1 ,n n n n n nd a z d z z d a z       . 

For upper estimation  2 ,nd z z  we use Lemma 3 and get (21). ■ 

Lemma 9. Sequences  nx ,  ny  and  nz  generated by Algorithm 3 are bounded. 

Proof. Let z S . We have 

    1, 1 ,n n n nd x z d a z z           , 1 ,n n nd a z d z z   . 

Since exists lim 0n
n




 , then 

1

1 n

n



 

 1    0,1 ,  n. 

Using inequality from Lemma 3, we obtain 

 1,nd x z       , 1 ,n n nd a z d x z       max , , ,nd a z d x z  

for all 0n n . Hence  1,nd x z      
0

max , , ,nd a z d x z  for all 0n n . Thereby sequence 

 nx  is bounded. So from Lemma 3 we conclude that   ny  and  nz  are bounded.    
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Theorem 3. Let  ,X d  be a Hadamard space, C X  be a nonempty convex closed set, for 

bifunction :F C C R   conditions 1–5 are satisfied and S  . Then sequences  nx ,  ny  and 

 nz  generated by Algorithm 3 converge to the element SP a . 

Proof. Consider element 0 Sz P a . From Lemma 9 it follows that exists number 𝑀 > 0 such that 

     2 2

0, 1 ,n nd a z d a z M    for all n . Then from inequality of Lemma 8 we obtain the 

estimation 

         2 2 2

1 0 0

1

, 1 , 1 1 ,n
n n n n n n

n

d x z d x z d z y


  






 
      

 
 

   2

1

1 1 ,n
n n n n

n

d y x M


  
 

 
    

 
.               (22) 

Consider sequence   0,nd x z . There are two options: a) there exists a number n N  such that 

   1 0 0, ,n nd x z d x z   for all n n ; b) there exists increasing sequence of numbers ( )kn  such that 

   1 0 0, ,
k kn nd x z d x z   for all k N . 

First, consider option a). In that case there exists  0lim ,n
n

d x z R


 . Since 

   2 2
1 0 0, , 0n nd x z d x z   , 𝛼𝑛 → 0 and 

1

1 n

n



 

 1    0,1 ,  𝑛 → ∞, 

we have 

 , 0n nd x y  ,                                                            (23) 

 , 0n nd z y  .                                                            (24) 

Since  nx  is bounded it follows that exists a subsequence  
knx  which converges weakly to the 

point w X . Then from (23), (24) it follows that  
kny  and  

knz  converge weakly to w . So 

w C . Let us show that  w S . We have 

          2 2 21
, , , , ,

2k k k k k k k

k

n n n n n n n

n

F y y F y z d y x d x z d z y


    

 

   , ,
k k k kn n n nF x z F x y    

           2 2 2 2 2

1

1
, , , , ,

2 2k k k k k k k k

k k

n n n n n n n n

n n

d x y d z y d y x d x z d z y


 

       

           2 2 2 2 2

1

1
, , , , ,

2 2k k k k k k k k k k

k k

n n n n n n n n n n

n n

d z x d x y d y z d x y d z y


  

        

      2 2 21
, , ,

2 k k k k

k

n n n n

n

d y x d x z d z y


      y С  .                 (25) 

Passing to the limit in (25) taking into account (23), (24) and weak upper semicontinuity of 

function  , :F y C R  , we get 
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   , lim , 0
kn

k
F z y F y y


     y С  , 

i.e., z S . 

Let us prove that 

      2 2

0lim , 1 , 0n n
n

d a z d a z


   .                                            (26) 

Consider subsequence  
knz  such that 

             2 2 2 2

0 0lim , 1 , lim , 1 ,
k kn n n n

k n
d a z d a z d a z d a z 

 
     . 

We can also assume that 
knz w S   weakly. Then, using the weak lower semicontinuity of the 

function  2 ,d a  , we obtain 

          2 2 2 2

0 0lim , 1 , , ,
k kn n

k
d a z d a z d a z d a w


    .                         (27) 

Since  0 argmin ,S w Sz P a d a w  , then from (27) follows (26). 

Then from (26),  inequality 

 2

1 0,nd x z            2 2 2

0 01 , , 1 ,n n n n nd x z d a z d a z      , 

which takes place for big n  and Lemma 7 we conclude that  0, 0nd x z  . From (23), (24) we get 

 0, 0nd y z   and  0, 0nd z z  . 

Let us study option b). In that case consider sequence of numbers  km  with properties (Lemma 

6): i) km  ; ii)     1 0 0, ,
k km md x z d x z    1k n  ; iii)    1 0 0, ,

km kd x z d x z    1k n  . 

From inequality of Lemma 8 and ii) it follows 

     2 2

0

1

, 1 1 ,k

k k k k k

k

m

m m m m m

m

d x z d z y


  
 

 
    

 
 

 

         2 2 2

0

1

1 1 , , 1 ,k

k k k k k k k k

k

m

m m m m m m m m

m

d y x d a z d a z M


     
 

 
       

 
 

.                

From where    lim , lim , 0
k k k km m m m

k k
d x y d z y

 
  . Arguments similar to the above, show that the 

partial sequences weak limits  
kmx ,  

kmy  and  
kmz  belongs to set S . As before, we get 

      2 2

0lim , 1 , 0
k km m

k
d a z d a z


   . 

For big numbers k  we have 

 2

1 0,
kmd x z            2 2 2

0 01 , , 1 ,
k k k k km m m m md x z d a z d a z        

          2 2 2

1 0 01 , , 1 ,
k k k k km m m m md x z d a z d a z       .  
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Whence, taking into account iii), we obtain 

 2

0,kd x z   2

1 0,
kmd x z

      2 2

0, 1 ,
k km md a z d a z  . 

Thereby 

 2

0lim ,k
k

d x z


       2 2

0lim , 1 , 0
k km m

k
d a z d a z


   . 

So,  0lim , 0n
n

d x z


  and  0lim ,n
n

d y z


 0lim , 0n
n

d z z


  . ■ 

Using this technique and idea of work [36] we can construct regularized variant of Algorithm 2 

with adaptive step. 

Algorithm 4. 

Initialization. Choose elements 1x , 0y C ,  1
3

0,  ,  1 0,    and sequence  n

such that  0,1n  , lim 0n
n




 , 
1 nn





  . Set 1n  . 

Step 1. Calculate  1n n n nz a x    . 

Step 2. Calculate 
      

1

21
1 2,

prox arg min , ,
nn nn n y C n nF y

y z F y y d y z
   

   . 

Step 3. Calculate 
      21

1 2,
prox arg min , ,

nn nn n y C n nF y
x z F y y d y z

 
   . 

Step 4. Calculate 

     

   

      

1 1 1 1

2 2
1 1 1

1 1 1 1

, if     , , , 0,

, ,
min , ,    otherwise.

2 , , ,

n n n n n n n

n n n n n

n

n n n n n n

F y x F y y F y x

d y y d x y

F y x F y y F y x



 


   

  

   

  


    
 

    

 

Set : 1n n   and go to step 1. 

Remark 4. Unfortunately, now we do not have a proof of the convergence of Algorithm 4 under 

the condition that the bifunction is pseudomonotone. 

6. Modification of Algorithm 3 for variational inequalities 

Consider a particular case of the equilibrium problem: the variational inequality in the real Hilbert 

space H :   

find x С :   , 0Ax y x    y С  .                                          (28) 

We assume that following conditions are satisfied  

 C H  is convex and closed;  

 operator :A C H  is pseudomonotone, Lipschitz continuous, and sequentially weakly 

continuous;  

 the set of solutions (28) is not empty.  

Let CP  be a metric projection operator on convex closed set C , i.e. CP x  is an unique element of 

set C  with property  

minC
z C

P x x z x


   . 

For variational inequalities (28) Algorithm 3 takes the following form. 
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Algorithm 5. 

Initialization. Choose elements a C , 1x С , numbers  0,1  ,  1 0,    and 

sequence  n , such that  0,1n  , lim 0n
n




 , 
1 nn





  . Set 1n  . 

Step 1. Calculate  n C n n ny P x Ax  . 

Step 2. Calculate  n C n n nz P x Ay  . 

Step 3. Calculate  1 1n n n nx a z     . 

Step 4. Calculate 

 

 

2 2

1

, if     , 0,

min , ,    otherwise.
2 ,

n n n n n

n n n n n

n

n n n n

Ax Ay z y

x y z y

Ax Ay z y



 




  


      
 

    

 

Set : 1n n   and go to step 1. 

From theorem 3 the following result follows. 

Theorem 4. Let H  be a Hilbert space, C X  be an nonempty convex closed set, operator 

:A C H  pseudomonotone, Lipschitz continuous, sequentially weakly continuous and there are 

solutions (28). Then the sequences generated by Algorithm 5  nx ,  ny  and  nz  strongly converge 

to projection of element a  on the set of solutions (28). 

Remark 5. If operator A  is monotone, then the result of Theorem 4 is valid without the 

assumption of the sequential weak continuity of the operator A . Similar results take place for 

modifications of algorithms 1, 2, and 4. 

7. Conclusions 

In this paper, which continues and refines articles [36, 37], two new adaptive two-stage proximal 

algorithms for the approximate solution of equilibrium problems in Hadamard spaces are described 

and studied. The proposed rules for choosing the step size do not calculate the values of the bifunction 

at additional points and do not require knowledge of the Lipschitz constants of the bifunction. For 

pseudo-monotone bifunctions of Lipschitz type, theorems on the weak convergence of sequences 

generated by the algorithms are proved. A new regularized adaptive extraproximal algorithm is also 

proposed and studied. To regularize the basic adaptive extraproximal scheme [37], the classical 

Halpern scheme [38] was used, a version of which for Hadamard spaces was studied in [32]. It is 

shown that the proposed algorithms are applicable to pseudomonotone variational inequalities in 

Hilbert spaces. In the coming papers, we plan to consider more special versions of algorithms for 

variational inequalities and minimax problems on Hadamard manifolds (for example, on the manifold 

of symmetric positive definite matrices). The construction of randomized versions of algorithms is 

also of interest. 

Acknowledgements 

This work was supported by Ministry of Education and Science of Ukraine (project “Mathematical 

modeling and optimization of dynamical systems for defense, medicine and ecology”, 0219U008403). 



334 

 

References 

[1] G. Kassay, V. D. Radulescu, Equilibrium Problems and Applications, Academic Press, London,  

2019. 

[2] C. Baiocchi,  A. Capello, Variational and Quasi-Variational Inequalities. Applications to Free 
Boundary Problems, Wiley, New York, 1984. 

[3] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their 

applications, Academic Press, New York, 1980. 
[4] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, 

Math. Stud. 63 (1994) 123–145. 

[5] P. N. Anh, Strong convergence theorems for nonexpansive mappings and Ky Fan inequalities, J. 

Optim. Theory Appl. 154 (2021) 303–320. 
[6] P. L. Combettes, S. A. Hirstoaga, Equilibrium Programming in Hilbert Spaces, J. Nonlinear 

Convex Anal. 6 (2005) 117–136. 

[7] A. S. Antipin, Equilibrium programming: Gradient methods, Autom. Remote Control 58 (1997) 
1337–1347. 

[8] A. S. Antipin, Equilibrium programming: Proximal methods, Comput. Math. Math. Phys. 37 

(1997) 1285–1296. doi:10.1134/S0965542507120044. 

[9] G. Mastroeni, On auxiliary principle for equilibrium problems, in: P. Daniele et al. (Eds.), 
Equilibrium Problems and Variational Models, Kluwer Academic Publishers, Dordrecht, 2003, 

pp. 289–298. doi:10.1007/978-1-4613-0239-1. 

[10] S. D. Flam, A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. 
Program. 78 (1997) 29–41. 

[11] A. N. Iusem, W. Sosa, On the proximal point method for equilibrium problems in Hilbert spaces, 

Optimization 59 (2010) 1259–1274. 
[12] A. Moudafi, Proximal point methods extended to equilibrium problems, J. Nat. Geom. 15 (1999) 

91–100. 

[13] S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and 

fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), 506–515. 
[14] N. Nadezhkina, W. Takahashi, Weak convergence theorem by an extragradient method for 

nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 128 (2006) 191–201. 

[15] G. M. Korpelevich, An extragradient method for finding saddle points and for other problems, 
Matecon. 12 (1976) 747–756. 

[16] T. D. Quoc, L. D. Muu, N. V. Hien, Extragradient algorithms extended to equilibrium problems, 

Optimization. 57 (2008) 749–776. doi:10.1080/02331930601122876. 
[17] P. T. Vuong, J. J. Strodiot, V. H. Nguyen, Extragradient methods and linesearch algorithms for 

solving Ky Fan inequalities and fixed point problems, J. Optim. Theory Appl. 155 (2012) 605–

627. 

[18] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, 
SIAM Journal on Control and Optimization 38 (2000) 431–446. 

[19] S. I. Lyashko, V. V. Semenov, A New Two-Step Proximal Algorithm of Solving the Problem of 

Equilibrium Programming, in: B. Goldengorin (Ed.), Optimization and Its Applications in 
Control and Data Sciences, volume 115 of Springer Optimization and Its Applications, Springer, 

Cham, 2016,  pp. 315–325. doi:10.1007/978-3-319-42056-1_10. 

[20] L. D. Popov, A modification of the Arrow-Hurwicz method for search of saddle points,   

Mathematical notes of the Academy of Sciences of the USSR. 28 (1980) 845–848. 
doi:10.1007/BF01141092. 

[21] L. Chabak, V. Semenov, Y. Vedel, A New Non-Euclidean Proximal Method for Equilibrium 

Problems, In: O. Chertov et al. (Eds.), Recent Developments in Data Science and Intelligent 
Analysis of Information, volume 836 of Advances in Intelligent Systems and Computing, 

Springer, Cham, 2019, pp. 50–58. doi:10.1007/978-3-319-97885-7_6. 

[22] D. A. Nomirovskii, B. V. Rublyov, V. V. Semenov, Convergence of Two-Stage Method with 
Bregman Divergence for Solving Variational Inequalities, Cybernetics and Systems Analysis. 55 

(2019) 359–368. doi:10.1007/s10559-019-00142-7. 



335 

 

[23] A. Nemirovski, Prox-method with rate of convergence O(1/T) for variational inequalities with 
Lipschitz continuous monotone operators and smooth convex-concave saddle point 

problems, SIAM J. Optim. 15 (2004) 229–251. doi:10.1137/S1052623403425629. 

[24] F. S. Stonyakin, E. A. Vorontsova, M. S. Alkousa, New Version of Mirror Prox for Variational 

Inequalities with Adaptation to Inexactness, in: Jacimovic M., Khachay M., Malkova V., 
Posypkin M. (Eds.), Optimization and Applications, OPTIMA 2019, volume 1145 of 

Communications in Computer and Information Science, Springer, Cham, 2020, 427–442. 

doi:10.1007/978-3-030-38603-0_31. 
[25] F. S. Stonyakin, On the adaptive proximal method for a class of variational inequalities and 

related problems, Trudy Inst. Mat. i Mekh. UrO RAN. 25 (2019) 185–197.  doi:10.21538/0134-

4889-2019-25-2-185-197. 
[26] F. Bach, K. Y. Levy, A Universal Algorithm for Variational Inequalities Adaptive to Smoothness 

and Noise, arXiv preprint arXiv:1902.01637. (2019).   

[27] J. Diakonikolas, Halpern iteration for near-optimal and parameter-free monotone inclusion and 

strong solutions to variational inequalities, arXiv preprint arXiv:2002.08872. (2020). 
[28] S. V. Denisov, V. V. Semenov, P. I. Stetsyuk, Bregman Extragradient Method with Monotone 

Rule of Step Adjustment, Cybernetics and Systems Analysis. 55 (2019) 377–383. 

doi:10.1007/s10559-019-00144-5. 
[29] S. V. Denisov, D. A. Nomirovskii, B. V. Rublyov, V. V. Semenov, Convergence of 

Extragradient Algorithm with Monotone Step Size Strategy for Variational Inequalities and 

Operator Equations, Journal of Automation and Information Sciences. 51 (2019) 12–24.  
doi:10.1615/JAutomatInfScien.v51.i6.20. 

[30] S. I. Lyashko, D. A. Klyushin, D. A. Nomirovsky, V. V. Semenov, Identification of age-

structured contamination sources in ground water, In: R. Boucekkline, N. Hritonenko, and Y. 

Yatsenko (Eds.), Optimal Control of Age-Structured Populations in Economy, Demography, and 
the Environment, Routledge, London–New York, 2013, pp. 227–292.  

[31] G. Gidel, H. Berard, P. Vincent, S. Lacoste-Julien, A Variational Inequality Perspective on 

Generative Adversarial Networks. arXiv preprint arXiv:1802.10551. (2018). 
[32] M. Bacak, Convex Analysis and Optimization in Hadamard Spaces, De Gruyter, Berlin, 2014. 

[33] V. Colao, G. Lopez, G. Marino, V. Martin-Marquez, Equilibrium problems in Hadamard 

manifolds, Journal of Mathematical Analysis and Applications. 388 (2012) 61–77. 

doi:10.1016/j.jmaa.2011.11.001. 
[34] H. Khatibzadeh, V. Mohebbi, Monotone and pseudo-monotone equilibrium problems in 

Hadamard spaces, J. of the Australian Math. Soc. (2019). doi:10.1017/S1446788719000041. 

[35] H. Khatibzadeh, V. Mohebbi, Approximating solutions of equilibrium problems in Hadamard 
spaces, Miskolc Mathematical Notes. 20 (2019) 281–297. doi:10.18514/MMN.2019.2361. 

[36] Y. I. Vedel, G. V. Sandrakov, V. V. Semenov, L. M. Chabak, Convergence of a Two-Stage 

Proximal Algorithm for the Equilibrium Problem in Hadamard Spaces, Cybernetics and Systems 
Analysis.   56 (2020) 784–792. doi:10.1007/s10559-020-00299-6.  

[37] Y. I. Vedel, E. N. Golubeva, V. V. Semenov, L. M. Chabak, Adaptive extraproximal algorithm 

for the equilibrium problem in Hadamard spaces, Journal of Automation and Information 

Sciences. 52 (2020) 46–58. doi:10.1615/JAutomatInfScien.v52.i8.40. 
[38] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967) 957–961. 

doi:10.1090/S0002-9904-1967-11864-0. 

[39] W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, Cham, 2014. 
doi:10.1007/978-3-319-10927-5. 

[40] D. Burago, Yu. Burago, S. Ivanov, A Course in Metric Geometry, volume 33 of Graduate 

Studies in Mathematics, AMS, Providence, 2001. 
[41] P.-E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and 

nonstrictly convex minimization, Set-Valued Analysis. 16 (2008) 899–912. doi:10.1007/s11228-

008-0102-z. 


	1. Introduction
	2. Preliminaries
	3. Equilibrium problems in Hadamard space
	4. Adaptive algorithms
	5. Regularized adaptive algorithms
	6. Modification of Algorithm 3 for variational inequalities
	7. Conclusions
	Acknowledgements
	References

