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Abstract

In this paper we consider equilibrium problems in metric Hadamard spaces. We propose and
study new adaptive algorithms for their approximate solution. For pseudomonotone
bifunctions of Lipschitz type, theorems on the weak convergence of sequences generated by
the algorithms are proved. The proofs are based on the use of Fejer properties of algorithms
with respect to the set of solutions to the problem. A new regularized adaptive extraproximal
algorithm is also proposed and studied. To regularize the basic extraproximal scheme, the
classical Halpern scheme was used. The proposed algorithms are applicable to
pseudomonotone variational inequalities in Hilbert spaces.
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1. Introduction

A popular direction of modern nonlinear analysis is the study of equilibrium problems (Ky Fan
inequalities) of the form [1-9]:

find xeC: F(x,y)=0 VyeC, (1)

where C'is nonempty subset of vector space H (usually Hilbert space), F:CxC — R is function

such that F(X, x):O VX eC (called bifunction). We can formulate mathematical programming

problems, variational inequalities, and many game theory problems in form (1).

The study of algorithms for solving equilibrium and related problems is actively continuing [5-8,
10-30]. In this article, we will focus only on methods of the extraproximal type. The following
analogue of G. Korpelevich extragradient method [15] for equilibrium problems [16] is called
extraproximal

Yo = PIOX, ¢ 3%,
Xn+1 = proxﬂﬂF(yn,-)Xn’
where A, e(O, +oo), prox,, is proximal operator for function ¢ . In [19] two step proximal method

for solving equilibrium problems in Hilbert space was proposed
Yo = PIOX, %

Xn+l = proxﬂﬂF(yn,~)Xn !

where A, e(O, +oo) which is adaptation for L. D. Popov method [20] for general equilibrium

programming problems (see also [21, 22]). Note that a version of this algorithm for variational
inequalities became known among machine learning specialists under the name “Extrapolation from
the Past” [31].
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Recently, there has been an increased interest in the construction of theory and algorithms for
solving mathematical programming problems in metric Hadamard spaces [32] (also known as

CAT (0) spaces). A strong motivation for studying these problems is the ability to rewrite some

nonconvex problems in the form of convex (more precisely, geodesically convex) in a space with a
specially selected metric structure [32, 33]. Some authors began to study equilibrium problems in
Hadamard spaces [33-37]. For example, in [35], concluding from the results of [16], the authors
proposed and substantiated an analogue of the extraproximal method for pseudomonotone equilibrium
problems in Hadamard spaces.

In this paper, which continues and refines articles [36, 37], two new adaptive two-stage proximal
algorithms for the approximate solution of equilibrium problems in Hadamard spaces are described
and studied. The proposed rules for choosing the step size do not calculate the values of the bifunction
at additional points and do not require knowledge of the Lipschitz constants of the bifunction.

For pseudo-monotone bifunctions of Lipschitz type, theorems on the weak convergence of
sequences generated by the algorithms are proved. The proofs are based on the use of Fejer properties
of algorithms with respect to the set of solutions to the problem. A new regularized adaptive
extraproximal algorithm is also proposed and studied. To regularize the basic adaptive extraproximal
scheme [37], the classical Halpern scheme [38] was used, a version of which for Hadamard spaces
was studied in [32]. It is shown that the proposed algorithms are applicable to pseudomonotone
variational inequalities in Hilbert spaces.

2. Preliminaries

Here are some concepts and facts related to metric Hadamard spaces. Details can be found in [32,
39, 40].

Let (X,d) be a metric space and x, ye X . Geodesic path connecting points x and Yy is
isometry 7:[0,d (x, y)] — X such that y(0)=x, ;/(d (x, y)): y. Set y([O,d (x, y)])g X is
denoted by [x, y] and called geodesic segment with ends x and Yy (or simply geodesic). Metric

space (X,d) is called geodesic space if it is possible to connect any two points of X by geodesic
and it is unique geodesic space if for any two points from X there exists exactly one geodesic to
connect them. Geodesic space (X,d) is called CAT (0) space if for any three points y,, Vi,

y, € X suchthat d*(y;, Yo )= d?(¥,, ¥,)=2d?(¥;,Y,) the following inequality holds:

1 1 1

d?(x,y, )< =d?(x,y,)+=d?*(x,y,)-=
(6 ¥o) < 5d* (X y)+5d* (% y2) =
It is known that CAT (0) space is unique geodesic [32]. For two points x and y from CAT (0)

d*(y,y,) wvxeX.

space (X,d) and te[0,1] we denote by tx@®(1—t)y unique point z of [x,y] such that
d(z,x)=(1-t)d(x,y) and d(z,y)=td(x,y). Set C < X is called convex if for all x, yeC
and te[0,1] holds tx®(1-t)yeC. The following inequality is useful property for CAT (0)
space (X,d)
dz(tx@(l—t)y,z)stdz(x,z)+(1—t)d2(y,z)—t(l—t)dz(x, y). {xy.z}e X, te[01]. (2
Important examples of CAT (0) spaces are Euclidean spaces, R -trees, Hadamard manifolds

(complete connected Riemannian manifolds of non-positive curvature) and Hilbert sphere with
hyperbolic metric [32, 39, 40].

Complete CAT (0) space is called Hadamard space.
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As in a Hilbert space, the operator of metric projection onto a closed convex set is well defined in
Hadamard spaces C [32]. For each x € X there exists unique element P.x from set C with the

property d (P.x, x) = micn d(z,x), moreover the characterization takes place [32]:
y=Rx < yeC and d*(y,z)<d?(x,z)-d*(y,x) vzeC.
Let (X,d) be a metric space and (x,) be a bounded sequence of elements from X . Let

r(x,(xn))er]iElod(x, X,). The number r((x,))=inf,, r(x,(x,)) is called asymptotical radius

xeX

(x,) and set A((x,))= {x eXir(x(x,))= r((xn))} is asymptotic center (X, ). It is known that
in Hadamard space A((xn)) it consists of one point [32]. Sequence (Xx,) of elements from
Hadamard space (X,d) converges weakly to an element xe X if A((xnk )):{x} for any

sequence (xnk ) . It is known that any sequence of elements from closed convex bounded subset K of

Hadamard space has subsequence which converges weakly to element from K [32, 39]. The well-
known analogue of Opial lemma is useful in proving the weak convergence of sequences of elements
of the Hadamard space.

Lemma 1 ([32, p. 60]). Let sequence (X, ) of elements from Hadamard space (X,d) converges

weakly to an element x € X . Then for all y e X \{x} we have limd (x,,x)<limd (x,,y)

Let (X,d) be an Hadamard space. Function ¢: X SR= Ru{+oo} is called convex if for all
points x, ye X and t[0,1] holds
p(x®(1-t)y) < tp(x)+(1-t)o(y).
For example, in Hadamard space functions y +—d (y, X) are convex [32]. If there exists x>0 such
that for all x, ye X and t €[0,1] the following inequality is satisfied
p(x®(1-t)y) < tp(x)+(1-t)p(y)— pt(1-t)d*(x,y),
then function ¢ is called strongly convex. It is known that for convex functions lower semicontinuity

and weakly lower semicontinuity are equivalent [32, p. 64] and strongly convex semicontinuous
function reaches its minimum at unique point.

For convex proper and lower semicontinuous function ¢: X — R=RuU {+oo} proximal operator
is defined by [32]
prox,, x =argmin,_, ((p(y)+%d2(y, x))
Since functions (p+%d2 ( X) are strongly convex the definition of proximal operator is correct, i.e.

forall x e X there exists unique element prox, x e X .

3. Equilibrium problems in Hadamard space

Let (X , d) be a Hadamard space. Consider an equilibrium problem for nonempty closed convex
set C < X and bifunction F:CxC — R [34-37]:
find xeC: F(x,y)20 VyeC. (3)
Assume that following conditions are satisfied:
1. F(x,x)=0 forall xeC;
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2. functions F(x,-):C — R are convex and lower semicontinuous for all xeC;
3. functions F(-,y):C — R are upper weakly semicontinuous for all yeC;
4. bifunction F:CxC — R is pseudomonotone, i.e.
forall x, yeC from F(x,y)>0 it follows that F(y,x)<0.

5. bifunction F:CxC — R is Lipschitz type, i.e. there exist a >0, b >0, such that

F(x,y)<F(x2)+F(z,y)+ad®(x,z)+bd*(z,y) VX V,z€C. 4)
Remark 1. If F(x,y)=(Ax,y—x),where A:C—H, C is nonempty subset of Hilbert space

H , then problem (3) takes form of variational inequality
find xeC: (AX,y—x)>0 VyeC. (5)

If set CcH is convex and closed and operator A:C —H pseudomonotone, Lipschitz
continuous and sequential weakly semicontinuous, then for (5) conditions 3-5 are satisfied.
Consider dual equilibrium problem:

find xeC: F(y,x)<0 VyeC. (6)

We denote sets of solutions for problems (3) and (6) by S and S”. If conditions 14 are satisfied

we have S =S~ [34]. Moreover, set S’ is closed and convex.
Further we assume that S = .

4. Adaptive algorithms

For approximate solution of (3) we consider extraproximal algorithm with adaptive choice of step
size [37].
Algorithm 1.
Initialization. Choose element X, € C, 7 €(0,1), 4 €(0,+o). Set n=1.

Step 1. Calculate
Yo =PIOX, (X, =argmin, (F (%, ¥)+5-d (Y, xn)).
If X,=Y,,thenstopand X, € S. Otherwise, go to step 2.
Step 2. Calculate

X = PrOX, ¢, X, =argmin, (F (Yo y)+id2 (y, Xn)) .

Step 3. Calculate

ﬂ’n’ If F(Xn’xml)_F(Xn’yn)_F(yn’XnJrl)SO’
1= 2 2
" I min ﬂ,n,z 47 (% %)+ 4" (X1 Y0) . otherwise.
2(F(Xn’xml)_F(Xn’yn)_F(yn’Xm-l))

Set n:=n+1 and go to step 1.
Remark 2. On each step of algorithm 1 we need to solve two convex problems with strongly
convex functions.

In proposed algorithm parameter A,

n+1

depends on location of points X,, y,, X values

n+l?

n?! 'n+l

F (% %01)» F (X Yy) and F(Y,, X, ). No information about constants a and b from inequality
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n

(4) is used. Obviously, the sequence (/1) is non-decreasing. Also, it is lower bounded by

_r
'2max{a,b}

F(Xn1xn+1)_ F(Xn’ yn)_ F (yn’Xn+1) < max{a’b}(dz (Xn1 yn)_'_d2 (Xn+l’ yn)) '
Let us prove the important inequality.

min {21 } . Indeed, we have

Lemma 2. For xe C and X" = ProX e ., X where A > 0, the following inequality takes place

1

F(x,x+)—F(x, y)< 57

(dz(y,x)—dz(x,x+)—d2(x+,y)) VyeC. ©)

Proof. From the definition X =argmin,_. (F(x, y)+§d2(y,x)) it follows that
+ 1 2 + 1 2
— < — A4 .
F(x,x)+21d (x,x)<F(x,p)+2;td (p.x) VpeC (8)
Setting in (8) p=tx" ®(1-t)y, yeC, te(0,1), we obtain

+ 1 + + 1 +
F(xx )+ﬂd2(x X) < F(x,tx @(1—t)y)+ﬂd2(tx ®(1-t)y,x)<

<tF (%X )+ (1-t)F(x,y)+ %(tdz(x*,x)+(1—t)d2(y,x)—t(l—t)d2(x*, y)) .
Thereby,
(1-t)F (x, x*)—(l—t) F(xy)<

si(—(l—t)dz(x+,x)+(1—t)d2(y,x)—t(1—t)d2(x*,y)). ©)

Dividing in (9) by 1—t and passing to the limit as t —1 we obtain (7). m
From Lemma 2 it follows that for sequences (X, ), (Y, ). generated by Algorithm 1 the following
inequalities hold

1
24,

n

F (X, Ya)—F (X, Y)< (dz(y,xn)—dz(xn,yn)—dz(yn,y)) vyeC. (10)

|:(yn1xn+1)_|:(yn’y)S (d2(y!Xn)_dz(Xn’Xm—l)_dz(Xn+1'y)) ‘v’yeC (11)

1
24,
Inequality (10) provides a justification for the stopping rule for Algorithm 1. Indeed, for X, =Y,
from (10) it follows

—F(x,,y)<0 VyeC,

ie, X, €S.
Let us prove an important estimate relating the distances between the points generated by
Algorithm 1 to an arbitrary element of the set of solutions S .

Lemma 3. For sequences (X, ), (Y, ). generated by Algorithm 1, the following inequality takes

place
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dz(xM,z)sdz(xn,z)—(l—rj” jdz(xnﬂ, yn)—(l—rj” ]dz(yn,xn), (12)

n+1 n+1
where zeS.

Proof. Let z € S. From pseudomonotonicity of bifunction F it follows that

F(y,.2)<0. (13)
From (13) and (11)
24, F (Yo %o ) < d2(2,%,) —d? (X, X1 ) —d? (X1, 2). (14)
From the calculation rule for A, we conclude

n+1

l:(xn’xn+1)_|:(xn'yﬂ)_F(y”’X”‘*'l)S 2;:

n+1

(dz(xn’yn)+d2(xn+liyn))' (15)
Evaluating the left side of (14) from below using (15), we get
A
22, (F (%, %00 ) = F (X, yn))—rll—”(d2 (%o, ¥y ) +d° (X0, yn)) <

n+1
<d?(z,%,)—d% (X, X0 ) =07 (X0, 2). (16)
For a lower bound 24, (F (X,,X,.;)—F (X,,Y,)) in (16) we use (10). We have

dz(xniyn)+d2(yn’Xn+l)_d2(Xn+l’xn)_z-/f_n(d2(xn!yn)+d2(xn+17yn)) <

n+1
<d?(z,%,)—d* (X, Xy ) —d% (X0 2) . (A7)
By regrouping (17), we get (12). m
To prove the convergence of Algorithm 1, we need an elementary lemma about number sequences.
Lemma 4. Let (a,), (b,) be two sequences of non-negative numbers which satisfy

a,, <a,—b, forall neN.Thenexists alimit lima, and (b,)<l,.

n—oo

Let us formulate one of the main results of the work.

Theorem 1. Let (X : d) be an Hadamard space, C — X be a non-empty convex closed set, for
bifuntion F:CxC —R conditions 1-5 are satisfied and S =& . Then sequences (X,), (V,)
generated by Algorithm 1 converge weakly to the solution zeS of equilibrium problem (3),
moreover, limd (y,,x,)=limd(y,,x,,,)=0.

Proof. Let zeS. Assume

a,=d(z,x,). bnz(l—r 4, }dz(xm,yn)—[l—r 4, ]dz(yn,xn).
/’i’n+l ﬂ*n-*—l

Inequality (12) takes form a,,, <&, —Db, . Since there exists lim A4, >0,

n+l —
n—oo

1-7 A —1-7€(0,1), n—>co.

n+l

From Lemma 4 we conclude that exists a limit limd?(z,x, ) and

nN—oo
Z(dz(xml’ yn)+d2(yn,xn))<+00.
n=1
Whence we get boundedness of the sequence (xn) and
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limd(y,,x,)=limd (X, Y,)=limd(x,,,x,)=0. (18)

n+1? “*n
N—o0

Consider subsequence (xnk) which converges weakly to the point z<C. Then from (18) it

follows that (ynk ) converges weakly to Z . Let us show that z € S . We have

I:(ynk’y)Z F(ynk’xnkJrl)_%(dz(y! Xnk )_d2<xnk1Xnk+l)_d2(xnk+1’ y))Z

N

> F(Xnk’xnwl)_ F(Xnk’ynk )_

CHERRLHTNNTY)

_%(dz (y, X, )—d2 (xnk ) =0 (X, y)) >

8 ) (5 ) )5 (8 )

Ny ne+1

_%(dz (y, X, )—d2 (xnk , xnkﬂ)—d2 (xnkﬂ, y)) vyeC. 19)

Passing to the limit in (19) taking into account (18) and weakly upper semicontinuity of function
F(.y):C—>R, we get F(z,y)zllimF(ynk,y)ZO vyeC,ie, zeS.

Applying Opial lemma for Hadamard spaces (Lemma 1) we obtain the convergence of sequence
(xn) to the point z € S . Indeed, we argue by contradiction. Let exists the subsequence (ka ) , Which
converges weakly to some point Z<C and Z #Z. Itis clear that Z € S. We have

md(xn,z)=md(xnk,z)<md (xnk,i)z!]ljgod(xn,f)zlmd (Xn, )<
<lmd(xmk,z)=lmd(xn,z),

which is impossible. Therefore (Xn) converges weakly to z €S . From (18) it follows that sequence
(y,) also convergesto zeS. m
Remark 3. We see from proof for Theorem 1 that for sequence (Xn) starting from some number

N Fejer condition is satisfied with respect to the set of solutions S .

In recent paper [36] for solution of problem (3) the following algorithm was proposed
Yo =PIOX, o\ (X, =argmin, (F (Yo Y)+2-d2 (Y, %, ))

(20)
Xou1 = PrOX, ¢, (X, =argmin, (F (Yo ¥)+7-d2(y, xn)),

where values A, >0 were set according to the requirement {infnﬂh,supnﬂh}g(o . le. the

information about constants from condition (4) was used. Based on the scheme (20) and works [28,
29, 37], we construct a two-stage proximal algorithm with adaptive choice of the value 4, .
Algorithm 2.

Initialization. Choose element x,, y, €C, r € (0%) 2, €(0,+00). Set n=1.
Step 1. Calculate y, =prox, .., X =argmin, (F (Yoss y)+id2 (y, Xn)) :
Step 2. Calculate X,,; =prox, ., X, =argmin,. (F (Yo ¥)+2-d%(y, xn)) :

If X,., =X, =Y,,thenstopand x, €S. Otherwise, go to step 3.

n+1
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Step 3. Calculate

A, it F (Yot %)= F (Yarr Yo ) = F (Vs %o ) <O,

ha min< 4= & (oo )+ & (X Yo) otherwise.
" 2(F(yn_l,xm)—F(yn_l,yn)—F(yn,xn+l))

Set n:=n+1 and go to the step 1.
Let us present the main results on the convergence of the Algorithm 2.

Lemma 5. For sequences (X,). (,). generated by Algorithm 2 the following inequality takes

place

d? (X, 2)<d?(x,, z)—[l—rﬂ%jd2 (Xos1s Yo ) —

+1

_[1—27/—;” ]dz(yn,xn)'FZTjn dz(xn'ynfl)y

n+1 n+1

where zeS.

Theorem 2. Let (X,d) be a Hadamard space, C — X be a nonempty convex closed set, for

bifunction F:CxC —R conditions 1-5 are satisfied and S = . Then sequences (X,), (V,)
generated by Algorithm 2 converge weakly to the solution z € S of problem (3).

5. Regularized adaptive algorithms

To ensure the convergence of the approximating sequences in the metric of space to the solution
of the equilibrium problem (3), we consider the extraproximal Algorithm 1, regularized using the
well-known Halpern scheme [32, 38], with adaptive choice of the step size.

Algorithm 3.

Initialization. Choose elements aeC, X €C, numbers 7€(0,1), 4 (0,+0), and

sequence («, ), such that ¢, €(0,1), rI]im a,=0, Z:;lan =+00. Set n=1.
Step 1. Calculate y, =prox, ., ,X, =argmin, (F (%, y)+2-d*(y, Xn))'
Step 2. Calculate z, =prox, ., X, =argmin, (F (VoY) +5-d(y, xn)).

Step 3. Calculate X, =,a®(1-«,)Z,.
Step 4. Calculate
A, if  F(x,.2,)—-F(X.Y,)—F(¥n:2,)<0,

n

A= 2 2
" I min }Ln,z A" (%, ¥o) + 0" (2,, Y0 . otherwise.
2(F(Xn’Zn)_F(Xn'yn)_F(yn'Zn))

Set n:=n-+1and go to step 1.
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The following known facts have an important role in proving the convergence of Algorithm 3.

Lemma 6 ([41]). Let sequence of numbers (&, ) has subsequence (ank) with property a, <a, .,

for all k e N. Then exists non-decreasing sequence (mk) of natural numbers such that m, — o0

and 8, <a a <a,, forall k>n,.

m,+1? my +1

Lemma 7. Let (an) be a sequence of non-negative numbers satisfying the inequality
a,,<(1-a,)a,+a,pB, forallneN,
where sequences (,) and (f,) have properties: a, €(0,1), Y., =+, limf3, <0. Then

N—o0

lima, =0.

n—oo

First, takes place

Lemma 8. For sequences (X, ), (Y,) and (z,) generated by Algorithm 3 inequality holds

d? (X0, 2)—(1—, ) d?(X,,2)+

+(1-a,,)(1-fjn sz(zn,yn)+(1—an)[1—r%jd2(yn,xn)s

n+1 +1
<a,d*(a,z)-a,(1-a,)d*(a z,), (21)

where ze€S.
Proof. Let zeS. From X ,; :ana@(l—an)zn and inequality for strong convexity (2) the
estimation follows

d*(x,,,2)< o, d?(a,2)+(1-,)d?*(z,,2) -, (1-,)d*(a,z,).
For upper estimation d? (zn : z) we use Lemma 3 and get (21). m

Lemma 9. Sequences (X, ), (Y,) and (z,) generated by Algorithm 3 are bounded.
Proof. Let ze S . We have
d(X,..2)=d(x,a®(1-a,)z, 7)< a,d(a 2)+(1-a,)d(z,.2).

Since exists lim A4, >0, then

n—oo

1-7 A —1-7€(0,1), n—>co.

n+1

Using inequality from Lemma 3, we obtain

d (X1 2) < o, d (8, 2)+(1-a, )d (x,,2) <max{d(a,z),d(x,,2)}

forall n>ng. Hence d(x,,;,2)< max{d (a,z),d(xno,z)} for all n>n,. Thereby sequence

(x,) is bounded. So from Lemma 3 we conclude that ('y, ) and (z, ) are bounded.
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Theorem 3. Let (X,d) be a Hadamard space, C — X be a nonempty convex closed set, for
bifunction F:CxC — R conditions 1-5 are satisfied and S = . Then sequences (X, ), (y,) and
(z,) generated by Algorithm 3 converge to the element Pia.

Proof. Consider element z, = P;a. From Lemma 9 it follows that exists number M > 0 such that
‘dz(a, zy)-(1-ea,)d?*(a,z,)
estimation

d2(xml,20)—(1—an)d2(xn,zO)+(1—an)[1—rj” JdZ(zn,yn)+

n+1

<M forall nel . Then from inequality of Lemma 8 we obtain the

+(1—an)(1—r;ti]d2(yn,Xn)SanM. (22)

n+1
Consider sequence (d (X,,Z)). There are two options: a) there exists a number it e N such that
d (X1, 20) <d(X,,Z0) for all n>; b) there exists increasing sequence of numbers (n,) such that

d (xnk+l,zo)>d (xnk,zo) forall ke N.

First, consider option a). In that case there exists limd (x,,z, ) R. Since

n—oo

d? Xy 2o)—d% (%, 25) >0, ap > Oand 1-7 A —1-7€(0,1), n - oo,

n+1

we have

d(x,,y,)—0, (23)
d(z,y,)—0. (24)

Since (xn) is bounded it follows that exists a subsequence (Xnk) which converges weakly to the

point we X . Then from (23), (24) it follows that (ynk) and (an) converge weakly to w. So
weC. Let usshowthat weS . We have

F(ynk,y)z F(ynk,znk)—ylL (dz(y,xnk)—dz(xnk,znk)—dz(znk,y))z
> F(xnk,znk)—F(xnk,ynk)—

_2; (9 (% Y0, )+ 0" (20,090 ) -

(0 ()0, 2 )-0° (2, )2

n+1 M
1
g 0 )5 ) () ) )
() )0 () wee @

Passing to the limit in (25) taking into account (23), (24) and weak upper semicontinuity of
function F(,y):C —>R, we get
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F(z,y)zl!i_mF(ynk,y)ZO vyeC,
e, zeS.

Let us prove that

lim(d?(a,2,)~(1-a,)d* (az,)) <0. (26)

n—o0

Consider subsequence (znk ) such that

lim(d*(a,2,)~(1-a, )d*(a,z, ))=1im(d*(a,2,) - (1-,)d*(a,2,)).

k—o n—oo
We can also assume that z, —we S weakly. Then, using the weak lower semicontinuity of the

function d”(a,-), we obtain

lim(d*(a,2,)—(1-a, )d*(a,z, )} <d*(a,2,)-d*(a,w). 27)

k—o0

Since z, =P,a=argmin

weS

d (a,w), then from (27) follows (26).
Then from (26), inequality
A% (X102 ) < (1=t ) A% (X, 2 ) + @, (d7 (8,2, ) — (1- 2, ) d* (2, 2, ) )

which takes place for big n and Lemma 7 we conclude that d (xn, zo) — 0. From (23), (24) we get
d(Y,2,)—0and d(z,,z,) —>0.

Let us study option b). In that case consider sequence of numbers (mk) with properties (Lemma
6):)) M [ +oos i) d(Xy 102)20d (Xy,2,) VK2 i) d (X 0020)2d (X, 2)) Vk=n,.

From inequality of Lemma 8 and ii) it follows

amkdz(xmk'20)+(1_amk) 1-7 ;Lmk sz(zmk'ymk)_i_

m +1

+(1—amk)[l—r ", dz(ymk,xmk)Sozmkdz(a,zo)—amk (l—amk)dz(a,zmk)SamkM :

m, +1

From where limd (xmk s Yin, ) = II(im d (zmk Yo, ) =0. Arguments similar to the above, show that the

k—a0

partial sequences weak limits (ka), (ymk) and (ka) belongs to set S . As before, we get

W(dz(a,zo)—(l—amk)dz(a, Z, ))SO.

k—o0

For big numbers k we have



Whence, taking into account iii), we obtain

A% (%, 29) < 0% (Xp 10020 ) S d*(a,2,)—(1-a,, )d* (a2, ).
Thereby

limd?(x ,z,)< lim
k 0

ot kﬁw(dZ(a,zo)—(l—amk)d2(a,zmk ))SO.
So, r!ij‘jod(xnizo)=0 and imd(yn,zo)=!md(zn,zo)=o. -

Using this technique and idea of work [36] we can construct regularized variant of Algorithm 2
with adaptive step.
Algorithm 4.

Initialization. Choose elements X, y, €C, 7€(0,3), 4 €(0,+00) and sequence («,)

such that o, €(0,1), lime, =0, 3" @, =-+o0. Set n=1.
Step 1. Calculate z, =7, a®(1-a, ) X, -
Step 2. Calculate y, =prox, .,z =argmin, (F (Y y)+id2 (v, zn)).

Step 3. Calculate X,,, =prox, ., z, =argmin, (F (Yo ¥)+7-d*(y. 2, )) :
Step 4. Calculate

Anl if F(yn—l’xml)_F(yn—l’yn)_F(y”’Xn”)So’

2 2
min in,z 4" (Yoa Yo) + 9" (Xp0: Y0 , otherwise.
2(F(yn—1’Xn+l)_F(yn—l’yn)_F(yn'Xm—l))

Set n:=n+1 and go to step 1.
Remark 4. Unfortunately, now we do not have a proof of the convergence of Algorithm 4 under
the condition that the bifunction is pseudomonotone.

n+l

6. Modification of Algorithm 3 for variational inequalities

Consider a particular case of the equilibrium problem: the variational inequality in the real Hilbert
space H:
find xeC: (AX,y—x)>0 VyeC. (28)
We assume that following conditions are satisfied
e CcH isconvex and closed;

e operator A:C —H is pseudomonotone, Lipschitz continuous, and sequentially weakly
continuous;
e the set of solutions (28) is not empty.

Let P. be a metric projection operator on convex closed set C, i.e. P.X is an unique element of
set C with property
P.x—x|=min|z—x|.
[Pex=x| = minflz—x]

For variational inequalities (28) Algorithm 3 takes the following form.
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Algorithm 5.
Initialization. Choose elements acC, X €C, numbers 7e(0,1), 4 €(0,4) and

sequence (a, ), such that o, €(0,1), lime, =0, 3" &, =-+e0. Set n=1.
Step 1. Calculate y, = P, (X, —4,AX, ).
Step 2. Calculate z, = P, (X, — 4, Ay, ).
Step 3. Calculate x,,, =,a+(1-a,)z,.
Step 4. Calculate

Ay if  (AX,—AY,,z,—-Y,)<0,

n

Aa = [% = yall" +12, = yoll
7 min ﬁn,Z n ¥ n " Yn , otherwise.
Z(Axn_AymZn_yn)

Set n:=n+1 and go to step 1.
From theorem 3 the following result follows.
Theorem 4. Let H be a Hilbert space, C < X be an nonempty convex closed set, operator
A:C — H pseudomonotone, Lipschitz continuous, sequentially weakly continuous and there are

solutions (28). Then the sequences generated by Algorithm 5 (X, ), (Y, ) and (z,) strongly converge

to projection of element a on the set of solutions (28).

Remark 5. If operator A is monotone, then the result of Theorem 4 is valid without the
assumption of the sequential weak continuity of the operator A. Similar results take place for
modifications of algorithms 1, 2, and 4.

7. Conclusions

In this paper, which continues and refines articles [36, 37], two new adaptive two-stage proximal
algorithms for the approximate solution of equilibrium problems in Hadamard spaces are described
and studied. The proposed rules for choosing the step size do not calculate the values of the bifunction
at additional points and do not require knowledge of the Lipschitz constants of the bifunction. For
pseudo-monotone bifunctions of Lipschitz type, theorems on the weak convergence of sequences
generated by the algorithms are proved. A new regularized adaptive extraproximal algorithm is also
proposed and studied. To regularize the basic adaptive extraproximal scheme [37], the classical
Halpern scheme [38] was used, a version of which for Hadamard spaces was studied in [32]. It is
shown that the proposed algorithms are applicable to pseudomonotone variational inequalities in
Hilbert spaces. In the coming papers, we plan to consider more special versions of algorithms for
variational inequalities and minimax problems on Hadamard manifolds (for example, on the manifold
of symmetric positive definite matrices). The construction of randomized versions of algorithms is
also of interest.
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