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Abstract  
The company FutureTV produces and distributes self-produced videos in the fashion domain. 

It creates revenue through the placement of relevant advertising. The placement of apposite 

ads, though, requires an understanding of the contents of the videos. Until now, this tagging is 

created manually in a labor-intensive process. We believe that image recognition technologies 

can significantly decrease the need for manual involvement in the tagging process. However, 

the tagging of videos comes with additional challenges: Preliminary, new deep-learning 

models need to be trained on vast amounts of data obtained in a labor-intensive data-collection 

process. We suggest a new approach for the combining of deep-learning-based recognition 

with a semantic reasoning engine. Through the explicit declaration of knowledge fitting to the 

fashion categories present in the training data of the recognition system, we argue that it is 

possible to refine the recognition results and win extra knowledge beyond what is found in the 

neural net. 
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1. Introduction 

Traditional, linear television is on a steady decline due to the rise of free and paid online content and 

video on demand. The increasing bandwidths combined with mobile flat rates, the possibility to create 

interaction with the users, and the uprising of new innovative media formats amplify this industry trend 

[2]. Especially, free online videos have a high reach in the advertising-relevant target group of 14 to 

39-year-olds [3]. FutureTV, a content-marketing enterprise specialized in the creation and distribution 

of online-videos, fulfills the need for the rising demands of these short videos with self-produced, high-

quality videos. These videos contain several scenes and show mostly fashion-related content. FutureTV 

creates monetary value through the placement of specific content-related advertising. For example, if 

the video shows a female face close-up wearing sunglasses and earrings, advertising should be placed 

for these specific items. Knowing the kind of fashion objects in the video has a direct impact on revenue 

and economic success. Historically, this approach heavily depended on the use of manual tagging. This 

approach is labor-intensive, costly, and challenging to scale up due to hiring and training the workforce. 

Automatic image detection technologies can reduce the need for workers and enable more efficient and 

cost-effective operation.  

In the last eight years, the field of object recognition has been witnessing a revolution in terms of 

achieved recognition accuracy; mainly led by deep neural networks. However, that came with additional 

costs. These new smart models need costly computational power and vast amounts of costly annotated 

training data to deliver good performance. This data also needs to be balanced. That is, target objects 
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need to be equally represented in the data. In a context where fine granular categories are highly 

desirable (e.g. FutureTV use case), it may be challenging to meet that condition of balance for objects 

that are in their nature not very common. In fashion categories, for instance, under the main category 

‘coat’, a tailcoat is not as common as a raincoat.  

The approach presented in this work aims at eliminating the need for annotated data corresponding 

to fine granular categories. By that, less overall data (and hence less effort) will be needed in the fine 

granular recognition task. Moreover, no imbalance problems will arise finding examples of the fine 

categories. The paper is structured as follows. The next section introduces the related work, followed 

by an overview of our new approach's technical architecture. Section four is then concerned with the 

evaluation of exemplary results. The approach is further motivated by an economic business case in 

section five. The paper concludes with an outlook on further research prospects.  

2. Related Work 

This related work section is structured in two parts. At first, we overview the used image recognition 

technologies and show the advantages of a hierarchical classification approach. In the next step, the 

state of the art regarding the connection of semantic technologies with deep learning is established. 

2.1. Image Recognition Technologies 

In recent years several neural networks architectures have been proposed for image classification 

and object detection. The ResNet [4] family represents one of the most widely used approaches for 

image classification. ResNet exhibits a simple but effective strategy of stacking large number of 

convolutional blocks that are furthermore coupled by shortcut identity connections; that enabled the 

building of increasingly deeper models leading to excellent performance. ResNeXt [5] is based on 

ResNet; it integrates a technique initially used by Inception [6] known as split- transform-merge. The 

input of an Inception module is split into lower-dimensional embeddings and then transformed by a set 

of filters before the results are merged and concatenated. Those aggregated transformations outperform 

the original ResNet modules even under the restricted condition of maintaining model and 

computational complexity. Most architectures are used in flat classifiers; some works [7–9] suggested 

using convolutional classifiers in a hierarchical fashion for better separation between visually similar 

objects. That way, a classifier's ability is concentrated toward such objects rather than being distributed 

among large number of objects categories in the flat approach.   

Recently a competing family of neural networks called EfficientNets [10] has evolved. Remarkably, 

these architectures have not been handcrafted but discovered using neural architecture search. The 

aforementioned classification models are typically used as backbone models for modern object 

detection networks. These networks follow two main approaches: Two-stage architectures leveraging 

a proposal driven mechanism to generate a set of object locations that are then classified. One-stage 

detectors immediately regress bounding-box coordinates and classifications. Faster-RCNN [11] is a 

popular two-stage detector and is often used together with ResNet as the backbone model. It uses a 

sophisticated region proposal network in order to generate candidate object locations. One-stage 

detectors as SSD [12], YOLO [13], and RetinaNet [14] have been designed to be more efficient and 

thus faster than two-stage detector networks at the cost of an accuracy loss. Another approach to 

increase network efficiency has been the research of anchor-free network architectures as FCOS [15], 

which uses a fully convolutional network architecture. Recently a new family of one-stage architectures 

called EfficientDets [16] has been proposed, which uses the EfficientNets mentioned above as a 

backbone. This approach achieved similar accuracy with significantly fewer model parameters. 

Over the last years, several scientific publications have researched classification and object detection 

in the context of fashion understanding and analysis [17–19]. Because of the excessive variety of 

clothing types and appearance and difficulties due to occlusion, classification, and detection of fashion 

objects remains a challenging problem. Several datasets like DeepFashion [12], DeepFashion2 [20], 

and ModaNet [21] of varying sizes have been made publicly available. However, depending on the 

specific type of fashion elements that need to be recognized, real-world use cases of these datasets are 

limited, and the synthesis of a suitable dataset is inevitable. 



2.2. Connecting Semantic and Image Recognition 

With the rising maturity of image recognition technologies, the connection of these technologies and 

semantic capabilities had seen some attention from the scientific community in the past years. Two 

literature reviews by Bhandari and Kulikajevas in 2018 [22] and by Ding et al. in 2019 [23] already 

collected the state of the art regarding the connection of semantic and deep learning technologies. 

[22] first considers three different application areas for the interdisciplinary approach: The 

increasing accuracy in segmentation tasks, the automatic creation of image labels to annotate large 

libraries of former unstructured video and image content, and the recognition of part-of relationships of 

larger objects. Further, the paper names three domain-specific application scenarios: Robotics, to reduce 

the required computational capacity and to reduce the amount of detected false positives, geographic 

information science to translate the imagery into a GIS-ready format, and sports events to improve 

complex keyword searches. 

[23] distincts between single object image recognition and multi-object image recognition. For the 

former, Ding et al. present examples for the connection of recognition algorithm with high-level 

semantics. This allows, e.g., the iterative detection of bird species on changing backgrounds or the more 

accurate classification of buildings. For the latter, the authors describe the opportunity to analyze the 

relationships between the targets in the multi-object environment for better analysis accuracy through 

the connection with WordNet or user-behavior identification in videos. Further examples for the 

connection of semantic and deep learning are the categorization and storing of information inside an 

ontology [25] or the rule-based indexing of CCTV [24]. 

On a high-level view, the related works share a similar core. From a detailed perspective, though, 

these approaches differ widely. The analysis of CCTV does not require a high granularity and detailed 

hierarchy for similar-looking objects. The connection of labels through WordNet does not function in 

a domain-specific environment with a specific business-related task.  

Our work is concerned with fine-grained fashion categories, which need hard-to-find training data 

that may result in a highly imbalanced recognition problem. For that, we start with popular coarse 

fashion categories and leverage existing large-scale datasets to refine those. Our approach exploits the 

correlation between our coarse categories and the existing general-purpose large-scale recognition 

dataset. A semantic augmenter will be analyzing fashion elements in the light of knowledge extracted 

from the input imagery based on the Places dataset [25]. Back to the example ‘coat’ from the previous 

subsection, it will be enough to detect a coat in the image; the semantic augmenter will take on from 

that point and infer a tailcoat knowing that the scene is a concert hall. There are currently no approaches 

that use ontologies to maximize the extracted information and reduce training costs of deep learning 

methodologies to the best of our knowledge. 

3. Connecting semantic reasoning with image recognition 

The project aims at developing an innovative approach by combining a technique from the symbolic 

and subsymbolic sub-disciplines of AI research. The aim is to apply knowledge captured in an ontology 

to improve object recognition in videos, based on an artificial neural network (ANN) and a deep-

learning approach. 

Figure 1 presents an overview of the architecture and orchestration of the newly created approach.  

The image recognition unit provides access to the ANN database containing available models. The 

models can either be for a single concept in the ontology or a combined model for several concepts. 

The semantic augmentor unit provides access to the ontology. The ontology is supposed to capture 

the relevant knowledge for the application field of discovering fashion items in videos. There exists an 

ontological twin for every classification model in the deep learning part of the system. These twins are 

embedded in contextual knowledge like a taxonomy of fashion items, environments suitable for specific 

fashion categories (mountain, skiing, outdoor), social contexts relevant for fashion categories 

(weddings, parties), and more. See 3.2 for an extensive description of the ontology structure. 

An upload of a video on the deep learning servers triggers an initial analysis, resulting in a scene 

(e.g., airfield, bar, concert_hall) classification, the detection of the gender (male, female), and the body 

area/fashion category. For each classified scene, a set of concepts from the ontology is considered 



relevant for this purpose. This "starter set" usually includes high-level concepts in the ontology (e.g., 

fashion category TOP for the gender female in the scene outdoor). Rather than searching for all potential 

fashion items, which results in many fashion items, the search starts with a subset of 2 to 8 objects. 

These results are returned to the analysis framework and forwarded to the semantic servers. The 

semantic service utilizes the shared taxonomy between the project partners and can infer contextualized 

knowledge fitting to the requested items. While the detection of a bikini or bra is likely in a swimming 

pool, the same item in a hardware_store or ski_resort is unlikely. The semantic service will, therefore, 

filter these elements. 

 

 

Figure 1: Sequential Improvements of Detection Accuracy 
 

The refined iteration can be triggered after a higher-level concept is detected, utilizing semantic 

reasoning based on the previous analysis. The iterative improvement process takes place on the common 

terminology that is defined for all project partners. Figure 2 shows an excerpt from this shared ontology. 

As an example, we could assume a medium shot of a woman in a swimming pool. The image 

recognition unit would recognize the scene swimming_pool_indoor and the fashion category TOP. The 

semantic component now can derive that no leaf item in the TOPLAYER and MIDLAYER category fits 

the classified situation and returns only the LOWERLAYER category as the next possible item in the 

given situation. For the next refinement iteration, two of the three available classifiers can be omitted 

in the image analysis, thus saving computational resources. With this approach, we reduce the effort 

required to object recognition compared to the brute force strategy of trying all existing concepts but 

expect to reach high tagging-quality. However, this expectation has to be validated in subsequent 

experiments. 

Further, we can infer additional possible sub-categories of the detected fashion items through 

reasoning after reaching the image recognition service's finest search category. The shared ontology 

contains 62 classes. If the algorithm reaches a leaf element, no further iteration can be triggered at the 

image recognition-servers. To enable the deriving of possible, more accurate results beyond the image 

classifiers, the leaf elements of the shared ontology contain a link towards a more extensive, non-shared 

fashion vocabulary containing 693 elements. This larger ontology is based on the EU-funded fashion-

brain project [26]. More information on the created fashion ontology, its evolution, and the underlying 

design decisions can be found in [27]. 

The integration of the more extensive fashion vocabulary with the semantic twins enables the 

inferring of new sub-classes without newly trained recognition classifiers through the use of semantic 



reasoning. The ontology stores matching sub-concepts for the detected classes and puts them into 

perspective to the already classified items, allowing the filtering of sub-concepts that might fit into a 

given situation. The latter is validated in the evaluation section. 

 

  
Figure 2: Excerpt of Shared Ontology 

3.1. Structure of the Image Recognition Unit 

The recognition unit consists of three main components that perform one of two main visual tasks: 

classification and detection. The components are next described in the same order of their use in the 

recognition unit. The first component is a ResNet18 classification model trained on the Places 365 

dataset [25]; the model is trained and provided by the team responsible for Places. This network can 

distinguish between 365 scene categories covering a broad spectrum of environments seen in the real 

world. This component operates independently from the other two, which operate together to produce 

their results. The next component is an object detector that is trained to detect seven main types of 

objects, namely Male_head, Female_head, Top, Bottom, Dress (clothes covering the full body), 

Accessory (hat, tie, bag …), and Shoes. As for the detector's architecture, we leverage the more complex 

but more accurate ResNet50 as the backbone model for a Faster R-CNN detection model [11]. A dataset 

of 6000 images was prepared and annotated accordingly for the training of the model. The detector is 

trained only once and will then detect its seven categories regardless of which specific fashion element 

is present. It will always detect the region in an image representing a top object irrespective of which 

top is that (T-shirt, jacket…). The detected objects are then to be further classified by the third 

component, which is a hierarchy of classifiers. We went for hierarchical classification because it offers 

the system a significant advantage compared to a flat classification approach; it delivers better accuracy 

with regard to objects with a similar appearance, as shown in works [7–9,28]. That is required in our 

use case as many fashion elements are very similar (e.g., bra vs. bikini top), and an appropriate 

differentiation is necessary for the semantic augmenter to work well. The enhanced accuracy comes 

with extra computational time; however, that is not a problem, as the system does not need to conform 

to any specific runtime requirements. Each classifier in the hierarchy corresponds to a non-leaf node in 

the tree of a shared fashion ontology with the semantic augmenter. Figure 2 shows an excerpt of the 

ontology. In total, 22 classifiers were trained; they can be controlled/run separately or as one entity. 

Leaf nodes in that tree represent the final categories that the hierarchy can differentiate. In total, the 

tree has 37 leaf nodes corresponding to 37 fashion categories. These are the coarse fashion categories 

that the semantic augmenter can obtain from the recognition unit along with the gender information 

from the detector and the scene category from the first component for further refinement. The semantic 

augmenter also has access to the results of the intermediate classifiers in the hierarchy. To train the 

classifiers in our hierarchy, a dataset of around 60,000 images was prepared out of freely available 

images online. For each one of the 37 end-categories, about 1500 images were collected. For training 

intermediate classifiers, images from leaf categories were merged to represent parent categories. The 

images in this dataset were taken as tight around the objects as possible; that would yield training 

examples that imitate image areas under the bounding boxes delivered by the detector. 



In the recognition unit, we followed a cloud-based computer vision as a service approach and 

provided our trained classification and detection models through a custom-built REST-API. This API 

allows the upload of a video or image file, selecting a trained neural network model for inference, and 

then the request of a classification or detection process. A feedback mechanism was also implemented 

in the recognition unit. Either the augmenter or a human user can mark-up false recognition results; the 

system can accumulate that information, and upon request, a training process can be triggered for 

arbitrary networks. The training process ends with the help of the early stopping stopping technique 

based on the validation loss.  

Due to the fast-changing nature of computer vision research, we could not leverage the most recent 

model architectures like EfficinetDets as such models were not yet available at the time of implementing 

our solution. However, we developed our server and machine learning infrastructure with extensibility 

in mind. Therefore, it is possible to easily integrate new model architectures, and we are currently 

researching suitable candidates.  

3.2. Structure of Semantic Image Augmentation Ontology 

In this section, the semantic augmenting unit is described in more detail. The ontology is built in 

OWL and utilizes an extensive class structure without depending on individuals. Figure 3 presents the 

structure of the semantic augmentation ontology. In the following example, JEANS_SHORTS are 

detected by the image recognition unit. It is associated with the gender-class female and male. The 

fashion items are not connected directly to the scenes but through an intermediary object occasion. The 

ontology utilizes object properties for the connection of the various classes, modeled as subclass 

relationships. The ontology is publicly available at [29]. 

 

 
Figure 3: Example for the Encoded Additional Knowledge to a Detected BUSINESS_TROUSERS (Excerpt) 

 

As the ontology consists of 365 recognizable scenes and over 750 fashion items, creating a 

connection between all of these items heavily increases the size of the ontology and the modeling effort. 

The in total 56 occasions reduce the complexity and ease the maintenance of the ontology. Taking the 

example of the JEANS_SHORTS, it allows to exclude occasions, among others, like winter, formal-

business, or high-class-events with the associated, detectable scenes like courthouse, ski_resort, office 

or dining_hall.  

  



Table 1 
Accuracy of Image Recognition 

Classifier Classes Top-1 Accuracy % 

Accessory Headcover, Eyewear, Bag, Tie 93.1 

Headcover Caps, Hats 90.4 

Eyewear Sunglasses, Clear glasses 91.0 

Bag Handbag, Backpack 91.8 

Top Lower layer, Mid layer, Top layer 90.5 

Lower layer Bikini, Bra 85.7 

Mid layer Pullover, Shirt 91.8 

Top layer Suit jacket, Coat, Jacket 90.8 

Shirt T-shirt, Business shirt, Auxiliary shirt 90.3 

Dress Occasion Formal dress, Casual dress 88.9 

Dress Type Long dress, Mid dress, Short dress 89.7 

Shoes Open shoes, Closed shoes 92.2 

Open shoes Open heels, Sandals, Flip-flops 90.6 

Closed shoes Boots, Flat shoes, Closed heels 91.9 

Boots Extra high boots, High boots 91.0 

Flat shoes Sneakers, Business shoes 91.5 

Bottom Short pants, Trousers, Skirt 93.0 

Short pants Shorts, Underwear 92.6 

Trousers Business trousers, Casual trousers 90.2 

Skirt Long skirt, Short skirt 89.9 

Shorts Jeans shorts, Other shorts 92.7 

Casual trousers Jeans trousers, Sport trousers, Others 91.1  

 

Taking the example of Figure 3, the IMAGERECOGNITION class represents the iterative 

improvements of the image recognition service. For the example JEANS_SHORTS, at first, the body 

area is detected (BOTTOM), then the kind of trousers (In this case TROUSERS, other possibilities would 

be SKIRT, and BUSINESS_PANTS). At last, the clothing element itself is detected. At this point, the 

image-recognition classifier does not offer additional knowledge; it has reached the finest available 

granularity. The leaf element of the IMAGERECOGNITION's ontological twin now points to the more 

extensive fashion-knowledge base. As these elements are connected to the same describing attributes, 

the semantic engine can infer additional fashion items that fit the given situation using the same gender 

and occasion/scenes constrains. In our example, the larger, non-shared fashion ontology contains 

additional shorts-elements like casual_shorts, cutoffs, bermuda-shorts, cuolottes, and more (30 

different kinds of shorts in total). 

4. Evaluation of Image Recognition Unit 

Improving on the accuracy of state-of-the-art machine learning models is out of the scope of this 

work. However, an evaluation of our models is important to make sure they are working properly. The 

ResNet18 classification model trained on Places365 was provide by the authors [25]. They provided 

multiple ResNet models with different number of layers. Accuracy figures for the 18-layers model were 

not mentioned. We evaluated the model on the test set of Places365 and reached a top-1 accuracy of 

53.2% and a top-5 accuracy of 83.8%. Our 7-classes detection model was evaluated on a test set of 

1000 images and reached an mAP of 51.7% using an intersection over union threshold of 0.5. Classifiers 

in the classification hierarchy were individually evaluated. Each classifier was assessed on a test set 

that has around 100 images per class. The results are summarized in Table 1. 

  



Table 2 
Results of the Semantic Augmentation for 12 Sample Images 

# Scenes m/f Image Detection Semantic Augmentation 

1 ocean, wave f pullover NA 

   other_shorts NA 

2 playground, corral f t-shirt t-shirt: uni-t-shirt, pattern-t-shirt, print-t-shirt 

   other_trousers pants: Cargo-pants, casual-pants, chinos-and-
khakis, corduroy, cropped-pants, dress-formal, 
joggers, knits, overalls, overall-pants, rain-pants 

   sunglasses sunglasses 

3 ski_slope, snowfield - jacket jackets: down-jackets, fleece-jackets, leather-
jacket, puffers, shearling-jacket, sport-jackets, 
winter-jackets 

   sport_trousers sport-pants: snowboading pants; sport-jackets: 
snowboarding-jackets 

4 stadium_soccer, 
stadium_baseball 

m caps baseball-caps 

   t-shirt t-shirt 

   other_shorts shorts:sport-shorts: soccer-shorts 

5 beauty_salon, 
dressing_room 

f bra bras: strapless, sports-bras, push-up, minimizers, 
mastectom, demicup, convertible, bralettes 

   underwear underpants: bikinis, g-strings, hipsters, tangas, 
thongs, briefs 

6 picnic_area, 
forest_path 

f short (dress) baby-doll, jesery-dresses, summer-dresses, tank 

   sneakers sneakers 

7 street, plaza f hats hats: berets, ear-muffs, newsboy-caps, straw-hats, 
sun-hats, visors, fedoras 

   axillary-shirt t-shirt: uni-t-shirt, pattern-t-shirt, print-t-shirt, 
tank-tops 

   long-skirt skirts: mid-length-skirts, mini-skirts, long-skirts 

   sandals sandals: classical-sandals, flat-sandals, high-sandals 

8 elevator_door, 
elevator_lobby 

m business-shirts button-down-shirts, button-down-oxfords 

   tie ties-cummerbunds: bow-ties, neck-ties 

9 office, home_office m t-shirt t-shirts 

   jeans_trousers jeans: bootcut-jeans, skinny-jeans, slim-jeans, 
straight-leg-jeans, stretch-jeans 

10 kitchen, wet_bar f axillary_shirt t-shirts:pattern-t-shirt, print-t-shirt, uni-t-shirt, 
tank-tops 

   mini_skirt skirts: mid-length-skirts, mini-skirts, long-skirts 

11 reception, 
beauty_salon 

f mid (dress) jumper-dresses, sweater-dress, wrap, day-dresses, 
shirtdresses, knitted-dresses 

   open_heels boots, heels 

12 pharmacy, bar m Business_Shirt NA 

   other_trousers pants: cargo-pants, casual-pants, chinos-and-
khakis, corduroy, corduroys, cropped-pants, dress-
formal, joggers, knits, overalls, overalls-pants, 
wide-leg-pants 



5. Evaluation of Semantic Augmentation 

The current results of the new service look promising. For the evaluation, we choose a total of 12 

different pictures. As the evaluation is focused on the performance of the semantic augmentation engine, 

we considered "perfect" image-detection results. Table 1 shows the detected scenes, the corresponding 

image detection items in their finest granularity, and the additional items inferred by the semantic 

augmentation engine. The last row, containing the inferred elements, has to be read the following: 

If the semantic engine cannot infer any results, this is indicated by NA. Otherwise, the linked item 

is presented, followed by their fitting sub-items, if applicable. For example, in result #2, the image-

recognition item t-shirt is linked with a t-shirt item in the more extensive fashion knowledge base. This 

linked item also has more detailed sub-items like uni-t-shirt, pattern-t-shirt, and print-t-shirt. The 

scenes constrain these subclasses. An example of this constraint can be found in #4. For the scenes 

stadium_soccer and stadium_baseball, there are no subitems of t-shirt linked as a proper fit. 

 

The motivation for the development of this prototype was the 

generation of advertisable fashion. Therefore, the focus was not the 

precise description of subclasses but the inferring of fashion-items 

that can be worn in a given situation and fit the elements detected 

by the image recognition technology. Taking example #3, showing 

a man on a ski-slope. The semantic linked in total seven different 

items for the detected jacket. Of these seven items, we deemed four 

of them fitting as advertisable in the given context (down-jacket, 

winter-jacket, puffers, sport-jackets), even though only two are 

exact sub-classes of specifying the presented object (winter-jacket 

and sport-jacket).  

The 12 pictures contained a total of 28 fashion-objects detectable 

by the image recognition. These image recognition-objects are 

linked to 37 elements of the fashion knowledge base. The inclusion 

of sub-items extends the number of inferred items to 94. Of the 94 

items, we rated 67 relevant for an advertising context, resulting in a precision value of 71,3%.  

6. Expected Economic Benefits 

The hybrid approach's economic potential can be illustrated by comparing the object recognition 

solely using machine learning with the combined semantic and deep learning (DL) approach. Let us 

assume that we have M videos and determine the relevant objects in video k. Furthermore, there are N 

classifiers available that have been trained in the DL approach, one for each object. What objects are 

relevant in what scene is further specified in the semantic net. To determine the relevant objects in k 

can be done only with the DL approach or with the combined semantic net and DL approach.  

In the first case (without a semantic net), to identify all relevant objects in video k, all classifiers 

have to be applied because there is no information from the semantic net about what scenes exist, what 

objects characterize these situations and what additional objects are relevant in a scene. In this case, the 

effort Ek of identifying relevant objects for video k consists of using the approach with all available 

classifiers. 

When using the semantic net, the classifiers of the DL approach first have to be used to identify the 

scene. The number of scenes is much smaller than the total number of objects for M, and the number 

of classifiers required to determine a specific scene also is much smaller than the total number of 

objects. In the second step, only the objects related to the identified scene are relevant, i.e., only this 

specified set of classifiers for the DL approach has to be used. 

The effort required to determine the relevant objects in k consists of the effort for detecting the scene 

plus the effort for running the classifiers for the objects relevant in the detected situation. This is 

illustrated in Figure 5, where e0 is the effort required to prepare scene recognition for video k on the 

initial analysis of the semantic net, ei is the effort required to run an individual classifier, and N' is the 

number of required classifiers to determine all relevant objects. If for video k all objects (and available 

Figure 4: Man on the Ski-Slope 
by [1] (Item detection #3) 



classifiers) are relevant, N is equal to N'. Then the effort of object recognition without the use of the 

semantic net will be less than with its use.  

 
Figure 5: Comparing efforts required for object recognition with and without the semantic net. 
 

Figure 5 shows the dependence graphs of the effort of object recognition on their number with and 

without using the semantic net. For descriptive purposes, the assumption has been made that the effort 

to run a particular classifier is the same, and it is emean. Then, the effort required for determining all 

relevant objects in k without using the semantic net is E = emean * N. 

When using the semantic net for video k, an initial effort e0 will be required to bootstrap the semantic 

net and select N' objects to be used for scene recognition. In this case, N' ∈ [1, N''], where N" is the 

number of the applied classifiers for objects required for scene recognition, which usually does not 

exceed 5–6. It should be noted that the more distinctly the objects describe the relevant scenes, the 

smaller the value of N" will be. When the situation can only be described by using many objects, the 

value of N" will be high (i.e., a large number of classifiers must be used). If there is a set of objects 

significant for only one specific scene, the value of N" will be low. Then, the required effort for object 

recognition with the help of the semantic net will be determined for N' < N" according to the formula 

E = e0 + emeanN', and for N' > N" it will be determined by the formula E = e0 + emean N". Ns is the number 

of classifiers for determining a scene, and Ek = e0 + emeanN' the required effort. The triangle colored in 

green is the expected benefit of the hybrid approach. 

7. Discussion 

The usage of automated object detection has the potential to replace the manual tagging of video 

contents and can, therefore, lead to significant monetary savings. However, the specific characteristics 

of the analysis of fashion-related videos present a challenge for implementing a classical object 

detection analysis. Due to the nature of moving pictures, many frames need to be analyzed and require 

enormous computing power. Some fashion objects look similar to each other and need additional 

context to be distinguished. In this paper, we proposed a combination of a deep-learning CNN through 

a hierarchical semantic network. We argue that this approach has the potential to lower the 

computational requirements and enhance precision. Furthermore, the extension of the novel detection 



requires less effort, and the deriving of additional information besides the image recognition data 

through semantically linked knowledge is possible. 

In this work, we evaluated the semantic augmentation performance and showed how it could help 

bring us beyond what we can explicitly detect with typical recognition techniques. While the semantic 

augmenter and the image recognition system are now deployed online and the productive end-software 

is imminent (debugging phase), a full evaluation of the novel approach (image-recognition + semantic) 

is still pending. Therefore, this research endeavor's next steps are concerned with the numeric analysis 

of the characteristics in terms of computational requirements, end accuracy (recognition error + 

semantic error), training effort, and response times.   
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