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Abstract 
The modern approaches to selection of a project lifecycle model are based in many cases on 

the use of iteration that can be reduced to linear optimization (LO) problems. For study and 

solution of such problems, researchers use the program library of such well-known software 

packages as Mathematica®, Maple® and MathCad®. Computer-aided calculations allow 

solving complicated types of combinatorial integer linear optimization problems and help to 

solve large-scale problems as well. The known methods of exact or approximate solution of 

such problems are studied with account taken of the fact that they belong to so-called P- or 

NP-class problems (polynomial or exponential solution algorithms). In view of this, the 

modern computer-based methods for practical solution of discrete linear optimization 

problems require development of algorithms that allow obtaining an approximate solution 

with guaranteed estimate of deviation from the target function optimum. For such problems, 

it is very important to improve (to simplify) the mathematic model itself, which has to be 

prepared before the beginning of computer calculation. This practical reasonability for a wide 

range of LO problems promotes developing new efficient and improving the existing 

algorithms of preparing for computer calculations. Application of such algorithms will 

considerably reduce the duration of computer calculation and hardware requirements to the 

computer. The subject of this research is development of a chain of efficient algorithms to 

simplify the initial mathematic model of problem and its computer calculation. Construction 

of efficient algorithms and general principles of preparing for computer solution of LO 

problems with their illustrations on various project management model problems is the 

objective of this research. 

 

Keywords 1 
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1 Introduction 

The quality is managed during the whole project lifecycle. All of its stages and elements have to 

be analyzed. This process provides for availability of project, organizational and management 

decisions aimed at assurance of quality in fulfillment of processes in the course of project 

implementation. The management of quality is realized through compliance with specified 

requirements and international standards for quality of information systems, through the system of 

control and support of quality in the process of development. Efficient construction of a quality 

management model provides for use of various project management approaches [16-20]. 

Modern mathematic models of project management processes description can be reduced in many 

cases to linear optimization (LO) problems [1,2]. For study and solution of such problems, researchers 
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use the subprogram library of such well-known software packages as Mathematica®, Maple® and 

MathCad®. Computer-aided calculations allow solving complicated types of combinatorial integer 

linear optimization problems and help to solve large-scale problems as well [10,12]. 

For such problems, it is very important to improve (to simplify) the mathematic model itself, which 

has to be prepared before the beginning of computer calculation. This practical reasonability for a 

wide range of LO problems promotes developing new efficient and improving the existing algorithms 

of preparing for computer calculations [15]. Application of such algorithms will considerably reduce 

the duration of computer calculation and hardware requirements to the computer. 

The subject of this research is development of a chain of efficient algorithms to simplify the initial 

mathematic model of problem and its computer calculation. 

2 Research paper study and problem statement 

In multiple cases, mathematic models of active systems management are interpreted in the form of 

linear optimization problems [1–3,12,13]. 

Preparing for LO problems solution can be simplified based on using the notion of “duality”. A 

couple of dual problems formed according to certain rules allows a researcher to select one of them 

that is simpler in its computer calculation. 

Simplification algorithms provide an efficient method of searching for solution of an optimization 

problem. If we project a multidimensional process onto a two-dimensional plane, this method will 

enable graphic visualization of the problem solution sets. This research has proposed a method of 

simplifying the combinatorial solution of a discrete optimization problem. It is based on 

decomposition of the system representing a system of constraints of a five-dimensional initial 

problem into the two-dimensional coordinate plane. Such method allows obtaining a simple system of 

graphic solutions to a complicated linear discrete optimization problem. From the practical point of 

view, the method proposed allows simplifying the calculation complexity of optimization problems 

belonging to this class. 

Solution of linear optimization problems is based on algorithm of the classic or a common simplex 

method. It consists in intellectual iteration over polyhedron apexes 
I (allowable area of optimization 

problem). The plan or an apex of polyhedron 
I  is specified by a system n of basis vectors 

1 2, , , na a a . The number of possible apexes of polyhedron equals to the number of combinations 

m

nС (n – problem measurability, and ( )Im rang=  ). Real linear optimization problems that interpret 

models of management are characterized by big values of m. In view of this, we had to develop an 

algorithm ensuring ordered iteration over angular points of the polyhedron. Such a method was 

developed [1, 2] and is called simplex method. It allows obtaining the optimum optimization problem 

solution from the known primary reference plan
0X , within a finite number of steps. Each iteration 

step of a simplex method corresponds to a new plan improving the target function value. The 

algorithmic process continues until finding the optimum value of target function or the absence of 

optimization problem solution. 

The number of simplex method iterations is determined by the primary reference plan
0X and the 

number of angular points
I
. As there are several “ways” of transition from 

0X to the optimum 
optX , we 

encounter the need to find the shortest (in terms of the number of apexes) “way” of iteration. Now 

there are not any publications with such assessments and their correlation to the classic simplex 

method algorithm. 

3 The objective and the tasks of research 

The research objective provides for use and development of efficient algorithms and preparing 

mathematic models of the LO theory with further realization of their solution with the help of 

computer. For achievement of the objective stated, the following tasks were specified: 

• Provide the general problem statement for construction of efficient algorithms; 

• Give model examples illustrating the efficiency of algorithms at the stage of computer 

calculation. 



4 General statement of a solution simplification problem. Use of the duality 
theory in Linear Optimization problems 

The intensity in development of modern information technologies results in complication of 

information systems for various sectors of public activities, implementation of IT projects on their 

development. Big IT projects are characterized by: 

• complexity of description, the need for thorough modeling and analysis of data and 

processes; 

• a big number of interlinks between the components (subsystems); 

• the impossibility to use typical project solutions; 

• the need for agreement with applications available in the market; 

• different levels of developers’ qualification and a wide range of tools and means of 

development; 

• growing project scale through involvement of developer teams. 

The modern approaches to construction of information systems are determined by complexity of 

defining the total scope of data and analytical tasks of the project. Developers use to define and 

analyze the requirements to an information system during the whole lifecycle of its development. 

Certainly, a project lifecycle model depends on complexity of the software product to be created. For 

development of complicated information systems, the most frequent use is found by the iteration 

model providing for division of the project lifecycle into a certain sequence of iterations each of 

which is presented as a “mini-project”. The objective of each iteration is to achieve getting a 

functional version of information system including supplements and realized modifications introduced 

at previous iterations. The final iteration result includes all necessary product functionality. After each 

iteration, the information system acquires some growth, i.e. some evolutional development. 

Projects on development of complicated information systems the architecture of which includes a set 

of components where each component can have several versions encounter the problem of studying 

their interrelation with the purpose of creating a unified structure and assuring development of the 

whole system. The said model contributes to systemic approach to information system development 

with due control and account taken of changes introduced at all stages of the lifecycle. Reduction in 

the number of iterations is provided by the use of linear optimization problems. 

Linear optimization that was already determined for a long time as a separate part of the optimization 

theory in most cases applies sustainable classic algorithms for solution of its problems [1–6]. Typical 

problems include such steps of a classic algorithm as: obtaining the primary reference plan, 

constructing a chain of reference plans, evaluation of their optimality, improving the plan and the 

target function value [7–11]. Each of the reference plans has a set of linearly independent basis 

vectors. Transition to a new basis that is nothing more than a transition to the neighbor polyhedron 

apex along its edge is affected within a rigorous algorithm. According to the simplex method 

algorithm theory, this transition is to be carried out in the direction of the best alteration of the target 

function values [12,13]. Such a “firm” calculation requirement to an algorithm results in some linear 

optimization problems in appearance of a too big number of iterations as compared to transition not to 

the neighbor apex but to another one that can be determined by additional requirements. 

Algorithms of preparing a LO problem for computer calculation can be essentially simplified through 

using the notion of “duality” in LO problems [9,10]. The existing patterns of transition from primal 

problem to a dual one enables easy creation of a dual problem couple. 

Formalizing the classic pattern of constructing a dual problem, we obtain couples of mutually dual 

problems. This, in its turn, allows selecting the simplest problem in terms of calculation for the further 

solution. Let us consider the most common case of presenting a primal LO problem in the form of a 

general LO problem 
 I
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or in extended form of record 
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A problem of the following form is called dual to it: 
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or in other form of record 
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4.1 Model Example No. 1 

A dual problem is to be constructed for the following primal linear optimization problem: 
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S o l u t i o n .  For the beginning of transition to dual problem, we prepare the system of 

constraints of a primal problem – for a maximization problem, we only need inequalities  . We 

reverse the sign of the first inequality. 
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Transition to dual problem is presented in Table 1. 

 

Table 1. 
Transition to dual problem for model example №1 

Y\X 1 0x   2 0x   3 0x   4 0x   5x  ?
 

B 

1 0y   –3 –2 1 –2 –1   –12 

2 0y   1 –1 8 –1 7   1 



3y
 

1 4 1 –2 –1 = 8 

?
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C 1 2 –1 7 –1 

 

The dual problem has the following form: 
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The dual problem can be reduced to a two-dimensional one. Actually, in case of excluding 
3y  

from the system equation, we will only have two variables: 
1y  and 

2y . Solution of the primal 

problem is to be found under condition of the known theorems of duality [4,5]. 

4.2 Reduction in general Linear Optimization problems 

Let us have a general linear optimization problem in the form: 
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We know that such a problem can always be reduced to the canonical form of record: 
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We have to remember that linear optimization problems have equivalent forms – they reserve their 

set of solutions. This can be achieved under the condition of using transformation methods for 

transition from one form of problems to the other. Thus, the equation of system of constraints to a 

linear optimization problem is equivalent to the system of two inequalities: 
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Variables with arbitrary sign can be presented in the form of difference of 2 nonnegative variables: 



.0   ,0       , −= jjjjj vuvux        (11)
 

Transition from constraints – inequalities to constraints – equations is made by adding a 

nonnegative (balancing) variable: 
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For simplification of linear optimization problems transformation, we can also use the transition 

from maximization to minimization of the target function and vice versa: 

minWmaxW
11
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In view of this, without loss of generality, let us have a linear discrete optimization problem 

presented in canonical form: 
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where the rank of the system of constraints coefficient matrix is equal to mA =rang . 

In this case, solving the system by Gauss-Jordan method with arbitrary basis combination of 

variables, we obtain a projection of n-dimensional initial problem to (n-m)  – dimensional space. In 

case n - m = 2, we have projecting to the two-dimensional plane. 

Let us consider a model example of solving a five-dimensional linear optimization problem based on 

such projecting of a multidimensional space onto the two-dimensional one. 

4.3 Model Example No. 3 

Solution of the following linear optimization problem using the simplification algorithm 
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S o l u t i o n .  The system of constraints (15) consists of three independent equations. We move 

from the canonical problem presentation form to the standard one. Such transition is made by solving 

the system (15) by the Gauss-Jordan method (Table 2). As basis variables, we select the following 

three: x3, x4, x5. 

 

Table 2 
Calculation under basis x3, x4, x5 

 x1 x2 x3 x4 x5 b ∑ 

 10 10 1 1 1 179 202 

 19 14 1 2 2 298 336 

 4 5 0 1 0 69 79 



WI 13 7 2 -1 2 151   

 10 10 1 1 1 179 202 

 -1 −6 −1 0 0 −60 −68 

 4 5 0 1 0 69 79 

WI -7 −13 0 −3 0 −207   

 9 4 0 1 1 119 134 

 1 6 1 0 0 60 68 

 4 5 0 1 0 69 79 

WI -7 −13 0 −3 0 −207   

 5 −1 0 0 1 50 55 

 1 6 1 0 0 60 68 

 4 5 0 1 0 69 79 

WI 5 2 0 0 0 0   

        

From the last chain of Table 2, we obtain the solved system. 
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Dropping the basis variables, we provide a transition to two-dimensional inequalities. Projection of 

the five-dimensional initial problem onto the coordinate plane Ox1x2 has the following form: 
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The graphic solution is given on Figure 1. 

 
Figure 1: Projection to Ox1x2. 

The extreme apex coordinates provide the solution of the system 
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We can obtain the other coordinates from the solved system (17). Therefore, the optimum solution 

of the initial problem is equal to 

  0 0, 19, 5, 11, Xopt

max
= .        (19) 

The biggest value of the target function will be 65Wmax =
I

. Note. Three variables can be selected 

from five by ten methods 103

5 =C . We consider another combination from possible ones to reduce 

the problem. We select x2, x3, x4 to be our basis variables. Let us solve the initial system of constraints 

to variables x2, x3, x4 by Gauss-Jordan method (Table 3), but using system (17) equivalent to system 

(18). 

 

Table 3 
Calculation under basis x2, x3, x4 

  x1 x2 x3 x4 x5 b ∑  

  5 −1 0 0 1 50 55  

  1 6 1 0 0 60 68  

  4 5 0 1 0 69 79  

WI 5 2 0 0 0 0    

  -5 1 0 0 −1 −50 −55  

  31 0 1 0 6 360 398  

  29 0 0 1 5 319 354  

WI 15 0 0 0 2 100    

 

Table 3 provides the solved system with basis variables x2, x3, x4, 

 

1 5 2

1 5 3

1 5 4

5 50,

31 6 360,

29 5 319.

x x x

x x x
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Ignoring nonnegative basis variables x2, x3, x4
 
we perform a transition to constraints-inequalities. 

The projection of a five-dimensional polyhedron of initial problem (15) to coordinate plane Ox1x5, or 

an equivalent transition from the canonical form of LO problem to the standard one looks like: 
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Graphic solution of the problem is given on Figure 2, where 505:ω
511

=+ xx , 360631:ω 512 =+ xx , 

319529:ω 513 =+ xx , 0:ω
24

=x , 0:ω 15 =x . 

 



 
Figure 2: Projection to Ox1x5 
The optimum apex has coordinates 111 =x , 05 =x . We calculate coordinates x2, x3, x4 from system (21). 

Finally,   0 0, 19, 5, 11, opt

max =X . The obtained optimum solution matches the previous ones, which confirms the 

calculations carried out to be correct. 

4.4 Acceleration of the Linear Optimization problem solution convergence 

In most cases, solution of linear optimization problems is searched for by the simplex method. 

However, this classic algorithm of linear optimization problems solution may create additional 

iterations in the immediate process of calculation. If we break some components of the standard 

simplex method algorithm, we can accelerate the convergence of simplex calculation – reduce the 

number of simplex tables. 

For acceleration of the simplex method convergence, it is proposed to deviate from the canonical 

algorithm. It is required to choose not the neighbor apex as the next problem plan, but the verified 

apex selected according to evaluation of the biggest and the smallest target function values. We 

consider the general approach to solution of a linear optimization problem according to the classic 

simplex method algorithm [1,2,3]. Without loss of generality, let us have a linear optimization 

problem in the standard form of record  
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where     0,    1, 2, , .ib i m =  

Adding a balancing nonnegative variable 0,    1,  2,  ,  ix i n n n m = + + +  to each inequality 

and recoding the problem in vector form allow obtaining the canonical form of an optimization 

problem record  
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or in extended form of record: 
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                    

T T T

1 1 2 21, 0, , 0 ,   0, 1, , 0 ,   , 0, 0, , 1 ,n n n n n m n m+ + + + + += = = = = =a e a e a e       

T

1 2, , , mb b b=b . 

Vectors 
1 2, , ,n n n m+ + +a a a are unit vectors. These vectors are linearly independent and constitute 

the basis. The right sides vector resolution of the optimization problem set of constraints has the 

following form: 

1 1 2 2n n m n mb b b+ + += + + +b e e e
       (25)

 

As all 0ib  , we obtain the allowable primary reference plan
0X . The following basis resolution 

corresponds to the primary plan. 

   0 1 1 2 2 1 2[0,0, ,0, , , , ]n n m n m m

n

b b b b b b+ + += + + + =X e e e

  (26) 

The main idea of using the simplex method algorithm is sequential iteration over allowable reference 

plans. One vector is excluded from and another included to the basis by the Gauss-Jordan method 

[14]. Subject to compliance with these criteria, we have to build a chain. The beginning of the chain is 

located at the starting apex 
0X
 of polyhedron 

I  and corresponds to the first simplex table of 

calculation. Moving to the next reference plan 
1X  by following the classic algorithm corresponds to 

transition to the neighbor apex. Actually, each table is a numeric description of apexes
I . The 

process is to be continued till finding the optimum apex 
optX  or confirming its absence. 

At the arbitrary step of calculation by following the common simplex method algorithm, we have the 

possibility to move not to the neighbor apex, but to the arbitrary apex located around the optimum 

apex. Such an apex can be selected based on multiple evaluation methods, e.g. the half-interval 

method. For this selection, the alternative chain of simplex calculation may have a much smaller 

number of iterations. Let us consider a model example of a two-dimensional linear optimization 

problem solution to confirm this case, first by following the standard procedure and then by breaking 

the rule of basis vectors combination selection. 

4.5 Model Example № 5 

LO problem solution 

 

1 2

1 2

1 2

1 2

2

W 2 3 max,

3 4 6,

 2 12,
:

3,

 4,

               0,  1,  ,  4.

I

I

j

x x

x x

x x

x x

x

x j

= + →

− 


+ 
 

− + 
 

 =
        (27) 

 

S o l u t i o n .  Basis nonnegative unknowns 
   3 4 5 6, , ,x x x x

 are to be added to left sides of each inequality. As a 

result, we obtain the canonical form of a linear optimization problem: 

 



I 1 2

1 2 3

1 2 4

1 2 5

2 6

W 2 3 max,

3 4 6,

 2 12,
:

3,

 4,

               0,  1,  ,  6.

I

j

x x

x x x

x x x

x x x

x x

x j

= + →

− + =


+ + =
 

− + + =
 + =

 =
        (28) 

 

We have the primary reference plan  0 I 0,  0,  6,  12,  3,  4 = X . Let us draw the reference 

simplex table (Table 4). 

 

Table 4 
Simplex table vertex X0 

        a1 a2 a3 a4 a5 a6 
 

  Basis 
C B  2 3 0 0 0 0 

 

  a3 0 6 3 −4 1 0 0 0 
 

  a4 0 12 1 2 0 1 0 0 
 

  a5 0 3 −1 1 0 0 1 0 
 

  a6 0 4 0 1 0 0 0 1 
 

  D j WI  = 0 -2 -3 0 0 0 0  
 

Index row 
j  has two negative evaluations meaning that plan  0 I 0,  0,  6,  12,  3,  4 = X  is 

not optimum and can be improved. The pivot column can be found by the rule of selecting the 

smallest negative value of evaluations. This is column 
2а as   2min 2, 3 3− − = − → a . The pivot 

row is to be set by the rule of selecting the smallest simplex ratio for positive components of the pivot 

column. 

We have  

2 5

2

12 3 4
    0,  4,  5,  6 min  ,  ,   3

2 1 1

i
i

i

b
a i

a

   
 = = = →   

  
a

   (29) 

Our solving element is 
52 1a = . For it, we make a Gauss-Jordan transformation and by following the 

algorithm we select (Table 5): 



 

Table 5 
Simplex table vertex X1 

        a1 a2 a3 a4 a5 a6 
 

  Basis 
C B  2 3 0 0 0 0 

 

  a3 0 18 −1 0 1 0 4 0 
 

  a4 0 6 3 0 0 1 -2 0 
 

  a2 3 3 −1 1 0 0 1 0 
 

  a6 0 1 1 0 0 0 −1 1 
 

 D j WI  = 9 -5 0 0 0 3 0  

           
 

 

From the table (Table 5): 

 1  0,  3,  18,  6,  0,  1 =X
, I 1W ( ) 9=X      (30) 

The index row 
j  has a negative evaluation. Plan  1  0,  3,  18,  6,  0,  1 =X  is not optimum 

and it can be improved. The pivot column is
2а , as only this column contains negative evaluation 

1 5 = − . We select a pivot row from the condition of the smallest simplex ratio for positive 

components of the pivot column. We have  

 1 6

1

6 1
    0,  4,  6 min  ,    2,  1 1

3 1

i
i

i

b
a i

a

   
 = = = = →   

  
а

 (31) 

In the new basis, instead of 
6а  we involve 

1а . After respective calculation, we have the third simplex 

table (Table 6). 
 

Table 6. 
Simplex table vertex X2 

           

        a1 a2 a3 a4 a5 a6 
 

  Basis C B  2 3 0 0 0 0 
 

  a3 0 19 0 0 1 0 3 1 
 

  a4 0 3 0 0 0 1 1 −3 
 

  a2 3 4 0 1 0 0 0 1 
 

  a1 2 1 1 0 0 0 −1 1 
 

 D j WI  = 14 0 0 0 0 -2 5  

           
 

 

From the table (Table 6): 
 2  1,  4,  19,  3,  0,  0 =X

, I 2W ( ) 14=X      (32) 



The index row 
j  has a negative evaluation. Plan  2  1,  4,  19,  3,  0,  0 =X  is not optimum and can be 

improved. The pivot column is 
5а , as only this column contains negative evaluation 

5 5 = − . We 

select the pivot row by the condition of the smallest simplex ratio for positive components of the pivot 

column. We have  

5 4

5

19 3
    0,  3,  4 min  ,   3

3 1

i
i

i

b
a i

a

   
 = = = →   

  
а

   (33) 

In the new basis, instead of 
4а  we involve 

5а . After respective calculation, we have the 

fourth simplex table (Table 7). 
 

Table 7 
Simplex table vertex X3 

        a1 a2 a3 a4 a5 a6 
 

  Basis 
C B        

 

  a3      −   
 

  a5        − 
 

  a2         
 

  a1        − 
 

  j WI  =       −  
 

From the fourth table (Table 7): 

 3  4,  4,  10,  0,  3,  0 =X
, I 3W ( ) 20=X  

The index row 
j  has a negative evaluation. Plan  3  4,  4,  10,  0,  3,  0 =X  is not optimum and can be 

improved. Our pivot column will be 
6а , as only this column contains negative evaluation 

6 1 = − . We 

select the pivot row by the condition of the smallest simplex ratio for positive components of the pivot 

column. We have 

 

6 3

6

4 10
    0,  2,  3 min  ,   1

1 10

i
i

i

b
a i

a

   
 = = = →   

  
а

    (34) 
 

 

In the new basis, instead of 
3а , we involve 

6а . After respective calculation, we have the fifth simplex 

table (Table 8). 

Table 8 
Simplex table vertex Xopt 

        a1 a2 a3 a4 a5 a6 
 

  Basis 
C B  2 3 0 0 0 0 

 

  a6 0 1 0 0 1/10 ̶  3/10 0 1 
 

  a5 0 6 0 0 3/10 1/10 1 0 
 

  a2 3 3 0 1    ̶  1/10 3/10 0 0 
 

  a1 2 6 1 0 1/5 2/5 0 0 
 

 D j WI  = 21 0 0 1/10 17/10 0 0 
 

 



All evaluations are nonnegative 0 j
. This means that we have found the optimum solution. 

 

 opt  6,  3 =X
, I optW ( ) 21=X

        (35) 

 

Therefore, the calculation within the classis simplex calculus contains the following chain of 

sequential iteration over apexes 
 

I : 
0 1 2 3 opt→ → → →X X X X X

       (36)
. 

 

Let us confirm that breaking the canonical simplex method algorithm can essentially reduce the 

length of the calculation chain – the number of simplex tables. We break the algorithm at the first 

step. We are not selecting the smallest evaluation like in the common simplex method, but the biggest 

one. Respective calculation is given in Table 9. 

 

Table 9 
Alternative simplex algorithm 

    a1 a2 a3 a4 a5 a6   

 Basis C B 2 3 0 0 0 0  

 a3 0 6 3 ̶ 4 1 0 0 0  

 a4 0 12 1 2 0 1 0 0  

 a5 0 3 ̶ 1 1 0 0 1 0  

 a6 0 4 0 1 0 0 0 1  

 D j WI  = 0 ̶ 2 ̶ 3 0 0 0 0  

 a3 0 ̶ 30 0 ̶ 10 1 -3 0 0  

 a1 2 12 1 2 0 1 0 0  

 a5 0 15 0 3 0 1 1 0  

 a6 0 4 0 1 0 0 0 1  

 D j WI= 24 0 1 0 2 0 0  

 a2 3 3 0 1      ̶1/10 3/10 0 0  

 a1 2 6 1 0 1/5 2/5 0 0  

 a5 0 6 0 0 3/10 1/10 1 0  

 a6 0 1 0 0 1/10     ̶ 3/10 0 1  

 D j WI = 21 0 0 1/10     17/10 0 0  

 

 

The length of calculation chain has been almost twice reduced - 0 4 opt→ →X X X . The problem 

considered is two-dimensional. Therefore, we can perform a graphical solution providing us with 

geometric interpretation of the problem calculation chains. We set up an equation of limit lines 

1 1 2ω :3 4 6,x x− =  
2 1 2ω : 2 12,x x+ = 3 1 2ω : 3,x x− + =

4 2ω : 4,x = 5 1ω : 0,x =  
6 2ω : 0x = , and set semi-

planes determined by respective inequalities of the set of constraints. As a result, we can draw 

polyhedron 
I (Fig. 3). 



 
Figure 3: Interpretation of compliance with the classic simplex method algorithm and of breaking it 

 

At the coordinate origin point, we draw the gradient vector  Igrad(W )  2,  3 = . 

Perpendicularly to it, we draw the level line. Moving the line in parallel to itself in the gradient 

direction, we set the maximum point
optX - the apex of the level lines outreach (Figure 3). The 

coordinates of the extreme apex are found as coordinates of the crossing point of respective limit 

lines: 

1 2 1

opt 1 2

1 2 2

3 4 6, 6,
: ω ω

2 12, 3.

x x x

x x x

− = = 
   

+ = = 
X

    (37) 

 

Therefore, the target function reaches its maximum value at the apex  opt  6,  3 =X  and it is equal to 

I optW ( ) 21=X .The geometric interpretation of the classic simplex calculation consists in the fact that 

the first simplex table (Table 4) corresponds to apex 
0X . The calculation up to the second table (Table 

5) corresponds to transition to the neighbor apex 
1X , in the direction of the biggest target function 

growth. The third, the fourth and the fifth simplex tables (Table 6, Table 7, Table 8) correspond to 

transition 
1 2 3 opt→ → →X X X X  (Figure 3). Therefore, for solving the problem by following the 

classic algorithm, we need to set up five simplex tables. For reducing the number of iterations, we 

break this algorithm and select not the smallest but the biggest negative evaluation 
1 2 = −  in the 

initial simplex table. The further calculation is given in Table 9. As we can see, the number of 

simplex tables has been reduced from five to three. 

5 Research results and summary 

The illustrative examples of searching for efficient algorithms of preparing for calculation of an 

optimization problem based on using the notion of “duality” problem reduction and the method of 

breaking the standard simplex algorithm have visually demonstrated the reasonability of such 

methods in solution of linear optimization problems. From the practical point of view, the proposed 

approaches allow simplifying the calculation complexity of problems belonging to this class. Based 

on comparative solutions of model problems, it has been shown that initial problems can be 

essentially simplified. The research result obtained allows arriving at the conclusion that in the 

common case, it is reasonable to search for breakage of the algorithm of standard algorithmic patterns 

currently created. The application value of the proposed approach consists in using the obtained 

scientific result for assurance of the possibility improve the canonical methods of optimization 



problems solution and, accordingly, simplifying the computer calculation using libraries of standard 

subprograms within the well-known mathematical packages. 

Conclusions 

It has been shown that there are classes of linear optimization problems for which it is reasonable 

to search for more efficient algorithms with the purpose of preparing Linear Optimization problems 

for computer calculation. It has been proved on the example of illustrative solution of typical model 

problems that the proposed approach allows us to essentially simplify the initial model for obtaining 

the solution of Linear Optimization problems in project management. 
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