
Checkability Important for Fail-Safety of FPGA-based 
Components in Critical Systems 
 
Oleksandr Drozda, Olena Ivanovaa, Kostiantyn Zashcholkina, Vitaliy Romankevichb and Julia 
Drozda  

 
a Odessa National Polytechnic University, Ave. Shevchenko 1, Odesa, 65044, Ukraine  
b National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Victory avenue, 37, 

Kyiv, Ukraine 
  
 

Abstract  
The paper is devoted to the analysis of FPGA (Field Programmable Gate Array) components 
with LUT-oriented (Look-Up Table) architecture for safety-related systems that are aimed at 
ensuring the functional safety of high-risk facilities in conjunction with their own safety. 
Functional safety is based on the use of fault-tolerant solutions, for which multiple failures 
are the biggest challenge. One of the sources of such failures is associated with the problem 
of hidden faults that can accumulate in digital circuits during a long normal mode and 
manifest themselves in a decrease or loss of the fault tolerance of these circuits in the most 
responsible emergency mode. The accumulation of faults occurs in connection with the 
limited checkability of digital circuits in normal mode and due to the change in checkability 
with the beginning of the emergency mode. The lack of checkability of the FPGA 
components, which manifests itself in the memory of the LUT units, does not allow the fault-
tolerant circuit to be transformed into a fail-safe one. A method for assessing the checkability 
of circuits with LUT-oriented architecture in the part that ensures the fail-safety of a fault-
tolerant solution is proposed. Two sets of memory LUT bits are determined that are 
important to the circuit in terms of providing fail-safety and its violation, respectively. The 
program implementation of the method demonstrates its capabilities on the example of an 
iterative array multiplier implemented in an FPGA project.  
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1. Introduction 

The current stage in the development of computer systems shows an increase in their importance, 
primarily in critical applications associated with the development and operation of high-risk facilities. 
These facilities are typical for the energy sector, including power plants and power grids. Energy 
consumption and demand is constantly growing, stimulating an increase in the number and capacity 
of power plants, as well as the development of power grids for the transportation and distribution of 
energy. Systems for the transport of goods and passengers are also becoming critical infrastructures 
due to the increase in freight traffic, speeds and ramifications of communication lines. The processes 
of property redistribution and their expectations stimulate the development of various types of 
weapons, which in their modern design are also classified as high-risk objects. Chemical and 
biological industries, as well as warehouses for storing their products, which can be toxic, flammable 
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and explosive, add to the list of objects with increased risk, but far from exhausting it. Such a 
development of high-risk objects is an objective process already because mankind is not going to 
abandon them, despite the progressing statistics of man-made accidents and disasters. 

The main feature of the described development is the growth of losses from accidents. Such 
growth is also characteristic of potential losses, i.e., losses from accidents that have not yet occurred, 
but will occur, according to statistics. The cost of loss is one of the factors in determining risk. 
Another factor is determined by the probability of an accident [1, 2]. Therefore, the problem of 
containing risks requires reducing this factor and is solved through the development of computer 
systems and information technologies implemented in them for this purpose. Such specialization of 
computer systems transforms them into safety-related systems, aimed at ensuring functional safety in 
the complex of both an object of increased risk and the system itself for preventing accidents and 
reducing losses in case of their occurrence [3, 4].  

The main challenges in ensuring functional safety are associated with the occurrence of failures. 
Failure mitigation is based on the development of fault-tolerant solutions that ensure the continued 
correct functioning of the system under conditions of failure. Fault tolerance of circuit solutions is 
provided by using various types of redundancy and reconfiguration [5, 6].  

The most common fault-tolerant solution is the majority structure, which in its simplest form 
contains three channels for solving the same task and a majority element that chooses the result by 
voting. In case of system failure in one channel, the result is determined by the sign of the coincidence 
of the results of the other two channels [7]. 

Is it enough to build a system that resists one failure? Typically, a single channel failure is much 
more likely than a dual channel failure. In safety-related systems, this rule is challenged, taking into 
account common cause failures that can occur when copying incorrect solutions, for example, design 
errors [8, 9].  

In the case when the channels of the majority system use the same software containing an error, 
the failure can appear the same in all channels and determine the wrong result. In this regard, 
international standards regulating the provision of functional safety impose restrictions on copying 
solutions [10, 11] and propose to use multi-version technologies with an extended set of types of 
diversity to eliminate common causes [12, 13]. 

However, copying solutions is not the only source of multiple failures. Another equally dangerous 
source is associated with the problem of hidden faults. This problem is inherent only in critical 
applications, in which the operating mode is divided into normal and emergency. The problem is the 
accumulation of faults during a long normal operation in the absence of input data, which can 
manifest these faults in the form of error results. Accumulated faults can appear on the emergency 
input data. The number of faults manifested can exceed the capabilities of the fault-tolerant circuit in 
countering them and lead to a violation of the functional safety of both the system and the control 
object. It should be noted that hidden faults do not create problems for ordinary computers that 
operate in one mode and retain the latent nature of the malfunction throughout the entire mode [14, 
15]. 

Development of components for modern systems of critical application widely uses FPGA design 
(Field Programmable Gate Array), which combines the advantages of a hardware solution and 
programmable logic [16, 17]. 

The programmability of digital circuits carries the additional risk of multiple failures associated 
with breaches of information security, including cyberattacks carried out by botnets. In this area, 
functional safety, in particular, the integrity of critical systems, must be ensured by methods and 
means of information security [18, 19]. 

A feature of FPGA projects is their LUT-oriented architecture, which inherits the problem of 
hidden faults in using the memory of LUT (Look-Up Table) units [20, 21]. 

The problem of hidden faults has not received a response in international standards for ensuring 
functional safety and is better known for unsuccessful attempts to solve it using simulation modes. 
These modes are aimed at detecting hidden faults by recreating emergency conditions and have 
repeatedly created a real threat to the functional safety of critical systems and facilities. Emergency 
conditions occurred as a result of unauthorized activation of simulation modes through the fault of the 
operator or due to a malfunction [22].  



The planned use of simulation modes is also associated with a certain danger, since it involves the 
shutdown of emergency protection, which was one of the causes of the Chernobyl disaster [23].  

The use of dangerous simulation modes indicates the importance of the problem of hidden faults, 
and also indicates the distrust that manifests itself in relation to fault-tolerant solutions. This distrust is 
based on the fact that a fault-tolerant solution does not become fail-safe when there is a deficiency of 
checkability, which is important to counter the accumulation of faults. Ignoring checkability can 
create a misconception about the sufficiency of information for assessing the fail-safety of a fault-
tolerant circuit design [24, 25]. 

The fault tolerance of the circuit is laid in the design process in relation to a limited number of 
faults. This fact conflicts with a less limited set of faults that can be accumulated in circuits of critical 
application over long-term normal mode. 

In operating mode, the checkability of circuits does not attract attention, since in ordinary 
computers it leads only to a slight increase in errors, the cost of which is usually low. In critical 
systems, checkability of circuits becomes an important condition for ensuring functional safety [26]. 

This paper is aimed at assessing the checkability of digital circuits in that part of it, which is 
important for ensuring fail safety in fault-tolerant FPGA components of safety-related systems. 

Section 2 identifies the issue of assessing the checkability of digital circuits in FPGA components 
of safety-related systems. Section 3 describes a method for assessing checkability important for fail-
safe FPGA components in critical applications. Section 4 presents the results of experiments on 
assessing the checkability of digital circuits using the example of a 4-bit multiplier implemented in an 
FPGA project for operation in normal and emergency modes.   

2. Definition of problem 

Checkability of digital circuits is best known in its simplest form, i.e. testability, which evaluates 
the possibility of developing tests for detecting circuit faults based on the analysis of its controllability 
and observability [27, 28].  

As a rule, test sequences for information inputs of a circuit are determined based on the set of all 
possible input data. Therefore, the testability of a circuit is completely determined by its structure, i.e. 
is structural checkability. Testability can also be classified as logical checkability in view of its 
orientation toward logical checking aimed at error detection in binary codes. 

In the operating mode, the logic checkability of a digital circuit evaluates its ability to exhibit a 
fault in the form of a result error on the input data used. For this reason, circuit checkability adds 
dependency on the input. The result error, the appearance of which is ensured by the checkability of 
the digital circuit, is a prerequisite for detecting a fault when performing on-line testing of the circuit 
using logical checking methods [29]. On-line testing can also be carried out by monitoring energy 
parameters. However, such monitoring can only detect failures that cause significant changes in 
temperature or current consumption that go beyond the operating values of these parameters under 
normal conditions [30, 31]. It should be noted that on-line testing, directed in conventional computers 
to control the trustworthiness of calculated results, performs this function as the main one only in 
emergency mode. The normal mode of critical systems is used primarily for clearing circuits from 
faults. In this case, on-line testing performs the function of testing, but under limited conditions of 
using operating input data as test sequences [32, 33]. 

Safety-related systems make the checkability of digital circuits dependent on various inputs used 
in normal and emergency modes. Different input data determine different checkability of the system 
in these modes and thus create conditions for the accumulation of hidden faults that cause a problem 
in ensuring the fault tolerance of system components with the onset of an emergency mode [34, 35]. 

A digital circuit implemented in an FPGA project with a LUT-oriented architecture represents 
computations in the form of decomposition with their division into logical functions of several 
variables. These functions are implemented by LUT units. The description of logical functions is 
written into the memory of the LUT units in the form of a program code when programming an FPGA 
microcircuit. The program codes of the LUT units form the program code of the FPGA project. 
Variables at the input of the LUT unit constitute the address at which the corresponding value of the 
function is read to the output of the LUT unit from its memory. The most commonly used LUT-



oriented architecture is based on LUT units, which contain 4 inputs: A, B, C, D and 16 memory bits 
[36, 37]. 

The checkability of FPGA components must be considered taking into account possible faults in a 
digital circuit with a LUT-oriented architecture. 

Possible faults of the LUT unit are determined by its circuit, which contains a register (LUT 
memory) for storing the program code and a multiplexer that selects a bit of the program code from 
the LUT memory at a given address. The multiplexer consists of switches that perform the function of 
selecting one bit from two directions to one. The switches are controlled using the inputs of the LUT 
unit. The program codes of the LUT units form the program code of the FPGA project, which is 
verified using a checksum. For this reason, the memory of the LUT units is checkable and does not 
pose a threat to the fault tolerance of digital circuits and the functional safety of critical systems. 

However, checking the program code does not indicate faults in the multiplexer switches. These 
faults can distort the values of the read bits of the LUT memory and the addressing to them. Constant 
faults at the information inputs of the switches can distort the values of the read bits, and faults in the 
control inputs lead to addressing errors. Distortion of the address of the read bit causes an error when 
the values of the bits located at the correct and corrupted address do not match. All described faults 
have external manifestations that can be identified with faulty bits of the LUT memory. Therefore, the 
checkability of a digital circuit with a LUT-oriented architecture is further discussed in relation to the 
memory LUT bits. 

In a logical aspect, the checkability of a digital circuit is determined taking into account the 
manifestation of its faults in the form of errors in the calculated result. Faults that do not cause errors 
and circuits containing these faults are not checkable. However, the question about the lack of 
checking for such faults usually does not arise, as well as questions about the influence of these faults 
on the calculation results. As a rule, these faults are excluded from the field of view as they do not 
have any effect on the computation process.  

The use of FPGA components in critical systems that differ in the presence of two modes of 
operation significantly changes the attitude towards faults, since the checkability of the circuit plays a 
different role in normal and emergency modes: positive and negative, respectively. Indeed, improving 
the checkability of a circuit is the best manifestation of its faults. Using the normal mode to clear the 
circuit from faults motivates an increase in its checkability. The best conditions for ensuring 
functional safety are the absence of failures, or at least the manifestation of malfunctions in the form 
of errors in emergency mode. However, the best concealment of faults is achieved under conditions of 
poor digital circuit checkability. High checkability of the circuit contributes to the best manifestation 
of faults in the form of errors. First of all, this drawback relates to transient faults that occur much 
more often than failures but, like failures, cause errors that reduce the trustworthiness of the 
calculated results [38]. 

In safety-related systems, the contradiction between the checkability of the circuit and the 
trustworthiness of the results is no longer mutually exclusive due to the different input data used in 
normal and emergency modes. Different checkability of these modes creates conditions for masking a 
part of accumulated faults with the onset of an emergency mode. This feature reduces the 
requirements for fault tolerance of circuits from the standpoint of ensuring their fail-safety. However, 
such masking does not provide a guarantee of limiting the number of accumulated faults that could be 
sufficient for a fully fault-tolerant and therefore safe operation of a safety-related system. 

Therefore, the issue of the efficiency in the checkability of the digital circuit in relation to its fail-
safety remains open, taking into account the fault tolerance, which is provided to counter a limited 
number of failures, and in connection with the possibility of accumulating faults. The checkability 
assessment of a digital circuit should be structured to highlight the portion of it that is important to the 
fail-safety of a fault-tolerant solution.  

3. Assessment of checkability of circuits with LUT-oriented architecture in 
critical applications 



The checkability of a digital circuit with a LUT-oriented architecture is assessed by the ratio of the 
number of checkable bits of the LUT memory to their total number. The main property of the 
checkable bits of the LUT memory is the openness to demonstrate their correct or faulty state. 

The proposed method evaluates the checkability of a digital circuit with LUT-oriented architecture 
in the part that supports the fail-safety of fault-tolerant FPGA components in safety-related systems. 

The analysis of the checkability of a circuit from the standpoint of its fail-safety requires 
attributing to the checkable bits the part of the LUT memory which directly counteracts the 
accumulation of faults that manifest themselves in emergency mode reducing the fault tolerance of the 
circuit. 

The ability of the checkable bits of the LUT memory to demonstrate correct circuit operation or to 
malfunction in the form of a result error shall be used in a normal mode. This requirement assigns the 
checkable bits to the set that is addressed in this mode. However, the primary value of checkable bits 
lies in their ability to ensure that the circuit functions correctly in an emergency. Therefore, checkable 
bits that provide fail-safety of fault-tolerant FPGA components should be looked for in the part of the 
LUT memory that is addressed in both modes of the safety-related system. 

At the same time, addressing the memory LUT bit does not mean using this bit to form the result 
obtained at the output of the circuit. An indication of the use of a memory LUT bit is the influence of 
its distortion caused by a fault on the correctness of the result. 

The checkability of a digital circuit and its elements should be assessed in terms of controllability 
and observability. 

The controllability of the LUT memory is provided in its addressable bits. The observability of the 
LUT memory bit is manifested in its use for generating a result when bit corruption determines an 
erroneous result. Since the use of the LUT memory bit for the formation of the result implies 
addressing this bit, the observed bit is also controllable and, therefore, checkable. 

The fail-safety of fault-tolerant circuit is provided in the memory LUT bits which are observable in 
both normal and emergency mode. The observability of the memory LUT bits in normal mode 
counteracts the accumulation of hidden faults. The observability of the LUT memory bits in 
emergency mode classifies them among the many important for ensuring the functional safety of the 
FPGA component. 

Such checkable memory LUT bits are important for the functional safety of the critical system, 
since they do not pose the problem of hidden faults. At the same time, ensuring functional safety 
requires first of all pay attention to the memory LUT bits in which this problem can manifest itself. 
These problem bits are observable only in emergency mode, which is manifested in their influence on 
the generated computation result. In normal mode, they are not used to generate the result and are not 
addressed. 

The proposed method defines two sets, ONE and OEN, of memory LUT bits, which are important 
for fail-safety of fault-tolerant FPGA components. These sets consist of bits that support and, on the 
contrary, violate fail-safety of fault-tolerant components, respectively. 

The method simulates the operation of an FPGA component in normal and emergency modes. The 
initial data for simulating are the description of the circuit and the input data, which are fed to the 
inputs of the circuit in normal and emergency modes. 

To determine the ONE and OEN sets, it is enough to evaluate the observability of all memory LUT 
bits in each operating modes of the FPGA component. Bit controllability is not directly considered in 
defining these sets. However, estimating the controllability of the memory LUT bits reduces the 
amount of computation, since it reduces the number of bits for which a more laborious procedure for 
determining their observability is performed. 

The controllability of all bits of the LUT memory is determined by simulating the computations 
performed by the FPGA component on all normal and emergency mode inputs. For each LUT unit, all 
addressable memory bits are marked. 

The observability of each bit of the LUT memory is determined independently of the other bits by 
simulating the operation of the FPGA component with a correct and incorrect value of this bit on all 
inputs. For each LUT unit, all memory bits that take part in the formation of the computation result 
are marked. 

The method evaluates the controllability of the memory LUT bits in each of the modes and 
generates data arrays marking CN and CE of the set of bits controlled in normal and emergency mode, 



as well as the set of CNE and CEN bits controlled in both modes and only in emergency mode, 
respectively. 

The resulting sets of controlled bits of the LUT memory are in the following dependencies: 
CNE ∩ CEN = ∅, CNE ∪ CEN = CE. 

Observability is evaluated for all controllable bits of the set CE, taking into account whether these 
bits belong to the set CNE or CEN. The simulation results define data arrays marking the OE set of all 
memory LUT bits observed in emergency mode, as well as the ON-E and OE-E bit sets observed on 
normal and emergency mode inputs, respectively. The OE set combines all of the memory LUT bits 
important to the safety of the FPGA component. 

The sets ON-E and OE-E are used to define the memory LUT bits that provide checkability and make 
it deficient in the fail-safety of the fault-tolerant circuit: ONE = ON-E ∩ OE-Е, OEN = OЕ-E \ ON-E. 

The resulting sets of memory LUT bits show the following relationships: ONE ∩ OEN = ∅, 
ONE ∪ OEN = OE. 

The OE set combines all of the memory LUT bits that are important to the fail-safety of the fault-
tolerant FPGA components. Therefore, the proposed method evaluates the checkability of digital 
circuits and its deficiency in relation to functional safety with respect to the OE set. 

Checkability of the FPGA component determines the degree in fail-safety of the fault-tolerant 
circuit using the following formula: A = ǀONEǀ / ǀOEǀ. 

The checkability deficit of a FPGA component defines the degree of violation in fail-safety of the 
fault-tolerant circuit as follows: B = ǀOENǀ / ǀOEǀ. 

The method forms both indicators A and B, complementing each other to one: A + B = 1. 

4. Program implementation of the method 

The proposed method is considered on the basis of its program implementation, developed using 
the Delphi 10 Seattle demo version [39]. 

The developed program makes it possible to assess the checkability of a circuit with a LUT-
oriented architecture in terms of ensuring its fail-safety. As initial data, the program uses the 
description of the circuit and the ranges of the input data arriving at the inputs of the circuit. The 
description of the circuit contains a list of LUT units with an indication of the program codes, as well 
as the inputs of the circuit and outputs of the LUT units that are connected to the inputs of other LUT 
units. In addition, the circuit inputs and LUT units connected to its outputs are described. 

The input ranges used in normal and emergency modes are separated by a threshold that places a 
limit on the computed results. A result that is less than the threshold puts the input data in normal 
mode. Reaching and exceeding the threshold marks the beginning of the emergency mode. 

The program implementation of the method was tested on FPGA circuits of library arithmetic 
devices. As an example, checkability score is shown for a 4-bit iterative array multiplier, the circuit of 
which is implemented in the Intel Cyclone 10 LP FPGA chip: 10CL025YU256I7G using CAD 
Quartus Prime 20.1 Lite Edition [40, 41]. 

The resulting circuit performs multiplication of binary codes and uses 30 LUT units for this. The 
program allows to compare simulation results for eight different threshold values. As the initial data, 
the base value of the threshold is set, according to which seven more smaller thresholds are 
determined at equal intervals. For each value S of the threshold, the normal and emergency input data 
are determined by comparing the calculated result with this threshold, and an independent simulation 
of the circuit is performed. The normal mode is determined starting from the zero-product value. 

Fig. 1 shows the main panel of the program for the basic value of the threshold S = 64, which 
defines 8 values with the same interval: 8, 16, 24, …, 64. The panel contains the control keys “EXIT” 
and “START” to exit the program and start simulation, respectively. Next, the lowest and highest 
threshold value is indicated in the form “S: 8 - 64”. The next key “LUT # 3” is used to sequentially 
view the memory of all LUT units in the circuit. In this case, the key defines LUT unit with number 3 
for viewing its memory. When this key is pressed, the number of the viewed LUT unit is increased by 
one. After the last number, the key takes on the initial value “LUT # 1”. 

The memory of the selected LUT unit is shown for all eight threshold values as bit matrices. The 
memory LUT matrices are arranged in two rows and labeled with a threshold value from S = 8 to 



S = 64. The memory bits are shown in the matrix as squares containing their values, and are numbered 
using the address code supplied to A, B, C and D inputs of the LUT unit.  

 
Figure 1: Main panel of the method program implementation 
 
The rows and columns of the matrix are numbered with binary values 00, 01, 10, 11 of the high 

and low half of the address at inputs D, C and B, A, respectively. For example, the upper left bit of the 
LUT memory located at the intersection of row 00 and column 00 is 00002 = 0, and the lower right bit 
number is determined by the intersection of row 11 and column 11 as 11112 = 15. For all threshold 
values, the matrices show the same values of the memory bits of the selected LUT unit, but can be 



colored differently depending on their use in normal and emergency mode. The squares for bits 
addressable only in normal and only in emergency mode are colored green and yellow, respectively. 
The “Aqua” color bits are addressed in both modes. The values of the memory LUT bits that are 
observable in both modes and only in emergency mode are highlighted in blue and red, respectively. 
All of these highlighted bits are important to the fail-safety of the circuit.  

Bits with values highlighted in blue are checkable, while bits highlighted in red violate fail-safety. 
They are dangerous because they can accumulate hidden faults that reduce the fault tolerance of the 
FPGA component. 

With an increase in the threshold S, the number of checkable bits increases and the number of 
dangerous bits, causing a deficit of checkability, decreases. 

In the case of S = 8, the LUT memory contains 9 checkable bits: 0 – 4, 8 – 11 and 7 dangerous 
bits: 0 – 4, 8 – 11. All 16 bits are important for the safety of the circuit. 

The threshold S = 16 reduces the number of important bits, excluding from their set bits 0 and 4, 
which are addressed only in normal mode. In addition, the previously unsafe bit 12 becomes 
checkable. Raising the threshold to values S = 24 and S = 32 continues the conversion of dangerous 
bits into checkable bits for numbers 5 and 13. 

Each of the thresholds S = 40, S = 48, and S = 56 reduces the set of important bits, excluding bits 
8, 12, and 1. The reduction in the number of important bits occurs by reducing the number of 
dangerous bits by converting bits 6, 14 and 7 into checkable. In case of threshold S = 64, LUT 
memory is completely cleared of dangerous bits. All important bits become checkable. 

The panel below shows the main simulation results, which contain the cardinalities for the sets 
CN, CE, ON-E, OE-Е, ONE, OEN, as well as the A and B scores of checkability and its deficiency 
important to safety (expressed as a percentage). 

As the threshold S increases from 8 to 64, the number of LUT memory bits addressed in normal 
and emergency modes increases and decreases from 243 to 362 and from 389 to 334, respectively. 
The number of LUT memory bits observed on the normal and emergency input data increases and 
decreases in the range 240 – 303 and 388 – 332, respectively. The number of checkable and 
dangerous bits of the LUT memory increases and decreases in the range 240 – 302 and 148 – 30, 
respectively. Checkability increases from 61.8% to 90.9%, and its deficit decreases from 38.1% to 
9.0%. 

The performed modeling shows the limitation of the checkability of FPGA components in 
ensuring the fail-safety of fault-tolerant circuits and the possibility of reducing its deficit with an 
increase in the range of input data used in the normal mode. 

5. Conclusions 

Safety-related systems ensure their own functional safety and the safety of controlled objects using 
fault-tolerant solutions, for which multiple failures are the most dangerous. One of the sources of 
multiple failures is associated with the problem of hidden faults, which can be accumulated during a 
prolonged normal mode and reduce the fault tolerance of circuits with the onset of emergency 
conditions. The accumulation of hidden faults in the normal mode and their manifestation in the most 
critical emergency mode occurs due to the limited checkability of the circuits on the input data of the 
normal mode and the difference in checkability demonstrated by the circuits in the normal and 
emergency modes because of different input data. Thus, the checkability of circuits is an important 
argument in ensuring the functional safety of critical systems and a prerequisite for transforming 
fault-tolerant solutions into fail-safe ones. 

FPGA component design, which is widely used for critical applications, inherits the problem of 
hidden faults in LUT units of digital circuits with LUT-oriented architecture. The programmable 
memory of the LUT units is checked with a checksum within the entire FPGA project. However, the 
reading of the bits of this memory can be corrupted by faults that do not affect the checksum and are 
hidden in normal mode. 

The proposed method evaluates the checkability of the circuit in these memory bits in terms of 
ensuring the fail-safety of fault-tolerant FPGA components. The method defines the set of memory 
LUT bits that are important to fail-safety of fault-tolerant circuits. These bits are split into two sets, 



which provide and, on the contrary, violate the fail-safety of the circuit. Bits of the first set are 
observable in both normal and emergency modes. The ratio of their number to the total number of 
important bits determines the checkability of the circuit, which prevents the accumulation of hidden 
faults that appear in emergency mode, and thus ensures the fail-safety of FPGA components. The 
second set contains memory LUT bits that are observable only in emergency mode and constitute a 
deficiency of checkability required to transform a fault-tolerant circuit into a fail-safe circuit. 
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