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Abstract  
Training methods are used in most applications that use artificial neural networks as 
mathematical models to solve modeling, diagnosis, prediction, and evaluation problems. 
However, the rapid development of industries requires methods that would be more 
automated and less require the involvement of experts. To ensure this level of automation, a 
more detailed presentation of solutions is necessary. However, when detailing the view, 
another problem arises: the search space becomes huge, and therefore there is a need for an 
appropriate scalable and productive search method. To solve both problems, usually firstly it 
is proposed a powerful solution that combines most of the functions of neural networks from 
the literature into one representation. Secondly, based on the new concept of the 
chromosomal spectrum, a new method of preserving diversity is being created, called spectral 
diversity, which creates a spectrum from the characteristics and frequency of alleles in a 
chromosome. Combining genetic diversity with a unified representation of neurons allows 
the method to either surpass or match the neuroevolution of augmenting topologies (NEAT) 
in most test tasks. In part, the good results can be explained by the novelty of evolution and 
the good scalability of chromosome sizes provided by the diversity spectrum. This explains 
the importance of researching the impact of genetic diversity on the success of artificial 
neural network synthesis. The paper proposes a study that sheds light on a new mechanism of 
representation and conservation of diversity during neuroevolutionary synthesis. 
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1. Introduction 

Today, the device of artificial neural networks (ANN) is actively used in solving a number of 
problems related to the classification and clustering of complex nonlinear systems and objects [1–3]. 
These tasks may include: diagnostics, forecasting of condition and behavior, modeling and evaluation, 
and among the tasks can be distinguished: technical and biomedical diagnostics, financial, industrial, 
medical diagnostics, and etc. [4], [5]. This popularity of the ANN is explained by the high level of 
applicability when working with complex and nonlinear objects and systems, where the use of 
classical approaches is insufficient and demonstrates low levels of accuracy of work. 
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As in most cases, during using the ANN, it can be getting a certain model based on certain 
previous (historical) data about the object (process) under study [6-8]. However, it is worth noting 
that in most cases, the first model based on the ANN goes through the stage of topological 
construction or structural synthesis [9-11]. Based on the task and its features, the structure of the 
future ANN is selected: the number of computing nodes (neurons), the number of layers, the presence 
of feedback in neurons, the number and depth of hidden layers, additional filters and memory cells in 
neurons, and so on [9]. The result is the structure of the ANN, which is sent to the second stage – 
parametric synthesis or training [10]. At this stage, using one of the training methods (usually based 
on gradient methods), the weights of interneuronal (and sometimes inverse) relationships are 
determined. So the model is based on the classical principles of learning with a teacher and in the case 
of technical and biomedical problems demonstrates good results [2], because it uses real historical 
data [8]. 

Neuroevolution as an approach to ANN synthesis has emerged as an alternative approach [12-16] 
that can be used for the basics of unsupervised learning and reinforcement learning [14-16]. Since 
neuroevolution is based on stochastic evolutionary methods, such synthesis can be performed without 
taking into account previous historical data about the object (system). Moreover, classical 
neuroevolution methods perform both postural structural and parametric synthesis, significantly 
reducing the risks associated with the expert's lack of awareness about the complexity of the ANN for 
a specific task. However, most neuroevolution methods can also use historical object data, which 
allows them to be used for tasks with a high degree of accuracy. However, when solving a number of 
problems related to automating the process of ANN synthesis [12], [13], neuroevolution methods also 
face a number of problems. For example, a lack of genetic diversity [17-22]. This problem can be 
caused by a number of factors: insufficient computing power, the use of truncation selection, and an 
incorrect combination of evolutionary operators [17], [18]. One of the ways to solve this problem is to 
use methods based on swarm intelligence, but such solutions can also impose certain restrictions and 
additional requirements on the system. As a result, a situation may occur when methods that seem to 
be insured against problems with local extremes still have such problems [18]. 

That is why it is an urgent task to develop mechanisms for maintaining genetic diversity during 
neurosynthesis. 

2. Related works 

Indeed, it should be mentioned at the beginning that neuroevolution, as a form of machine 
learning, appeared as an alternative to training using gradient methods [12-16]. This approach used 
the principles of most evolutionary algorithms to synthesize neural networks. It is also necessary to 
distinguish a whole separate group of neuroevolutionary methods: methods that perform the evolution 
of interneuronal connections and network topologies (TWEANNs) [23], [24], which are individuals in 
a population. 

It is also important to note that the use of neuroevolutionary methods has made it possible to 
implement approaches to unsupervised learning and reinforcement learning [25-31]. That is why this 
approach is actively used in industries where the subject area is poorly studied [30], [31], dynamic, or 
requires a rather complex description, for example, games or controlling robot drives. In these cases, 
it is quite simple to measure the performance of the neural network, while it is very difficult or almost 
impossible to implement training with a teacher.  

If it is talking about cases when information about the object of research is still available (for 
example, historical information from sensors installed on the object) [3-6], it should be noted that 
neuroevolution methods allows to find the most optimal topology of the ANN. In this case, optimality 
should be understood as the topology model that will provide the greatest accuracy with the simplest 
structure, since such a structure will be obtained as a result of gradual changes. In addition, we 
emphasize that in most cases such methods do not have any special problems with local extremums in 
the search space. 

Researching behavioral algorithms and patterns, new methods were later developed that mimic the 
training of animals in the real world and use a certain assessment of the reward (punishment) for 
correct (erroneous) actions [26-29]. One of the most popular methods from this group is the actor-



critic method. To date, there are several variations of this method: A2C and A3C [32-34]. These 
methods are actively used for training, for example, recurrent ANNs, since in this case the use of 
gradient methods faces a number of difficulties and limitations. 

One of the problems with reinforcement learning is that the data coming to the input of the training 
method is strongly correlated: each subsequent state directly depends on the actions taken by the 
agent. Learning from highly correlated data leads to retraining. Thus, in order to successfully train a 
strategy that generalizes to a large number of environmental states, it is still necessary to learn from 
episodes from different scenarios. 

One way to achieve this is to run multiple agents in parallel [25]. All agents are in different states 
and choose different specific actions according to the stochastic strategy, thereby eliminating the 
correlation between the observed data. However, all agents use and optimize the same set of 
parameters. 

The idea behind A3C is to run multiple agents in parallel, with each of the agents calculating 
updates for reward values at each stage. However, instead of just continuing, each agent updates the 
status and reward common to all agents. Before processing each new episode, the agent copies the 
current global values of the reward parameter and uses it to determine its own strategy for that 
episode. Agents do not wait for other agents to finish processing their episodes to update global 
parameters (hence asynchronous). Therefore, while one of the agents processes one episode, the 
global value of the reward may change as a result of the actions of other agents. 

3. Proposed method 

Thus, using the previously presented materials, it can be concluded that maintaining genetic 
diversity during neurosynthesis can significantly improve the results [35-39]. However, the 
mechanisms that can be used in this process should be clearly defined [35], [36]. Simply increasing 
the probability of mutation during synthesis can expand diversity, but it does not guarantee that 
mutations will lead to a better solution. The use of indicators and markers to intelligently determine 
the type of mutation can complicate the mutation, but it can also not be the key to successful diversity, 
moreover, in most cases, this approach is based on determining the complexity of the task and 
network and does not guarantee an expanded population at the beginning of work [33]. That is why it 
is necessary to identify and develop a new approach that can be used during neurosynthesis for little-
studied tasks and guarantees initial and consistent genetic diversity throughout the entire 
neurosynthesis process. 

Using the A3C method shows good results when used during ANN training [34]. Therefore, our 
approach suggests using the main strategy of this method during neurosynthesis. Thus, at the 
beginning of the synthesis, we will create a population consisting of a number of individual actors 
( { }

nactoractoractoractors NNNNNNNN ,...,,
21

= ) and one individual critic ( critglobNN _ ). Additionally, the 
critical value of the reward ( Q ) will be determined and the error will be saved from the outputs 
(

critgloboutNN _
ε ). Note that from the very beginning, all individuals have access to the training sample. 

After that, the synthesis process begins, which begins with identifying genetic information among 
people and encoding this information. Further, based on the logic of the A3C method, the neural 
network population ( { }

nactoractoractoractors NNNNNNNN ,...,,
21

= ) receives training data at its input, and 

outputs actions ( out
NN nactor

action ) at the output, which should lead to an increase in reward and a decrease 
in error ( minmax,

_
→→

critgloboutNNQ ε ). Although these actions are random and simply depend on the 

signal passing through the network, this is due to the fact that the neural network has not yet been 
trained. The global neural network critic also has access to the source data, but also syncs actions with 
the output of the actors' networks. And at the output, let it predict only the reward that will be 
received if you apply these actions. 

Then the general work can be reduced to the following: what should be the optimal actions at the 
output of networks that lead to an increase in the reward is not known – parametric synthesis is not 
possible. And the neural network actor can predict the exact value of the reward (or rather, usually its 
change), which he will receive if he now applies actions actions. This allows you not only to use the 



error change gradient from the critic's network and apply it to actors, but also to determine the 
topological features of actors. So when synchronizing values from actor networks, we can gradually 
determine the type of mutation, conditionally dividing the entire population by approaching the 
critical difference in the initial value: 
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Then, for neural networks with more or less similar sequences, you can determine a certain type of 
mutation, which allows you to investigate whether the mutation will affect the accuracy of similar 
neural networks. 

At Figure 1 shown the general scheme of operation of the method. 
 

 
Figure 1: The general scheme of the method 
 

As you can see, in this case, actions are optimized directly by the reward signal. This is the general 
essence of all Model-free algorithms in reinforcement learning. They are the state-of-the-art at the 
moment. 

Therefore, when using the proposed approach, the advantages can be considered that: 
• gradient methods can be used to find optimal actions, which can find the most optimal 

solutions; 
• the ability to use small (and therefore faster learners) neural networks, which will gradually 

complicate their architectures. Therefore there is a chance to find the optimal value with less 
resource usage; 

• even when using selective clipping, diversity will be maintained and ensured. 



This allows us to provide a global strategy: provided that out of all the variety of environmental 
factors, specific ones are key to solving the problem, the method is quite capable of identifying them. 
And use it to solve the problem. 

4. Results and Discussions 

For an experimental study of the method's operation, it was decided to test it on two problems that 
would differ in scale. This is how the Tic-Tac-Toe Endgame data set was selected [40] and Taiwanese 
banking Prediction data Set [41]. The main characteristics of the samples are shown in Tables 1 and 2, 
respectively. 

 
Table 1 
Characteristics of the Tic-Tac-Toe endgame data set  

Tic-Tac-Toe Endgame Data Set 
Data Set Characteristics: Multivariate Number of Instances: 958 
Attribute Characteristics: Categorical Number of Attributes: 9 

 
Table 2 
Characteristics of the Taiwanese Bankruptcy Prediction data set 

Taiwanese Bankruptcy Prediction Data Set 
Data Set Characteristics: Multivariate Number of Instances: 6819 
Attribute Characteristics: Integer Number of Attributes: 96 

 
We will compare the work of the proposed method (A3C GA) with the classical neuroevolution 

genetic algorithm (GA) [42] and the modified genetic algorithm (MGA) [43], [44]. The main 
modifications of the classical method will consist in the use of adaptive mechanisms at the stages of 
mutation and crossover. Based on the estimation of the complexity of the problem and the topological 
complexity of the solutions, the methods allow for more precise and point-based mutation production. 
The crossing stage is enhanced by the use of uniform crossover, which makes it possible to model 
other types of crossover (one - and two-point), but ideally allows for multi-parent crossover and 
inheriting the best genetic features from several parents at once. All this complex of modifications 
allows to: 

• track not only the best solutions for the accuracy of the test (values of the activation function), 
but also for structural features; 
• get the best individuals in new generations with several parental characteristics at once. 
For all methods, the same metaparameters specified in Table 3 will be specified. 
 

Table 3 
Metaparameters for methods 

Metaparameter Value 
Population size 100 

Elite size 5% 
Activation function (fitness functions) hyperbolic tangent 

Mutation probability (for GA and MGA) 25% 
Crossover type two-point 

Types of mutation  

Population size 

deleting an interneuronal connection 
removing a neuron 

adding interneuronal connection 
adding a neuron 

changing the activation function 



The test results for the tic-Tac-Toe Endgame data set sample are shown in Table 4, and for the 
Taiwanese banking Prediction data set sample are shown in Table 5. 

 
Table 4 
Test results on the Tic-Tac-Toe Endgame data set  

Method  Synthesis Time, s Error in the training 
sample  

Error in the test 
sample 

GA 2095 0.021 0.14 
MGA 1867 0 0.022 

A3C GA 1963 0 0.08 
 
Analyzing the presented data, it can be came to the following conclusions. The proposed 

modification makes it possible to really improve the accuracy of the synthesized resulting ANN. 
Studying the work, it can be concluded that maintaining genetic diversity can indeed help to obtain 
the resulting ANN with higher accuracy, but such a mechanism loses out in the time of MGA 
synthesis, where a criterion mechanism for determining the type of mutation is used. 

 
Table 5 
Test results on the Taiwanese Bankruptcy Prediction data set 

Method  Synthesis Time, s Error in the training 
sample  

Error in the test 
sample 

GA 8762 0.017 0.25 
MGA 7586 0.011 0.13 

A3C GA 10689 0.017 0.24 
 
In the second case, it is noticeable that even classical GA turned out to be faster, and the difference 

in accuracy does not sufficiently justify such time delays. For additional research, we will consider 
the system load graphs (CPU and RAM) during synthesis in Figures 2 and 3. measurements were 
performed every minute using system load monitoring [45]. 

 

 
Figure 2: Load on the system when working with the Tic-Tac-Toe Endgame data set  

 
Examining the load graphs, it can be noted that during execution, any modifications load the 

system additionally through calculations, but it should also be noted that even when using non-
complex networks in the second case, the A3C GA reached peak values of 100%. Of course, such 
load monitoring is not sufficiently objective, but these indicators can still be used for a general 
description of the load at runtime. 

 



 
Figure 3: Load on the system when working with the Taiwanese Bankruptcy Prediction data set 

 
Accordingly, the following recommendations can be generated for using this approach: 
• at the initial stages of neurosynthesis, simple ANN topologies should be used; 
• data for training should be available constantly, so as not to overload the accessors; 
• when designing an interacting neuroevolution method, more compact methods of encoding 
genetic information about individuals should be used. 
It should also be noted that such an approach can be difficult to parallelize due to the too frequent 

exchange of information between agents and the critic. In this case, it is possible to organize separate 
transfers of only information about the state of the agents and only after a certain completion of the 
synthesis. But, since access to information is provided through the main agent, such a system can be 
scattered on lightweight streams of video cards. 

5. Conclusion 

Numerous works prove that solving the problem of reducing genetic diversity helps to find a more 
optimal solution in neural network synthesis. The proposed mechanism really showed a certain 
efficiency: the accuracy of the resulting ANN was increased by 43% (error became from 0.14 to 0.08) 
compared to the classical GA. The synthesis time was also reduced by 6%. But when testing the new 
method on large data, some shortcomings were found. Since the ANN population is trained directly 
on the reward signal, many training examples are required. Tens of millions even for very simple 
cases. It does not work well on problems with a large number of degrees of freedom. If the method 
can't immediately identify key factors among a high-dimensional landscape, it probably won't learn at 
all. The method can also exploit vulnerabilities in the system by focusing on a local extreme – a 
suboptimal action (if a gradient descent converges to it), ignoring other environmental factors. And 
the main thing is that when updating data (even if they differ slightly from the original task), the 
method has to be trained completely again by the ANN. 
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