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ABSTRACT
The recently proposed EMDE (EfficientManifold Density Estimator)
model achieves state of-the-art results in session-based recommen-
dation. In this work we explore its application to Booking.com Data
Challenge competition. The aim of the challenge is to make the best
recommendation for the next destination of a user trip, based on
dataset with millions of real anonymized accommodation reserva-
tions. We achieve 2nd place in this competition. First, we use Cleora
- our graph embedding method - to represent cities as a directed
graph and learn their vector representation. Next, we apply EMDE
to predict the next user destination based on previously visited
cities and some features associated with each trip. We release the
source code at: https://github.com/Synerise/booking-challenge.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
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1 INTRODUCTION
The goal of the challenge [6] is to predict the final city of each trip
using a dataset based on millions of real anonymized accommoda-
tion reservations. The released train set contains 1,166,835 unique
reservations within 217,686 trips and 39,901 unique cities in 195
countries. A list of features is presented in Table 1.

The evaluation dataset is constructed similarly, however the city
ID of the final reservation of each trip is concealed and requires a
prediction. The test set consists of 378,667 reservations with at least
4 consecutive reservations. Predictions were made for 70,662 unique
trips. The test set was drawn from the same temporal distribution
as a training set.

Evaluation. The metric used for performance evaluation is pre-
cision at 4 (Precision@4). The score is understood as the average of
the per-sample scores, which are either 1 if the predicted city is in
top 4 predictions, or 0 otherwise. The teams were allowed to make
only 2 submissions on the final test set.

Solution.We frame the problem of route prediction as a session-
based recommendation task. Our contributions are as follows:

• We propose to represent cities as nodes in a directed graph,
whose edges represent trips between two cities. We compute

city embeddingswith Cleora [18], a fast and efficient network
embedding technique.

• We apply EMDE [5] to recommend the next destination
based on representations of previous cities and additional
numerical and categorical features such as the length of a
trip or the type of user’s device.

• We analyze the effectiveness and challenges of our method.
Overall challenge results. Our approach takes 2nd place out

of 38 in this challenge with the final Precision@4 score of 0.5780,
compared to the leading score of 0.5939 and surpasses the 3th and
4th place solution scores of 0.5741 and 0.5566, respectively.

Table 1: Dataset statistics.

Feature Number of unique values
User ID 200153
Trip ID 217686

Check-in date 425 (31.12.2015-27.02.2017)
Check-out date 425 (1.01.2016-28.02.2017)
Affiliate ID 3254
Device Class 3

Booker Country 5
Hotel Country 195

City ID 39901

2 RELATEDWORK
Within the past few years, deep learning recommendation models
have had difficulties in achieving good results in recommender sys-
tem competitions [9]. Instead, the winning solutions often involved
gradient boosting models with substantial feature engineering ef-
forts. Furthermore, it has been shown that conceptually simpler
techniques, e.g. based on nearest neighbors [13] often outperforms
neural approaches on multiple datasets.

Many deep learning session-based recommendation models con-
sider recommendations as a sequential problem, applying recurrent
networks (LSTM/GRU) [8, 11, 16, 17], which are known to have
difficulties in learning long-term dependencies and scale poorly
to growing item sets and increasing sequence lengths [19]. On
the other hand, graph-based models (GNN) [3, 21, 22] cast recom-
mendations as a graph traversal problem. Those methods exhibit
a number of specific efficiency-related problems such as neighbor-
hood explosion (the number of neighbors often grows exponentially
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Figure 1: EMDE architecture overview.

when increasing node distances are considered). Such problems de-
mand additional remedial measures which often hurt performance
[1, 2, 23]. Yet, as the sequential aspect of recommendation is con-
sidered vital, most efforts are focused on researching even more
complex neural network architectures in order to represent the
ordered relations accurately.

Instead of focusing on sequential aspect, our Efficient Manifold
Density Estimator (EMDE) [5] learns users’ behaviors as weighted
item sets: an aggregate vector (sketch), which is a histogram-like
vector representation of densities on manifolds spanned by embed-
ding vectors. EMDE allows to compress a variable-length sequence
of cities into a simple 1-D vector of constant size, which can be
fed into a simple shallow feed-forward neural network. It achieves
competitive results on many datasets, and has the ability to use a
multi-modal vector representation of each destination.

3 ALGORITHM
The first step of our algorithm is obtaining information-rich city
embeddings. We observe that the route prediction dataset can be
represented as a directed graph, where each city is a node, and each
directed edge represents a trip from one city to another. The dataset
has a graph structure with a lot of revisited cities in a single trip, 62%
of them have at least one cycle. In addition, representing data as a
graph gives the ability to have a connection between different trips.
In order to compute node embeddings we apply Cleora [18], which
relies on multiple iterations of normalized, weighted averaging
of each node’s neighbor embeddings, followed by normalization
across dimensions. The procedure is fast and we empirically find
that it produces high quality embeddings (§4.3).

3.1 EMDE
Efficient Manifold Density Estimator (EMDE) introduced in [5] is a
probability density estimator for high dimensional spaces, which is

inspired by Count-Min Sketch algorithm (CMS) and locality sen-
sitive hashing (LSH). It works by dividing the item embedding
space into regions and assigning items to specific regions (buckets)
based on similarity of their embedding vectors. EMDE operates
on structures analogous to multidimensional histograms, called
sketches.

An example of the full EMDE algorithm run is depicted in Fig-
ure 1. Full explanation and the intuitions behind the algorithm are
presented in [5]. Below we give a brief summary of the algorithm
steps:

(1) Encoding. EMDE operates on manifolds spanned by em-
bedding vectors. In our case, these are embeddings of cities
understood as graph nodes. First, the embedding manifolds
are partitioned with a data-dependent LSH method called
DLSH. As a result, LSH regions are created primarily where
the data are present. Each partitioning is done with 𝐾 hyper-
planes and is repeated 𝑁 independent times (see Encoding
section in Fig. 1). We denote 𝐾 as the sketch width and 𝑁 as
sketch depth. The regions of the partitioning are analogous
to hash buckets in CMS. While a single region is usually
large (typically 64-256 regions are created per single parti-
tioning), multiple independent partitionings allow to obtain
a high resolution map of the manifold via intersection or
ensembling.

(2) Region Assignment. The region IDs of each input cities
are stored in matrices𝑀 , which are then binarized to obtain
matrices 𝐵 (notations are consistent with Encoding section
in Fig. 1), which form the sketches of individual cities.

(3) Aggregation. The sketches of individual cities are aggre-
gated with simple summation to obtain a sketch of the whole
trip, represented by vector 𝑆𝑖𝑛𝑝𝑢𝑡 (see Aggregation section
in Fig. 1)
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(4) Training. The aggregate sketches have constant size and
thus can serve as input to a simple fully-connected feed-
forward neural network, which is trained to output a sketch
𝑆𝑡𝑎𝑟𝑔𝑒𝑡 of the hidden part of the trip.

(5) Prediction. Score prediction procedure reuses the sketches
of all cities, which have been encoded in the first algorithm
step. For each city, its relevant region IDs are stored in the
matrices𝑀 . When an output sketch 𝑆𝑜𝑢𝑡𝑝𝑢𝑡 is produced by
the network, the values contained in relevant region IDs
are retrieved for each city and averaged with the geometric
mean to produce a final per-city score.

The advantages of using EMDE are numerous, especially for
large datasets. The sketches are additive, and can accommodate
any number of cities within a fixed-size representation. Sketch size
is independent of the number of samples and original embedding
dimensions. EMDE can easily incorporate multiple modalities of
input data, as well as continuous and categorical features, by simple
vector concatenation. Note that the aggregate sketches produced
by EMDE inherently lose information on city ordering.

4 EXPERIMENTS
In this section, we first describe data preprocessing (§4.1), then we
describe our model in details, present the results, and analyze the
effectiveness of our method (§4.2).

4.1 Data Preparation
The goal of the competitions is to predict only the final desti-
nation of a each trip. However, in order to give the model more
information, we augment the dataset to include prediction of all
previous cities based on user history. For example, we split a four-
city trip into three training examples, predicting the second, third
and fourth city during the trip.

Train/Valid Split. We create our own validation set that im-
itates the hidden test set, by sampling out 70, 662 trips from the
train set. The validation set, same as the test set, has only final
destinations as target. In addition, trips in validation and test sets
consist of cities that appear only in the training set. Our training set
includes also non-final targets from the validation set. All datasets
are from the same temporal distribution.

Features. For each data point we compute the following cate-
gorical and continuous features: type of user’s device, country from
which the reservation was made, an ID of affiliate channels, country
of the hotel, the length of stay in predicted city, the number of days
since beginning of a trip, the number of days till the end of a trip,
number of days since last booking, number of cities in a trip, week
days of check-in and check-out, month, year.

4.2 Model
City embeddings. In order to obtain city embeddings, we repre-
sent the dataset as a directed graph of city trips. Each node in the
graph denotes a city, and each directed weighted edge represents
the journey between them. Weight of the edge denotes the number
of trips from one city to another. We construct the graph from both
training and testing examples (excluding the final missing cities). In
order to embeded cities we use Cleora [18] with iteration number
𝑖 = 1 and 𝑖 = 3 and embedding length of 1024. As a result, each

city is represented by two embeddings which are the input to the
EMDE model.

EMDEConfiguration.Weencode all embeddingswith sketches
of depth 𝑁 = 40 and width 𝐾 = 128. Each embedding configuration
(Cleora embeddings computed with 𝑖 = 1 and 𝑖 = 3) is encoded
separately, representing two complementary modalities of data. We
observe that adding random sketch codes (not based on LSH) for
each item improves the model performance, allowing the model to
separate very similar cities to differentiate their popularity.

Model. We train a three-layer residual feed forward neural net-
work with 3000 neurons in each hidden layer, with leaky ReLU
activations and batch normalization. The input of the network con-
sists of:

(1) Three width-wise L2-normalized, concatenated sketches:
first city sketch representing the first city in a trip, prev city
sketch representing the previous city in a trip, and all cities
sketch containing all other cities. We use the first city sketch
to facilitate training, because in about 15% of training ex-
amples, the final city is the same as the first city. In order
to create a representation of a user’s behaviour in the all
cities sketch, we aggregate the sketches of cities with a simple
summation (as is normally done in EMDE), multiplying them
with constant decay which reduces the influence of cities
which are older in time.

(2) Normalized numerical features such as number of days since
beginning of a trip or number of unique cities visited so far.

(3) Categorical features that are represented by the PyTorch
nn.Embedding layer such as the day of the week of check-
in, month, year or country from which the reservation was
made. The size of the embedding depends on the number
of unique feature values. We set it to 120 for previous hotel
country and affiliate channel features. For other features, the
size of the embedding is 20.

(4) A binary flag indicating if the target is the final destination
(always true in case of the test set).

The output of the model is a sketch that represents our target city.
The procedure of producing the all cities sketch is shown in Figure
1, also showing the addition of numerical and categorical features
by simple concatenation.

Training. We train our model on a single nVidia GeForce RTX
2080 Ti 11GB RAM GPU card. Training takes circa 45 minutes
on this configuration. We use AdamW optimizer [12] with first
momentum coefficient of 0.9 and second momentum coefficient of
0.9991 with an initial learning rate of 0.0005, weight decay of 0.01
and a mini-batch size of 128 for optimization.

Since the distribution of final destinations is different than dis-
tribution of non-final cities, we train the model in two stages: 1)
using non-final target destinations, and 2) fine-tuning the model
on the examples with final destinations. The model was trained for
2 epochs, and then fine-tuned again with smaller learning rate only
on final cities for 1 epoch.

Decoding. The retrieval of items from the encoded sketch rep-
resentation is done at the prediction stage. We retrieve scores for
all items using the EMDE prediction procedure described in §3.1.
Additionally, we post-process the output scores by multiplying by

1Standard configuration recommended by [10]

ACM WSDM WebTour 2021, March 12th, 2021 Jerusalem, Israel 31

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



Michał Daniluk, Barbara Rychalska, Konrad Gołuchowski, and Jacek Dąbrowski

city popularity weights (calculated as the logarithm of the number
of city occurrences as the final destination in a trip), thus boosting
the scores of popular cities. Finally, we pick 4 cities with the highest
scores as the top predictions.

Results. Our final score of Precision@4 metric on the validation
set is 0.601%.

Table 2: Ablation study results.

Metric Basic +Data +Features +Popularity +Ensembling
Precision@4 0.552 0.573 0.595 0.598 0.601
Difference - +0.021 +0.022 +0.003 +0.003

4.3 Ablation studies
In order to understand the effect of crucial parts of the training pro-
cess, we conduct additional experiments. To ensure a comparable
number of parameters of all models, we adjusted the hidden size to
have roughly the same total number of model parameters.

The ablation results are summarized in Table 2. In the Basic
setting we train a pure EMDE model, which takes as input only the
three concatenated city sketches (first city sketch, prev city sketch,
all cities sketch) and trains on final destinations only. This baseline
model achieved Precision@4 score of 0.552. By including examples
that are not final destination, and adding flag to the input that indi-
cates if the examples is the last destination (Data), we observed a
0.021 increase of the precision score. Concatenating continuous and
categorical features to the input of neural network (Features) im-
proves the precision score by 0.022 compared to the model without
features. In addition to pure EMDE decoding we verify the impact
of popularity boosting of final scores (Popularity). It increases
Precision@4 score from 0.595 to 0.598. Furthermore, ensembling of
5 models (Ensembling) improves the precision by 0.003%

Table 3: Performance of EMDE against of sequential models
(without ensembling).

Metric EMDE GRU + Cleora GRU
Precision@4 0.598 0.588 0.5786

In the next set of experiments, we compare EMDE against a
sequential baseline model. The results are presented in Table 3. We
train a GRU model [4] with hidden size of 1024 (selected empir-
ically for best results), which takes as input either trainable city
embeddings, or city embeddings learned by Cleora. All other input
features are the same as in EMDE model. For fair comparison, we
feed GRU outputs to the same three-layer feed-forward residual
architecture as in EMDE. The application of sequential model de-
creases Precision@4 score from 0.598 to 0.588. In addition, training
GRU with randomly initialized trainable embeddings decreases
Precision@4 score to 0.578.

We also verify the impact of a graph embedding technique used
to embed cities. We contrast Cleora with Word2Vec [15] from the
area of natural language processing, Node2Vec [7] which learns a
low-dimensional representations for nodes in a graph by optimizing

Table 4: Performance of our system (without ensembling) us-
ing various graph representationmethods for computing in-
put embeddings.

Metric Cleora Node2Vec LINE Word2Vec GRU
Precision@4 0.5984 0.5956 0.5949 0.5907 0.5865

a neighborhood preserving objective, and LINE [20], which pre-
serves the first-order node proximity and second-order node prox-
imity separately, and then concatenates the two representations.
In addition to network embedding techniques, we also compare to
embeddings produced by a sequential model. We train a GRUmodel
with trainable city embeddings to predict the final destination of a
trip, and then use these learned embeddings to represent the cities
as EMDE input. The results are summarized in Table 4. Cleora is a
clear winner in terms of performance while also being significantly
faster to train [18].

Figure 2: Red plot presents the performance of the model in
terms of number of reservations in a trip. The distribution
of trip lengths is shown in the blue chart.

Error analysis. To discover possible sources of errors, we ana-
lyze predictions on different length of trips (Figure 2). We notice
that almost 50% of reservations have only 4 bookings, and 97.6%
trips have less than 10 bookings. That taken into account, we ob-
serve that the performance of our model increases with the
number of reservations in a trip. We hypothesize that it is easier
for EMDE to capture dependencies in long sequences because in
long trips the last part of the trip is often located in the same coun-
try (thus the cities are relatively close by), while in short sequences
final locations can change abruptly.

In about 15% validation examples, the last destination is the same
as the first one. Our model achieves 0.902 Precision@4 score on
these examples, which leads to the conclusion that it learned to
capture this particular phenomenon.

City embeddings visualization. Figure 3 shows a visualiza-
tion of high dimensional city embeddings mapped to 2-D space with
UMAP [14]. It can be seen that Cleora embeddings exhibit the aware-
ness of geographic closeness of cities, which is well-represented
irrespective of city popularity. As such, we show that the embed-
dings hold semantic knowledge which was not contained directly
in the training graph (which was comprised of sequences of city
IDs only, without any extra features).
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(a) Top 20 most popular countries (b) Top 60 to 80 most popular countries

Figure 3: 2-D visualization of city embeddings learned by
Cleora. Each color denotes a different hotel country.

5 SUMMARY
In this paper we present our model which achieves 2nd place in
Booking.com data challenge competition. We show that predicting
the final city can be seen as a recommendation task. The system uti-
lizes a graph embedding method to create multi-modal city vector
representations, which are then encoded by EMDE into fixed-size
sketch structures. We show that accurate density estimation of se-
quences mapped to item sets can outperform inherently sequential
methods.
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