
Attention-based neural re-ranking approach for next city in trip
recommendations

Aleksandr Petrov

Edinburgh, United Kingdom

firexel@gmail.com

Yuriy Makarov

Saint-Petersburg, Russia

lvoursl@gmail.com

ABSTRACT
This paper describes an approach to solving the next destination

city recommendation problem for a travel reservation system. We

propose a two stages approach: a heuristic approach for candidates

selection and an attention neural network model for candidates

re-ranking. Our method was inspired by listwise learning-to-rank

methods and recent developments in natural language processing

and the transformer architecture in particular. We used this ap-

proach to solve the Booking.com recommendations challenge [3].

Our team achieved 5
th
place on the challenge using this method,

with 0.555 accuracy@4 value on the closed part of the dataset.

CCS CONCEPTS
• Information systems→ Recommender systems; • Computing
methodologies→ Neural networks.

KEYWORDS
recommender systems, neural networks, learning-to-rank, attention

neural networks

1 INTRODUCTION
1.1 Problem description
Next city in a trip recommendations is an important applied prob-

lem. When a user plans their trip, the ability to correctly predict

next destination can directly benefit the user, saving them time

on planning. The benefit of the user is important for the book-

ing service provider - if the user gets precise recommendation,

they are more likely to book it using the same platform and there-

fore increase the company revenue. In late 2020 Booking.com, the

largest hotel reservations service provider, released a dataset and

launched a public competition [3] with the goal of achieving the

best Accuracy@4 metric. We built an attention based model for

this competition and achieved 5
th

place with final score of 0.555

Accuracy@4 on the closed test set.

1.2 Dataset and target metric
The dataset, released by booking.com, consists of two parts: train
and test. Both parts include anonymized hotel checkins with follow-

ing features: userId, checkinDate, checkoutDate, cityId, deviceClass,

affiliateId, bookerCountry, hotelCountry, utripId. CityId and hotel-

Country of the last checkin in the trip were masked in the test
part of the dataset and were used for scoring by the competition

organizers.

The goal of the competition was to generate recommendations

list of 4 cities. The organizers used Accuracy@4 as the main con-

test metric, which essentially is a percentage of times when our

recommendations contained correct cityId.

2 ATTENTION-BASED RERANKING MODEL
Accuracy@4 is a ranking metric; therefore, we solved the problem

as a ranking problem. Accuracy@4 is not a very stable metric,

as it does not take into account the order of the elements in the

recommendations list and takes into account only 4 scores for each

recommendation. Instead, we chose another popular ranking metric

- NDCG@40[4] as our main optimization target. This metric is more

stable as it considers the order of the elements in the list and takes

into account 40 scores rather than 4.

We chose the 2-stages approach, which is popular for solving

ranking problems. In the first stage, we selected 500 candidates

from all cities using a mixture of simple models. In the second

stage, we re-ranked the candidates using a self-attention neural

network. We used LambdaRANK[2] approach for the optimization,

as it optimizes the NDCG metric directly.

Our main model was inspired by the transformer architecture [9].

The architecture is designed for language processing and achieved

state-of-the-art results in many text analysis tasks. The idea of

utilizing a language model comes from the fact that a sequence

of cities in the trip has a very similar structure as a sequence of

words in the text. This idea was already successfully applied to

recommender systems; see [8] for example.

On the high level, the model works as follows:

(1) Select candidates for ranking.

(2) Generate candidates matrix 𝐶 . Each row of this matrix con-

tains a vector representation of the corresponding candidate.

The vector consists of learnable embeddings as well as engi-

neered features.

(3) Generate vector representations of all known cities in the

trip 𝑇 using transformer-like architecture

(4) Generate vector representation of the last city in the trip 𝐹 .

Even though the target city itself is unknown, the dataset

contains such features as checkinDate, checkoutDate, de-

viceClass, affiliateId, bookerCountry, which we can use for

the prediction.

(5) Generate scores for the candidates. To do this we use Mul-

tiHeadAttention mechanism [9] between Candidate Cities

and Trip and then calculate the final score using dot product

with the encoded features vector:

𝑆𝑐𝑜𝑟𝑒𝑠 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐶,𝑇 ) · 𝐹 (1)

2.1 Labels generation
The model training process requires labeled data. To get the labels

for each trip, we performed the following procedure:

(1) Sort actions in the trip by the time of check-in.

(2) Choose a random fraction of the last cities in the trip as

target cities. We re-split the data on each training epoch. This

ACM WSDM WebTour 2021, March 12th, 2021 Jerusalem, Israel 41

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



Petrov and Makarov

technique allowed us to generate multiple training samples

out of a single trip.

(3) Assign label score 2
−𝑖

for 𝑖𝑡ℎ city in the target fraction. The

idea is that each city from the target fraction is relevant as

a trip continuation, but we want our model to rank higher

the cities that the user visited in the near term. The intuition

behind giving exponentially diminishing weights for future

trips is based on the fact that the cities that the user will visit

in the short-term future are more likely to be related to the

cities the user visited recently.

2.2 Candidates selection
Ourmodel uses the LamdaRANK ranking optimization approach[2],

which involves heavy computations and only can generate scores

for a limited amount of candidate cities at once. Given that, we

needed to generate good candidates using some simpler approaches.

To train the model reasonably fast, we limited the number of candi-

dates to 500 (out of 39870). We used a mixture of simpler models to

fill the set of candidates.

Basic models for candidates selection. This paragraph describes

our basic models and heuristics that we used to produce a list of the

candidate cities. During each training epoch, we randomly chose

10000 trips to train our main neural model to prevent overfitting,

and we used the rest of the training set to re-train baseline models

and generate features. Here is the list of the models that we used

to generate candidates:

(1) All cities from the trip. We have found that quite frequently,

the user already visited the last city from the trip previously

in the same trip, so all the cities from the trip are good

candidates. We added all the cities from the trip to the set of

candidates.

(2) TransitionChain – this model utilizes a sequential nature of

the data.

Let’s assume that the total number of cities in the dataset

is equal to𝑀 , and each trip has 𝐾 cities, where 𝐾-th city is

a target city. We can create transition matrix 𝑇 ∈ R𝑀×𝑀 ,

which we can fill in a way, described in Algorithm 1.

The prediction process is straightforward: we take all cities

in the trip (except target) and sum up all lines in the matrix

corresponding to these cities, then we took cities with the

highest scores and used them as predictions.

We generated recommendations for the trip using Transi-

tionsChain and added the resulting recommendations into

the candidates set until it reached size 150.

(3) BookerTripCountryTop – This model generates the most pop-

ular cities in trips from the users from a particular country

who had the same country of the last city in the trip. We

added recommendations from this model to the candidates

set until we got 350 candidate cities.

(4) LastCityCountryTop – This model calculates the most popu-

lar next city based on the country of the last city in the trip

and generates them as recommendations. We added recom-

mendations from this model to the candidates set until we

got 500 candidate cities.

Algorithm 1 Transition Matrix (𝑇 ) Filling

1: procedure fillTransitionMatrix

2: T← zero matrix with size M ×𝑀
3: for current_trip in trips do:
4: 𝑙𝑎𝑠𝑡_𝑐𝑖𝑡𝑦 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑟𝑖𝑝 [−1]
5: 𝑝𝑟𝑒𝑣_𝑐𝑖𝑡𝑖𝑒𝑠 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑟𝑖𝑝 [: −1]
6: for city in prev_cities do:
7: 𝑇 [𝑐𝑖𝑡𝑦] [𝑙𝑎𝑠𝑡_𝑐𝑖𝑡𝑦] += 1.

8: end for
9: end for
10: end procedure

In some cases, we were not able to fill candidates set using

the models above. For example, when a user visited very un-

popular cities, we don’t have enough statistics in the training

set. In this case, we added candidates to the candidates set

from two additional models:

(5) BookerCountryTop – This model calculates most popular

cities among users from a specific country. We added candi-

dates from this model until we have 500 candidates in the

set.

(6) GlobalTop – This model generates the most popular cities in

the training set as recommendations. We added candidates

from this model if all previous models could not fill the set

of candidates.

Our experiments have shown that this heuristic includes the

right candidate into the set of candidates with 90% probability.

2.3 Generate candidate’s features
For each candidate, we generated a vector representation that in-

cluded the following features:

• City’s popularity globally and especially for booker’s coun-

try

• City’s popularity according to current month and year

• City’s score from TransitionsChain recommender.

• Binary flag: is the candidate same city as the first city in the

trip

• Binary flags: for each of the last 5 cites in the trip - is the

candidate the same as this city from the trip

• Candidate’s cosine similarity with last 5 cities in a trip based

on their co-occurrence in train data.

2.4 Trip Encoding
Our model used transformer[9]-like architecture to encode cities

from the trip history. We represented each city in the trip as a

vector, that included following parts:

(1) City embedding - 32 dimensions, learnable.

(2) Booker country embedding - 32 dimensions, learnable.

(3) Hotel country embedding - 32 dimensions, learnable (share

weights with the booker country embedding)

(4) Affiliate id embedding - 5 dimensions, learnable.

(5) City-in-trip features. Manually engineered features, that in-

clude:

• Number of nights between check-in and check-out dates

• Is this trip over the weekend or not?

ACM WSDM WebTour 2021, March 12th, 2021 Jerusalem, Israel 42

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



Attention-based neural re-ranking approach for next city in trip recommendations

• Is the current city in the same country as previous ones?

• City’s check-in and check-out day of week and day of the

year

• Is booker’s country equal to hotel’s country?

• Check-in year (3 features, one-hot encoded)

• Checkin month (12 features, one-hot encoded)

Overall, each city in the trip was represented using 115 parame-

ters. We stacked the cities’ representations in the trip and padded

the matrix to the shape (50, 115), where 50 is the maximum possible

number of cities in the trip.

To get a better semantic representation of the cities in the trip, we

encoded each city using a single dense layer with 115 dimensions.

Similarly to the original transformer architecture, we combined

city representation with positional embeddings. In the original

paper[9] the authors use fixed embeddings, based on 𝑠𝑖𝑛 function.

We replaced this with two learnable embeddings, representing the

city’s position from the beginning and the end of the trip. These

embeddings are then concatenated, passed through a dense layer,

and multiplied with city representation vectors.

To model interactions of the cities in the trip, we added three

transformer-like blocks. The original transformer block consists of

multi-head attention, feed-forward layer, residual connection, and

layer normalization. Our transformer-like block has a similar ar-

chitecture with only a minor difference: we used Multiplication for

residual connection instead of Sum. Our experiments have shown

that the network with Multiplication instead of Sum required fewer

epochs to train. Figure 3 shows architecture of the Transformer-like

block used in our architecture.

Figure 1: Transformer-like block

We then used the Transformer-like part of the model to model

interactions between candidate cities and cities from the trip. In

addition to the features matrix described in section 2.3, we added

city embedding and country embedding to each candidate. These

embeddings share weights with the city embeddings and country

embeddings from the trip-encoding part of the model. The candi-

dates were additionally encoded using a feed-forward layer. We

also added one transformer-like block to model the relationship

between candidates. The idea is that the candidates are not inde-

pendent, and the model should score candidates knowing about

other candidates. A similar idea of modeling interactions between

candidates for recommendations is described in [7]

We used one multi-head attention layer to model interaction

between encoded user trips and encoded candidate cities. We hy-

pothesize that this output layer contained semantically rich repre-

sentations of the (trip, candidate) pairs.

Figure 2: High-level model architecture

To generate the model’s final scores, we used dot product opera-

tion with encoded features of the target city. The dataset contains

all parameters of the target city, except cityId and countryId. We

encoded these parameters using the same manually engineered

features as described in section 2.3 and encoded them using a dense

layer.

2.5 Model training
Our model’s goal was to rank candidates according to the label

score, which constitutes a ranking task. The problem of direct opti-

mization of the ranking metrics, such as Accuracy@4 or NDCG, is

difficult because these metrics only depend on the order of the items

and therefore are not smooth and can not be directly optimized

gradient-descent technologies. To overcome this problem, we used

the LambdaRANK approach described in [2]. The method’s idea

is that instead of calculating the loss function and calculating its

ACM WSDM WebTour 2021, March 12th, 2021 Jerusalem, Israel 43

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



Petrov and Makarov

gradients, one can directly calculate gradients. The authors of [2]

propose generating such gradients for optimizing the NDCGmetric.

We implemented this method and used it as our main optimization

approach.

We optimised our network using Adam[5] optimiser. We trained

our model using 50-epochs early stop criteria on val_accuracy_at_4

metric.

Figure 3: Validation performance during training process

Figure 3 illustrates model performance on the validation set

during the training process. As one can see from the plot, the

NDCG@40 (metric optimized by the LambdaRANK approach) and

Accuracy@4 (contest target metric) demonstrate high correlation,

suggesting that optimizing one metric leads to optimization of the

other.

We used Keras and TensorFlow[1] libraries to train our neural

networks. Training of the model took 7 hours on GeForce GTX3090

GPU.

3 EVALUATION AND RESULTS
In this section, we describe the validation scheme, metrics and

analyze our results.

3.1 Validation scheme
Our validation scheme was based on trips. We used both train
and test datasets provided by the competition organizers to train

our model. We randomly allocated 4000 trips to the hold-out set,

4000 trips to the validation set, and the rest to the training set. We

tried to predict the last city in the trip based on all previous cities’

information and available information about the last city in the

validation and hold-out sets.

3.2 Metrics
We used the following metrics to evaluate our models:

• Accuracy@4: competition organizers proposed this metric.

The idea of Accuracy@4 is quite simple: it is equal to 1 if the

target city in our top-4 prediction and 0 otherwise.

• NDCG@40: according to our experiments, NDCG@40 is a

more stable metric than previous ones. We also found that

NDCG@40 and Accuracy@4 have a quite strong correlation

Table 1: Models comparison

Model Accuracy@4 NDCG@40 Leaderboard

GlobalTop 0.058 0.091 -

TruncatedSVD 0.261 0.261 -

LastCityCountryTop 0.372 0.358 -

TransitionChain 0.440 0.429 -

SelfAttention 0.509 0.491 0.514

LambdaMART 0.514 0.485 -

Reranking Attention 0.542 0.513 0.555

(Figure 3.). One can find the details about the NDCG metric

in [4]

• Leaderboard: this metric is essentially the Accuracy@4met-

ric, calculated by the organizers on the closed part of the

dataset. We could only calculate this metric for two models

by the competition’s conditions - the one that we sent for

the intermediate leaderboard and the final submission.

3.3 Model performance against baselines
We used the following baselines to evaluate quality of our model:

• GlobalTop, LastCityCountryTop, TransitionChain - baselines

used as part of our candidates selection process (see section

2.2)

• TruncatedSVD - a popular method of solving recommenda-

tions problem [6].

• SelfAttention - end-to-end version of our model. The model’s

architecture consists of a transformer-like part of our model,

followed by three dense layers, the last of which generates

recommendation scores for all cities in the dataset. The main

difference compared with the reranking attention model is

that this model doesn’t use manually engineered candidate

features. This makes the model simpler, and therefore the

model can produce scores for all cities in the dataset rather

than a small number of candidates.

• LambdaMART - Gradient boosting trees implementation

of the LambdaRANK approach. We used the same candi-

date generation procedure and same manually engineered

features described in section 2.3. We used LambdaMART

implementation from LightGBM lilbrary
1
.

Table 1 contains results of the comparison. Our final model

demonstrates statistically significant improvement over baselines

on the Accuracy@4 metric (p-value < 0.01 in two-tailed Z-test).

4 CONCLUSION
As this challenge has shown, combining the listwise ranking meth-

ods and neural models is a viable idea that allowed us to achieve

a high score on the contest. The same optimization approach can

be used with other architectures and solve many other ranking

problems in the information retrieval area, including recommender

systems and search results ranking.

1
https://lightgbm.readthedocs.io/en/latest/

ACM WSDM WebTour 2021, March 12th, 2021 Jerusalem, Israel 44

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



Attention-based neural re-ranking approach for next city in trip recommendations

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,

Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

(2015). https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An

overview. Learning 11, 23-581 (2010), 81.

[3] Dmitri Goldenberg, Kostia Kofman, Pavel Levin, Sarai Mizrachi, Maayan Kafry,

and Guy Nadav. 2021. Booking.com WSDM WebTour 2021 Challenge. https:

//www.bookingchallenge.com/. In ACMWSDMWorkshop on Web Tourism (WSDM
WebTour’21).

[4] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation

of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[5] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980 (2014).
[6] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 42, 8 (2009), 30–37.
[7] Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian

Wu, Peng Jiang, Junfeng Ge, Wenwu Ou, et al. 2019. Personalized re-ranking

for recommendation. In Proceedings of the 13th ACM Conference on Recommender
Systems. 3–11.

[8] Fei Sun, Jun Liu, JianWu, Changhua Pei, Xiao Lin,WenwuOu, and Peng Jiang. 2019.

BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representa-

tions from Transformer. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management (Beijing, China) (CIKM ’19). ACM,

New York, NY, USA, 1441–1450. https://doi.org/10.1145/3357384.3357895

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. arXiv
preprint arXiv:1706.03762 (2017).

ACM WSDM WebTour 2021, March 12th, 2021 Jerusalem, Israel 45

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://www.tensorflow.org/
https://www.bookingchallenge.com/
https://www.bookingchallenge.com/
https://doi.org/10.1145/3357384.3357895

