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Abstract
Temporal requirements express the time-related system behaviors and properties. In engineering critical
systems, experience has shown that temporal requirements are the most problematic type of requirements
to verify. Researchers have thus used natural language processing (NLP) techniques—most notably,
part-of-speech (PoS) tagging—to develop practical classifiers to distinguish temporal requirements from
non-temporal ones. In this paper, we explore frame semantics—a linguistic approach to labeling a
word’s role in a sentence with respect to the events of interest—to augment the temporal requirements
classification task. Our experiments of 111 requirements sentences from the regulatory documents show
that the best classification accuracy of 90.9% is achieved when PoS features are replaced with, rather than
combined with, frame semantics features. The results suggest the promising role of semantics-augmented
NLP support in an understudied requirements engineering task.
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1. Introduction

Natural language (NL) is the de facto medium for specifying requirements in industrial settings.
A main advantage of NL is that it facilitates shared understanding among different stakeholders
who may have different backgrounds and expertise [1, 2]. NL is also ubiquitous in the develop-
ment of critical systems [3]. For example, requirements of the space mission systems developed
at NASA’s Jet Propulsion Laboratory (JPL) continue to be written in NL [4].

Nikora [4] shared the experience in implementing space mission software systems by high-
lighting that temporal requirements are the most problematic type of requirements to verify.
Temporal requirements express time-related system behaviors and properties, such as safety
properties asserting that nothing bad happens, liveness properties asserting that something
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good eventually happens, and many other propositions (e.g., 𝑃 becomes true after 𝑄, 𝑅 responds
to 𝑆 before 𝑇, etc. [5]).

Because accurately identifying temporal requirements can significantly reduce the effort of
analyzing them for consistency, researchers have developed practical support by applying natu-
ral language processing (NLP) and machine learning (ML) techniques. Nikora [4] experimented
five ML classifiers (e.g., lazy Bayesian rules) with features constructed by such NLP steps as
stop word removal, stemming, and part-of-speech (PoS) tagging. The results show that PoS
features positively impact classification accuracy, implying the role of NLP in building practical
classifiers for separating temporal requirements from non-temporal ones.

In this paper, we explore the semantic NLP support for the temporal requirements classi-
fication task. While PoS features encode the syntactic aspects of a word in a sentence (e.g.,
noun, verb, adjective, etc.), we speculate that a word’s semantic characteristics could provide
further distinguishing power in recognizing temporal requirements. In particular, we leverage
frame semantics [6], along with the SEMAFOR frame-semantic parser [7], to examine if and how
semantic features may improve the PoS-based classification performance. Frame semantics is a
theory based on how humans comprehend the roles that words take in a sentence with respect
to events of interest. Requirements engineering (RE) researchers have applied this theory to
different tasks [8, 9]. In our work, the focus is on integrating frame semantics into the ML
classifiers of temporal requirements.

The chief contribution of our work is to extend the state-of-the-art in temporal requirements
classification with semantic NLP features. Our experiments with 111 requirements sentences
from the regulatory documents show that the highest classification accuracy is obtained when
semantic frames completely replace PoS features. Surprisingly, the combination of PoS and frame
semantics achieves lower accuracy, indicating amore effective NLP step based on frame-semantic
parsing could be employed in practical settings. In what follows, we present background
information in Section 2. We then detail our experimental design in Section 3, report the
experimental results in Section 4, and finally, conclude the paper in Section 5.

2. Background and Related Work

2.1. Temporal Requirements Classification

The capability of distinguishing between temporal and non-temporal requirements could help
reduce the effort required to trace the critical concerns from mission objectives to finer details
allocated to individual software and systems components. Because temporal requirements are
amenable to formal specifications [10], model checking tools such as SPIN and NuSMV can be
used to verify the properties and desired behaviors expressed in temporal requirements.

In practice, only a small proportion of NL requirements are of the temporal nature. The
body of space mission system requirements that was analyzed by Nikora [4] consisted of a total
of nearly 7500 requirements, of which approximately 500 (6.7%) were temporal requirements.
To build a practical classifier, Nikora [4] showed that word frequencies would not make good
distinctions. The state-of-the-art solution that Nikora [4] reported is to preprocess (stemming,
removing stop words) all requirements, and then to use both the words and the PoS tags of
each sentence as features to build ML classifiers. Experimenting with the body of nearly 7500



NL requirements showed that the classifier built with lazy Bayesian rules achieved the best
classification accuracy at 94.4%. Probably the most valuable operational insight is what exactly
constitutes the feature space of the ML algorithms: According to Nikora’s work [4], each
sentence’s first 200 words and those words’ PoS tags shall be used as ML features. If a sentence
is shorter than 200 words, then all of its words and their PoS tags shall be used.

In summary, temporal requirements classification is an important task, enabling subsequent
effort of deriving LTL specifications from the NL requirements [5, 11]. As pointed out by
Ryan [12], NLP’s role in RE must be cautioned. We next review some RE work applying frame
semantics as a NLP assistance.

2.2. Frame Semantics in Requirements Engineering

Frame semantics is a theory of linguistic meaning developed by Fillmore [6]. The basic idea is
that one cannot understand the meaning of a single word without access to all the essential
knowledge that relates to that word. To illustrate frame semantics, let us consider the following
two sentences:

• We could use a leaky bucket algorithm to limit the bandwidth.
• The leaky bucket algorithm fails in limiting the bandwidth.

Although the sentences share certain terms (e.g., “leaky bucket algorithm” and “bandwidth”)
and even PoS tagging results of those terms (“noun”), the first sentence proposes a solution for
a specific problem and the second sentence points out a problem. With frame-semantic parsing,
the different meanings of these sentences become apparent.

• We could {use}frameName=Using {a leaky bucket algorithm}frameElement=Instrument {to limit
the bandwidth}frameElement=Purpose.

• {The leaky bucket algorithm}frameElement=Agent {fails}frameName=Success or failure {in lim-
iting the bandwidth}frameElement=Goal.

The “frameName” signifies the main event of interest, and the “frameElement” shows the
argument needed to understand the event. The first sentence is about “Using” an “Instrument”
to attain a “Purpose”. The second sentence is about “Success or failure”, and more specifically
about the “failure” of an “Agent” in achieving a “Goal”. Such frame-semantic parsing results
can be obtained automatically with state-of-the-art tools like SEMAFOR. SEMAFOR implements
a statistical model [13] for determining which words in a sentence evoke what kinds of frames
from FrameNet, a large collection of more than 1200 frames of the English language [14].

As shown by the previous examples, frame semantics offers the NLP support that goes be-
yond the syntactic level, effectively distinguishing sentences that are similar from a lexical and
PoS-tagging perspective. In RE, Liaskos et al. [8] identified a goal model’s variability concerns
by relying on the set of “Agentive”, “Dative”, “Objective”, “Factitive”, “Process”, “Locational”,
“Temporal”, “Conditional”, and “Extent” frames. Niu and Easterbrook [9] extracted a software
product line’s functional requirements from NL documents with both the PoS-tagged “verb−di-
rect object” lexical affinities and the semantic frames characterizing the variation points. Niu et



al. [10] recently developed three frame-semantic patterns to identify the “asset leakage” safety
property grounded in the SysML specification.

In summary, frame semantics has been applied to support requirements elicitation and
modeling tasks. Inspired by these studies, we are interested in enhancing temporal requirements
classification with frame semantics.

3. Experimental Design

To answer our research question of: “To what extent does frame semantics enhance temporal
requirements classification?”, we design two enhancement mechanisms over Nikora’s baseline
classifier [4]. Figure 1 shows our experimental setup. For each requirements sentence, we
employ Python’s NLTK (https://nltk.org) to perform PoS tagging, and the SEMAFOR tool (http:
//www.cs.cmu.edu/~ark/SEMAFOR/) for frame-semantic parsing. Our independent variable
is concerned with the feature representation of a given requirements sentence.

• Baseline uses a sentence’s words and their PoS tags [4].
• Replacement explores text and frame semantics features, using the sentence’s semantic
frames in place of the PoS tags.

• Combination aggregates text, PoS tags, and semantic frames, grouping the textual,
syntactic, and semantic attributes in the feature representation.

Note that our preprocessing uses Python’s NLTK to remove stop words and to perform stemming.
Moreover, the punctuationmarks are ignored in the feature representation. Finally, following [4],
if a sentence is longer than 200 words, only the first 200 words and the associated PoS and
frame-semantic attributes are considered.

Once a NL requirement is represented into features, Figure 1 shows that ML classifiers are
trained to classify whether the requirement is temporal or not. We have experimented four
ML classifiers by using scikit-learn in Python (https://scikit-learn.org/): decision tree, logistic
regression, random forest, and support vector machine (SVM).

The dataset that we use contains 111 NL sentences: 72 from Family Educational Rights
Privacy Act (FERPA)1 and 39 from FIPS 2002. FERPA is a United States federal law that governs
the access to educational information and records by public entities, whereas FIPS 200 is an
integral part of the risk management framework that the United States National Institute of
Standards and Technology (NIST) has developed to assist federal agencies in providing levels
of information security. A team of four researchers manually labeled a randomly selected 25
requirements, resulting in a substantial inter-rater agreement level with Fleiss’ kappa=0.725.
The discrepancies were resolved in a one-hour virtual meeting, and a labeling guideline was
jointly developed. The researchers then individually labeled the remaining 86 requirements by
following the guideline. The final labeling results show that, among the 111 requirements, 13
(11.7%) are temporal requirements. Table 1 lists the 13 temporal requirements.

1https://studentprivacy.ed.gov/sites/default/files/resource_document/file/FERPA_Enforcement_Notice_2018.
pdf

2https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.200.pdf

https://nltk.org
http://www.cs.cmu.edu/~ark/SEMAFOR/
http://www.cs.cmu.edu/~ark/SEMAFOR/
https://scikit-learn.org/
https://studentprivacy.ed.gov/sites/default/files/resource_document/file/FERPA_Enforcement_Notice_2018.pdf
https://studentprivacy.ed.gov/sites/default/files/resource_document/file/FERPA_Enforcement_Notice_2018.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.200.pdf
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Figure 1: Each requirements sentence is preprocessed with Python’s NLTK and SEMAFOR to generate
the PoS tags and the semantic frames. The sentence and the linguistic attributes are then used to
represent the sentence: Baseline uses text and PoS tags, Replacement uses text and semantic frames,
and Combination uses text, PoS tags, and semantic frames. ML classifiers are trained to identify
whether the sentence is a temporal requirement or not.

We apply 10-fold cross validation for the performance evaluation. We break the dataset into 10
subsets of nearly equal size. The ML classifier is then trained with 9 subsets and tested with the
remaining tenth subset. The dependent variable is classification accuracy, and following [4],
the highest accuracy is reported. We also report the F1-score at the class level by considering
the reviewers’ comments.

4. Results and Analysis

The classification accuracy results are listed in Table 2. We note that, among the four ML
classifiers, SVM and random forest have higher accuracy levels and the performances of these
two are comparable. Our findings are in line with Pranckevičius and Marcinkevišius’s study [15]
showing the accuracy values of SVM and random forest were similar. In addition, Alenazi et
al. [16] showed that SVM outperformed decision tree in classifying model obstacles. While our
data are NL requirements, Table 2 suggests that SVM achieves higher accuracy than logistic
regression.

Compared with Baseline, Replacement achieves better performance, and such improve-
ments are consistent across all the ML classifiers. In contrast, Combination performs the same
as Baseline, indicating that the effect of semantic frames might be overshadowed by that of
the PoS tags. When running the Baseline, the highest accuracy achieved is 86.3%, which is
lower than 94.4% reported in [4]. We speculate one reason may be the smaller dataset (111 total



Table 1
Thirteen Temporal Requirements in Our Dataset

Source Requirements Sentence

Under FERPA, a school must provide an eligible student with an opportunity to inspect and review
his or her education records within 45 days following its receipt of a request.

A school is not required to provide an eligible student with updates on his or her progress in a
course (including grade reports) or in school unless such information already exists in the
form of an education record.

If, as a result of the hearing, the school still decides not to amend the record, the eligible student
has the right to insert a statement in the record setting forth his or her views.

That statement must remain with the contested part of the eligible student’s record for as long as
the record is maintained.

Under FERPA, a school may not generally disclose personally identifiable information from a
minor student’s education records to a third party unless the student’s parent has
provided written consent.

A school may disclose personally identifiable information from education records without
FERPA consent to a “school official” under this exception only if the school has first determined

that the official has a “legitimate educational interest” in obtaining access to the
information for the school.

Otherwise, the school must make a reasonable attempt to notify the parent in advance of making
the disclosure, unless the parent or eligible student has initiated the disclosure.

As stated above, the conditions specified in the FERPA regulations have to be met before a school
may non-consensually disclose personally identifiable information from education records in
connection with any of the exceptions mentioned above.

A timely complaint is defined as one that is submitted to the Office within 180 days of the date
that the complainant knew or reasonably should have known of the alleged violation.

Complaints that do not meet FERPA’s threshold requirement for timeliness are not investigated.
If we receive a timely complaint that contains a specific allegation of fact giving reasonable

cause to believe that a school has violated FERPA, we may initiate an administrative
investigation into the allegation in accordance with procedures outlined in the FERPA
regulations.

Organizations must establish and maintain baseline configurations and inventories of
organizational information systems (including hardware, software, firmware, and

FIPS documentation) throughout the respective system development life cycles.
200 Organizations must identify information system users, processes acting on behalf of users, or

devices and authenticate (or verify) the identities of those users, processes, or devices, as
a prerequisite to allowing access to organizational information systems.

requirements) used in our experiment; however, Replacement obtains the best accuracy of
90.9% with three classifiers: SVM, random forest, and logistic regression. We therefore con-
clude that replacing the PoS features in a state-of-the-art temporal requirements classification
approach [4] with semantic frames could consistently improve ML’s performance.

To investigate the direct use of semantic frames to identify temporal requirements, we carried
out another experiment where the candidate sentences are retrieved based on frame names
(i.e., events of interest), rather than classified via supervised learning. Two researchers first
manually inspected the SEMAFOR parsing results of all the temporal requirements, and then
ranked the frame names according to how likely they convey temporal information in the
contexts of FERPA and FIPS 200. Cumulatively, the top-ranked frame names were connected



Table 2
Classification Accuracy and Class-Level F1 Scores (“A” is the overall accuracy, “T” is the class of temporal
requirements, and “NT” is the class of non-temporal class)

decision tree logistic regression random forest SVM
A T NT A T NT A T NT A T NT

Baseline 72.7% 46.7% 85.3% 81.8% 50.0% 88.9% 86.3% 66.7% 91.4% 86.3% 66.7% 91.4%
Replacement 81.0% 50.0% 88.0% 90.9% 80.0% 94.1% 90.9% 80.0% 94.1% 90.9% 80% 94.1%
Combination 72.7% 46.7% 85.3% 81.8% 50.0% 88.9% 86.3% 66.7% 91.4% 86.3% 66.7% 91.4%

Table 3
Cumulatively Retrieving via the Ranked Listed of Frame Names: (1) “Calendric unit”, (2) “Activity
ongoing”, (3) “Frequency”, (4) “Activity start”, and (5) “Change event time”

Top-𝑁 |retrieved |true |false |false |true
accuracy

frame names sentences| positives| positives| negatives| negatives|

1 4 2 2 11 96 88.3%
2 12 3 9 10 89 82.9%
3 19 3 16 10 82 76.6%
4 21 5 16 8 82 78.4%
5 21 5 16 8 82 78.4%

by logical ‘OR’ to retrieve candidate sentences. The results are shown in Table 3. Although
such a frame-name-based retrieval achieved the highest accuracy of 88.3%, only 2 true-positive
temporal requirements were identified. In contrast, three of the trained classifiers outperformed
the retrieval method, implying the synergy of textual and frame semantic features [17, 18].

A major threat affecting our exploratory study’s validity is that the labeling of temporal and
non-temporal requirements was done manually, though a substantial inter-rater agreement
level was reached on a subset of the data. Using the requirements [19] may impact the manual
labeling. We note that the NL sentences are drawn from regulatory documents, which in our
opinions, are of high quality and tend to evolve on a stable basis [20]. We share all the temporal
requirements used in our work in Table 1 to facilitate reuse, expansion, and replication [21, 22].

5. Concluding Remarks

Temporal requirements, though often appearing as a small fraction of NL requirements, are
among the most problematic to verify. Identifying them would enable requirements engineers
to formulate them into formal specifications and further leverage tools like model checking to
verify them. Building on a practical ML approach [4], we have explored in this paper the support
that frame semantics may offer in classifying temporal requirements. Our experiments on 111
NL requirements show that replacing syntactic features of PoS tags with semantic features
results in a consistently high level of classification accuracy.

Our ongoing work tests more NL requirements from other domains (e.g., functional safety
requirements from the automotive domain [23]). We are also interested in applying frame
semantics to other RE activities, such as generating creative requirements [24] and requirements



visualization [25]. Finally, we are investigating ways (e.g., safety patterns [10]) to derive formal
specifications from the identified temporal requirements. Our goal is to offer semantic NLP
support for challenging RE tasks, such as identifying and verifying temporal requirements.
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