
An approach to information export from database
for complex master-detail table hierarchies into a
single flat table form

Alexei Hmelnov1, Gennadiy Ruzhnikov1, Tianjiao Li2, Huan Xu3

1Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian
Academy of Sciences, 134 Lermontov st. Irkutsk, Russia
2“the Belt and Road” Institute for Information Technology, Hangzhou Dianzi University,
No.115, Wenyi Road, Xihu District, Hangzhou, China
3School of Automation (Artificial Intelligence), Hangzhou Dianzi University, No.1158, Number
Two Street, Jianggan District, Hangzhou, China

E-mail: hmelnov@icc.ru

Abstract. When developing a database client application it is usually required to implement
a capability to export information from database tables into some simple data-exchange
representations of tables like the CSV (Comma-Separated Values) format. It is very
straightforward to implement the export for a single database table. But some information about
the records of a master table may be represented by the records from, sometimes, several detail
tables, so the resulting CSV table would be incomplete without this information. We develop AIS
(automated information systems) using declarative specifications of database applications (SDA).
The AIS’es are implemented using general algorithms, which are directed by the specifications.
In this article we’ll consider the approach to generation of flat tables from the master-detail
groups of tables, which allows users to represent compactly the data from a hierarchy of tables
related by the master-detail relationships and to select conveniently which kind of information
to include into the resulting table.

1. Introduction
We consider the approach to development of AIS (automated information system) using declarative
specifications of database applications (SDA). Automated information systems are designed
to accomplish specific information-handling operations [1]. Considerable part of AIS‘es uses
relational database management systems (DBMS) for storing and processing the information
they collect. Usually the database interaction is the central functionality of AIS.

In our work we consider database client applications (or, shorter, database applications) —
the AIS’es that implement DBMS user interface. The database client application should allow
their users to perform CRUD (create, read, update, delete), search and some other operations,
for example, report generation.

The traditional way of database application development is based on the usage of some
libraries like VCL (Visual Component Library) [2], MFC (Microsoft Foundation Classes) [3],

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

FCL (Framework Class Library) [4] and so on. The choice of a particular library depends on
the programming language used. Anyway, the process of application development will require a
lot of similar steps, which should be performed for each table or entity type represented in the
database. As a result the process becomes very time-consuming and tedious.

Some libraries like LINQ (Language Integrated Query) [5] are intended to simplify somehow
the code we should write to process single table. But it doesn’t removes the need to write the
repetitive code for a lot of tables. The same effect gives the use of Object-Relational Mapping
(ORM) libraries [6] — it will still be required to write a lot of code but this time in a more
object-oriented way.

The approach, which potentially allows programmers to substantially decrease the development
time, is the Model-Driven Architecture (MDA) [7]. It helps programmers to generate a baseline
code of an application from the application model. The main disadvantage of generation
unfinished code is the necessity to finish its development manually, because after manual editing
it may be hard to regenerate the code again while saving the manual edits following the changes
in the application specification.

The need for more effective methods of application development becomes widely accepted
nowadays. To present an argument for the need in [8] they cite the estimate of Microsoft specialist,
that “Over 500 million new apps will be built during the next five years, which is more than
all the apps built in the last 40 years.” To meet the need the low-code [8] and the no-code [9]
approaches emerged. The low-code platforms work by automating generation of some repetitive
code and require for developer to have some programming knowledge. The no-code platforms
are advertised to allow non IT-professionals to develop applications using some kind of visual
programming. The descriptions of the low-code and no-code platforms don’t specify a particular
check list of the information they need to be specified by the developers to build an application.

Our approach is based on the specifications of database applications (SDA) and can be
considered as a low-code one when using the modern terms. The specifications of database
applications contain all the information about database structure, which is required to build a
typical AIS. The information is represented in its pure form, so the specifications are rather concise.
The AIS’es are implemented using general algorithms, which are directed by the specifications.
We have developed the algorithms for such tasks as: user interface generation, query building,
report generation, GIS (Geographic Information Systems) interaction. Using the specifications
of database applications and the algorithms the software system MetaDBApp/GeoARM was
implemented. We have described the approach in more details in [10].

In this article we consider the sub-task of generation of a text or a spreadsheet file from the
results of a user-defined query. This task shouldn’t be mixed with that of report generation,
because here we are not interested in a particular data formatting according to a report template,
but in the export of all the selected data for further analysis outside the application, primarily
in the form of a spreadsheet. To be able to formulate this kind of problems it is required to be
in possession of the meta-information about the tables and their relations, like that we have in
SDA. That’s why no developers try to solve this problem when using the traditional approaches
and it is hard to find any articles directly considering this kind of tasks.

The main contributions of the paper are:
(i) We suggest a human-readable representation of hierarchic master-detail data in the form of

single grid.
(ii) We consider the capabilities of the SDA-controlled algorithms as exemplified by the algorithms

of master-detail data export and interactive query building.

2. Research problem
While the task of export into CSV-like file format of a single table is very simple, it becomes
non-trivial for a group of tables interconnected by the master-detail relationships. For example,

if we have a table of Persons and suppose, that each person may have several contacts, then
the Contacts should be stored in a separate detail table. The same may happen to the other
attributes of the Persons entity, which may have several values, e.g. Addresses, Documents. If
we’ll export just the attributes of the Persons table itself from the database, we will miss all the
multi-valued attributes of the entity.

There exist structured text file formats, which are well-suited for representation of hierarchical
data, such as XML (eXtensible Markup Language), JSON (JavaScript Object Notation), YAML
(Yet Another Markup Language). After implementation of the export into flat tables we can
now easily add to our software the capability to export into the structured formats if it will
be required. But the primary goal of the structured text formats is the information exchange
between applications. And the formats are not intended for data visualization for humans. It
doesn’t matter that user can easily read any line of a text file, when the file has, say, 100000
lines. In the YAML representation the attributes of a single record will hardly fit into one screen,
so it will be difficult to compare even two consecutive records.

3. The proposed approach
Another area, where we can see tabular representations of rather complex relations between
objects is OLAP (On-Line Analytical Processing). The OLAP grids represent the contents
of multidimensional cubes in 2D [11]. The user of the OLAP application may select various
representations of the hyper-cube data by choosing the dimensions, corresponding to the top
and left table headers and their order. The selected hierarchy of dimensions and hierarchies of
their values (for the multilevel dimensions) are represented by the hierarchical table headers
(Figure 1). The position in the OLAP hypercube, corresponding to an internal grid cell, can be
unambiguously determined by the corresponding to its row and column left and top headers.

Irkutsk Angarsk
2019 2020 2019 2020
I II I II I II I II

Summer In 1.1 2.1 3.2 2.5 1.4 5.1 4.5 3.7
Out 2.3 1.2 5.1 3.4 4.0 4.7 7.8 5.0

Winter In 6.3 8.2 2.1 4.6 3.9 3.4 1.8 7.0
Out 2.2 9.6 1.7 7.4 8.6 3.5 3.0 2.3

Figure 1. An example of OLAP grid.

The OLAP data representation can be very dense from the point of view of the number
of values per screen. And the approach considered in this article is inspired by the OLAP
representation. Indeed, we also have a tree — the tree of tables connected by the master-detail
relationships. The leafs of the tree are the fields of the tables. To reflect this hierarchy we can
use the OLAP-like top table headers.

But in contrast to the OLAP grids we will not use the left headers. Instead, we will represent
the master-detail hierarchy of the table records by placing the 1st detail record after its master
in the same row, and the next detail record in the next row with the master fields in the next
row being empty.

Let us consider our approach in more details. Figure 2 presents an example of the master-
detail tree for some illustrative tables. The names of the tables correspond to their levels in the
hierarchy. The selected fields in the tables to be exported are shown in the round brackets here.

And the Figure 3 illustrates the suggested idea. It shows the grid representation of a fragment
of the tables from the Figure 2, corresponding to couple of records of the main table. The fields
have synthetic values here, which consist of the field name, the master record key and the detail

Main(A,B)
Detail1(C,D,E)

Subdetail1(F)
Subdetail2(G,H)

Detail2(I)
Subdetail3(J,K)

Detail3(L) Figure 2. A three of detail tables

record ordinal number. The key feature of the data representation is that the cells in the columns,
corresponding to different detail tables, even from the same resulting grid row, are mutually
independent and are governed by their master records only.

Main
Detail1 Detail2 Det.3

Subdet.1 Subdetail2 Subdetail3
A B C D E F G H I J K L
A1 B1 C1.1 D1.1 E1.1 F1.1.1 G1.1.1 H1.1.1 I1.1 J1.1.1 K1.1.1 L1.1

F1.1.2 G1.1.2 H1.1.2 J1.1.2 K1.1.2 L1.2
F1.1.3 I1.2 J1.2.1 K1.2.1 L1.3

C1.2 D1.2 E1.2 F1.2.1 G1.2.1 H1.2.1 J1.2.2 K1.2.2
G1.2.2 H1.2.2 I1.3 J1.3.1 K1.3.1

A2 B2 C2.1 D2.1 E2.1 F2.1.1 G2.1.1 H2.1.1 I2.1 J2.1.1 K2.1.1 L2.1
G2.1.2 H2.1.2 J2.1.2 K2.1.2 L2.2

C2.2 D2.2 E2.2 F2.2.1 G2.2.1 H2.2.1 J2.1.3 K2.1.3
F2.2.2 I2.2

Figure 3. The suggested grid representation of the data from Figure 2.

4. Applied solution
The specification of database application contains information about the database table fields
and the master-detail links between the tables. The availability of this information makes it
possible to create universal export setup dialogs, which allow users to control the data export.
Let us consider the dialogs that we use here in more details.

4.1. The export setup dialog
The export setup dialog allows users to select the tables to be exported, their records and fields
(Figure 4). The dialog represents the hierarchy of details of the current table using the TreeView
nodes. We use the information about the master-detail links from SDA to create the detail nodes.
We build the tree dynamically, so the dialog will work correctly even in the presence of loops in
the graph of master-detail relations (for example, when a table has a field named, say id parent,
with the foreign key pointing to the parent record in the same table).

The first sub-node of each table node represents the list of the table fields. Using the check-
marks of the tree nodes user can select the tables and fields to be exported. And to select the
records to be exported we use the query builder dialogs, which can be called for any detail table
node.

Figure 4. The hierarchic data
export setup dialog

4.2. The query builder
To select the records of the tables to be exported we use another universal dialog controlled by
specification — the query builder dialog (Figure 5).

First of all we may use the query builder to filter the records of the main table. Then we may
filter the records of some detail tables by calling the query builder dialog from the export setup
dialog.

The query builder dialog has two modes: simple and advanced. In the simple mode it allows
user to fill some positions in the list of conditions on the values of the table fields and the resulting
condition will be the conjunction of the filled conditions from the list. And the advanced mode
allows user to construct an arbitrary logical formula by combining any number of conditions on
the values of the fields and the conditions on the detail data-sets. The conditions on the detail
data-sets are the requirements on the existence or on the number of their records satisfying some
criteria. And the criteria on the records of the detail data-sets are constructed using the recursive
calls of the same query builder dialog.

The query-builder dialogs get from SDA the information about the table fields, their types
and roles in the application, and about the links to the detail tables. Using the information
entered in the dialog we generate SQL queries to the tables (Figure 6 for an example).

4.3. Application implementation
To perform the export we use array of buffers of cell values for each resulting grid column. The
main loop processes the records of the master data-set. For each record it clears the buffers, fills
them using the recursive function EnumDetails, and flushes the resulting values to the resulting
grid.

Figure 5. The Query builder dialog in the advanced mode, which sets a condition on a detail
table Employee using a condition on the number of its subdetail records in the table [Employee
Department History]

select T. BusinessEntityID ,T0. ModifiedDate F_1 ,T. PersonType ,T.NameStyle ,T.Title ,
T.FirstName ,T. MiddleName ,T.LastName ,T.Suffix ,T. EmailPromotion ,
T. AdditionalContactInfo ,T. Demographics ,T.rowguid ,T. ModifiedDate

from Person .[Person] T
left outer join Person .[BusinessEntity] T0 on (T. BusinessEntityID =T0. BusinessEntityID)
where (exists (select * from HumanResources .[Employee] S

where (S. BusinessEntityID =T. BusinessEntityID)and
((select count (*) from HumanResources .[EmployeeDepartmentHistory] R

where (R. BusinessEntityID =S. BusinessEntityID)) >1)) and
T. LastName like ’A%’)

order by T. BusinessEntityID

Figure 6. The SQL query generated using the data entry in the query builder dialog from the
Figure 5

The function EnumDetails has two parameters: TableInfo, which represents the information
about the table to be exported, and l0 — the buffer row, starting from which the table data will
be placed (Figure 7). The TableInfo object has the following attributes:

• Fields — the list of fields selected for export;
• Children — the list of detail tables selected for export;

1: function EnumDetails(TableInfo, l0)
2: for i ∈ 0..TableInfo.Fields.Count do . Show the field values of the current record
3: Buffer[TableInfo.StartCol + i][l0]← TableInfo.Fields[i].AsString
4: end for
5: lmax ← l0 + 1 . The next free buffer line by now
6: for Child ∈ TableInfo.Children do . Process detail tables
7: l← l0
8: for each record of Child.Dataset do . Process the detail table records
9: l← EnumDetails(Child,l) . Show current record and its subdetails

10: end for
11: lmax ← max(lmax, l) . Update the next free buffer line
12: end for
13: return lmax . return the number of the next free buffer line
14: end function

Figure 7. The output buffer filling function

• StartCol — the starting column of the table in the resulting grid;
• Dataset — already opened table or query, which contains the selected records.

The TableInfo data structures are constructed using the information entered in the export
setup dialog. And all the detail data-sets are linked to their master data-sets by the master-detail
relations, so that their records are automatically filtered after moving to the next master record
to show only the detail records of the current master record. The SDA engine already had the
operation for generation of the detail data-sets, which is required for construction of the data
view/edit forms, so here we just reuse this capability.

5. Empirical research
In the Figure 8 we can see an output of the algorithm considered. The output file was generated
in the Microsoft Excel XLS file format with some additional styling and headers in comparison
with the CSV file format.

To demonstrate the algorithm we use the well-known AdventureWorks MS SQL sample database.
Here we select the records from the Person table and from its detail tables Employee and Email
Address. And the table Employee also has its own detail table EmployeeDepartmentHistory.
The hierarchy of the tables is reflected by the 3-level header (the rows 3 − 5) above the field
names (the row 6).

Using the query builder we have selected from the main table only the persons, which are
employees, this condition is shown in human-readable form before the table header (in the row
2).

In the figure we can see two persons, who have two records in their job history (see the rows
10− 11 and 23− 24). So they have two sub-detail records in the EmployeeDepartmentHistory
table and all the other cells in the 2nd row of the resulting table are empty.

And the Figure 9 shows another export example from the other master table SalesPerson,
where the master records have much more detail records, than in the previous case.

Note, that when a master record has several details, the records of the two distinct details
from the same resulting table row are not related to each other, they just have the same ordinal
number in the corresponding lists of the detail records.

In fact the specification of database application for the AdventureWorks database, that we use
here, was generated automatically by the database structure analysis algorithm. The algorithm
allows developer to quickly create a starting database application specification, that can be

Figure 8. An example of exported table, generated using the suggested approach for the main
table Person from the AdventureWorks2008 MS SQL sample database.

Figure 9. An example of exported table, generated using the suggested approach for the main
table SalesPerson from the AdventureWorks2008 MS SQL sample database.

then corrected manually, if it will be required. And because the AdventureWorks database is
a showcase MS SQL database of high quality, it was not required here to correct the generated
specification, and we used it as is.

6. Conclusion
We have proposed and implemented a method for compact representation of information from the
group of associated by the master-detail relationships tables. The algorithms get the information
about the relations between tables from the declarative specifications of database applications.
The export parameters dialogue allows user to select the tables and their fields to export. It is
also possible to select the records of the detail tables of interest using the interactive query builder,
which is also controlled by specifications of database applications. The practical usage of the

suggested approach to data export has shown, that even nontechnical people easily understand
this kind of data representation.

Acknowledgments
The results were obtained within the framework of the State Assignment of the Ministry of
Education and Science of the Russian Federation for the project ”Methods and technologies
of cloud-based service-oriented platform for collecting, storing and processing large volumes of
multi-format interdisciplinary data and knowledge based upon the use of artificial intelligence,
model-guided approach and machine learning”. Some results were obtained using the facilities of
the Centre of collective usage ”Integrated information network of Irkutsk scientific educational
complex”.

References
[1] ATIS Telecom Glossary - American National Standard, Automated information system (AIS), https:

//glossary.atis.org/glossary/automated-information-system-ais/. Last accessed 12 Feb 2021
[2] VCL Overview, http://docwiki.embarcadero.com/RADStudio/Rio/en/VCL. Last accessed 12 Feb 2021
[3] MFC Desktop Applications, https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications?

view=msvc-160. Last accessed 12 Feb 2021
[4] .NET Class Library Overview, https://docs.microsoft.com/en-us/dotnet/standard/

class-library-overview. Last accessed 12 Feb 2021
[5] Calvert C and Kulkarni D 2009 Essential LINQ (1st. ed.) Addison-Wesley Professional
[6] Kouraklis J 2019 Introducing Delphi ORM: Object Relational Mapping Using TMS Aurelius doi:10.1007/978-

1-4842-5013-6
[7] Pastor O, Ruiz M and España S 2013 From Requirements to Code: A Full Model-Driven Development

Perspective Communications in Computer and Information Science 303 56-70 doi:10.1007/978-3-642-36177-
7 4

[8] Everything You Need to Know about Using Low-Code Platforms ZDNet https://www.techrepublic.com/
resource-library/whitepapers/everything-you-need-to-know-about-using-low-code-platforms-free-pdf

[9] Woo M 2020 The Rise of No/Low Code Software Development-No Experience Needed? Engineering Beijing,
China 6(9) 960–961 https://doi.org/10.1016/j.eng.2020.07.007.007

[10] Bychkov I V, Hmelnov A E, Fereferov E S, Rugnikov G M and Gachenko A S 2018 Methods and Tools for
Automation of Development of Information Systems Using Specifications of Database Applications In
3rd Russian-Pacific Conference on Computer Technology and Applications (RPC)IEEE, Vladivostok 1-6
doi:10.1109/RPC.2018.8482170

[11] Schrader M, Vlamis D, Nader M, Claterbos C, Collins D, Conrad F and Campbell M 2010 Oracle Essbase &
Oracle OLAP: The Guide to Oracle’s Multidimensional Solution McGraw-Hill Companies, Inc

https://glossary.atis.org/glossary/automated-information-system-ais/
https://glossary.atis.org/glossary/automated-information-system-ais/
http://docwiki.embarcadero.com/RADStudio/Rio/en/VCL
https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications?view=msvc-160
https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications?view=msvc-160
https://docs.microsoft.com/en-us/dotnet/standard/class-library-overview
https://docs.microsoft.com/en-us/dotnet/standard/class-library-overview
https://doi.org/10.1007/978-1-4842-5013-6
https://doi.org/10.1007/978-1-4842-5013-6
https://doi.org/10.1007/978-3-642-36177-7_4
https://doi.org/10.1007/978-3-642-36177-7_4
https://www.techrepublic.com/resource-library/whitepapers/everything-you-need-to-know-about-using-low-code-platforms-free-pdf
https://www.techrepublic.com/resource-library/whitepapers/everything-you-need-to-know-about-using-low-code-platforms-free-pdf
https://doi.org/10.1016/j.eng.2020.07.007.007
https://doi.org/10.1109/RPC.2018.8482170

