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Abstract. The design of the bus network is a complex problem in modern cities, since
different conflicting objectives have to be considered, from both the perspective of bus companies
and the citizens. This article presents a multiobjective model for designing a sustainable
public transportation network that simultaneously optimizes the covered travel demands by
passengers, the total travel time, and the generated pollution. The proposed model is solved
using exact weighted sum and a heuristic procedure based on the standard shortest path
problem. Preliminary tests were performed in small real-world instances of Montevideo,
Uruguay. Experiments allowed obtaining a set of compromising solutions that in turn allow
exploring different trade-off among the optimization criteria. The proposed heuristic was
competitive, being able to find a good compromising solution in short computing times.

1. Introduction
The expansion of urban population in the last century has put pressure on decision-makers to
provide efficient public services to the citizens. Among these services, having an efficient public
transportation system is of paramount importance in order to diminish the impact of private
cars. In the recent past, this system had to fulfil two main goals: provide a good Quality of
Service (QoS) to the citizens and burden the operating costs for the operators of the system [1].
However, in the last decades, sustainability has also been integrated as an important criterion
in public transportation system [2]. Public transportation can be an important contributor to
air pollution [3], affecting the environment and quality of life of the citizens. In this sense,
several cities have implemented diverse policies for reducing the impact of this vital service. For
example, in the last years, the City Hall of Montevideo has increasingly acquired a number of
electric and hybrid buses [4].

Among the diverse decision-making problems involved in public transport, the Bus Transit
Network Design Problem (TNDP) is a common computationally complex [5] problem that arises
in transportation planning in modern cities. It includes the definition of bus lines layouts in an
urban area while enhancing some desired criteria.
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2. Related work
The Bus Transit Network Design Problem (TNDP) has been addressed in several works in the
related literature. A recent review of the topic was performed by Ibarra et al. [1]. Among the
diverse authors that used mathematical programming to deal with this problem, it is relevant
the work performed by Cancela et al. [6], who revised different formulations from the literature
and proposed a new one that modelled the waiting time of users and the behaviour of users when
multiple lines are available. Wan and Lo [7] proposed a formulation that minimizes the cost of
the operator company considering the capacity of the bus. Szeto and Jiang [8] have proposed
a bi-level formulation. The upper level determines the routes path and bus frequencies with
the objective of minimizing the number of transfers subjected to constraints on the maximum
number of routes, fleet size, minimum frequency and enough line capacity. In the second level,
the model proposed in Spiess and Florian [9] that applies strategies to improve the travel time
is used. However, the improvements over the travel time in this second level are limited by
the decisions taken on the first level [6]. More recently, Liang et al. [10] proposed a two-step
model framework to design the bus transit network. Firstly, a column generation method is
applied to identify the candidate set of path of the buses lines. Then, they used stochastic linear
programming to optimize the bus frequency considering uncertain demand and travel times.

In last decade, with the rise of environmental awareness, societies have started to require
public transport systems that are not only economically efficient and respond to the transport
needs of citizens but also that they are environmentally sustainable [2]. In this line, Duran
et al. [5] have proposed a mathematical model for the TNDP which simultaneously considers
the minimization of travel time and CO2 emissions. Articles from our group also studied
the paradigm of sustainable mobility and specific case studies in Montevideo, addressing the
characterization of recent sustainable initiatives developed for the public transportation of
Montevideo, Uruguay [4]. In turn, recommendations based on a specific analysis of quantitative
(e.g., coverage, accessibility, affordability) and qualitative (e.g., public finance, integration,
comfort and pleasure) were proposed for the development of sustainable mobility in Parque
Rodó neighborhood [11]. The design of an optimized backbone for the public transportation
network (i.e., using light railway trams) considering combinatorial optimization approaches was
analyzed in Risso and Nesmachnow [12]. The approach integrated real demands, travel and
waiting times, and deployment costs, to provide a proper design for sustainable mobility in
Montevideo, to improve quality of service. Data analysis plays a major role to characterize the
mobility needs and the current reality, and it has been a subject of study by applying urban
informatic approaches [13].

According to the World Health Organization, air pollution is a significant-top health hazard
in the cities due to its impact on the citizens’ health [14, 15]. Understanding the phenomena that
have implications for the production and dissipation of air pollutants has attracted the interest
of the scientific community [16]. Thus, there is an important field of research on modelling
and forecasting ambient air pollution [17, 18]. Physics-based approaches have been applied
to address air pollution modeling [19]. However, these methods are computationally expensive.
During the last years, with the rapid development of artificial neural networks and deep learning
and their successful use for forecasting applications, several researchers have proposed them to
deal with air outdoor pollution modelling, prediction, and forecasting [20, 21]. Most of these
methods predict the air pollution concentration giving the previous pollution concentration and
other external conditions, such as the weather. It has been shown that Urban road mobility
affects air quality [22, 23]. Thus, different approaches based on ANNs model the air pollution
according to the current road traffic density [24].

This article introduces a new mathematical formulation that aims at defining a bus network
considering the simultaneous maximization of the number of passengers and minimization of
the total travel time and the pollution generated. The formulation is solved by means of an



exact solver. As far as we are concerned, these three objectives have not been simultaneously
considered in an exact resolution for the TNDP. For the sake of comparison with the exact solver,
we also present a fast heuristic approach. In this initial work, we predict the pollution generated
considering the population density and the type of bus (electric, hybrid or diesel). In future
approaches, as TNDP impacts the overall road traffic, it is expected to used the aforementioned
ANNs models based on the road traffic density as we implemented in Jamal et al. [25].

3. Mathematical formulation
The TNDP is addressed with a mixed-integer programming model. This model aims at
optimizing three different objectives: minimizing the travel time, minimizing the pollution
generated by the buses and maximizing the number of passengers served by the buses. The
network is designed as a set of paths for each bus from a starting node up to the end node. It is
assumed that the bus return through the same path, a simplified idea that has been used in the
related literature [7]. In this model, the capacity of buses is not considered, since it is supposed
to be adjusted in a posterior decision-making process when considering the frequencies setting
of buses lines [1, 26]. Thus, a bus line captures all the demand of the neighbourhoods that it
connects. In this model, the neighbourhoods coincide with the administrative divisions of the
city (census segments). Thus, the model considers the following sets:

• a set of ordered buses K = (k0 . . . ke, ke+1 . . . ke+h, ke+h+1 . . . ke+h+d), where the first e buses
are electric buses, the following h are hybrid buses and the final d buses are diesel buses;

• a set of census segments (hereafter segments) I =
(
i0 . . . i|I|

)
.

Given a set of segments, a specific notation is used for the set of edges between adjacent
segments: A(·), such that: A(I) = {(i, j)|i ∈ I, j ∈ I, i 6= j, i ∈ NI(j), j ∈ NI(i)} where NI(i)
represents the subset of neighbors of segment i among the segments of set I. Additionally,
superset Isg = I ∪ is ∪ ig is defined, where is is the base from which buses start their paths and
ig is the terminal from which buses end their forward trip and start their return trip.

The parameters of the proposed model are: wk
i , the pollution generated by the bus k on

segment i; pij , the estimated demand (number of passengers) that are willing to travel from
segment i to j; tij , the travel time going from segment i to j; and TLk maximum travel time of
bus k. All variables are binary: xkij indicates if bus k does the trip between arc (i, j) ∈ A(I), ykij
indicates if bus k does the trip between nodes i and j, and fij indicates if any bus does the trip
between nodes i and j. The problem proposes finding a set of layout functionsXk = {xkij} stating
for each bus the path that simultaneously maximizes the passengers served by the network and
minimizes the travel time of the used buses and the generated pollution.

minimize TT =
∑

ij∈A(Isg)

∑
k∈K

(
xkij (tij + tji)

)
(1a)

maximize D =
∑

ij∈Isg

∑
k∈K

(fij (pij + pji)) (1b)

minimize P =
∑

ij∈A(Isg)

∑
k∈K

(
wk
j x

k
ij

)
(1c)

subject to
∑

i∈NI(j)

xkij =
∑

i∈NI(j)

xkji, ∀ k ∈ K, j ∈ I (1d)

∑
j∈NI(i)

xkij = 1, ∀ k ∈ K, i ∈ Is (1e)



∑
ij∈A(I)

tijx
k
ij ≤ TLk, ∀ k ∈ K (1f)

∑
ij∈A(I)

tjix
k
ij ≤ TLk, ∀ k ∈ K (1g)

∑
j∈NI(ig)

xkjig =
∑

NI(is)

xkisj , ∀ k ∈ K (1h)

∑
j∈NIsg (j)

xkij ≥ ykim, ∀ k ∈ K, i,m ∈ Isg, i 6= m (1i)

∑
j∈NIsg (m)

xkjm ≥ ykim, ∀ k ∈ K, i,m ∈ Isg, i 6= m (1j)

∑
k∈K

ykim ≥ fim, ∀ i,m ∈ Isg, i 6= m (1k)

x, f ∈ B 0 ≤ y ≤ 1

Equations (1a) and (1b) are the total travel time and the number of passengers served by
the buses, respectively, considering the contribution of both directions of traversed arc since the
bus is supposed to travel the same trip in the return path. Eq. (1c) is the estimated generated
pollution by buses. Regarding constraints, Eq. (1d) establishes that if a bus enters a node,
it has to leave it. Eq. (1e) sets that at most one segment can be visited once by each bus.
Equations (1f) and (1g) limit the maximum travel time of each bus in the forward and return
trip. Equations (1i)–(1k) establish that fim is one if an only if neighborhoods i and m are visited
by the same bus. Eq. (1h) enforces that if a bus has departed from the starting node, it reaches
the ending point. Due to the mathematical structure of the model, the binary nature of variable
y can be relaxed–i.e, to a real value in [0,1]–without affecting the validity of the model.

4. Experimental evaluation
The proposed model was validated on two problem scenarios from Montevideo, Uruguay, defined
over zones including one hundred census segments of the city, each. The two zones are depicted in
Figure 1: the red scenario is located near downtown and has densely populated small segments;
the yellow scenario is located in a peripheral zone of the city, where segments are relatively
large. The red scenario considers three buses: one electric, one hybrid, and one diesel, and
yellow scenarios consider five buses: two electric, one hybrid, and two diesel. Passengers
demand between segments was retrieved from a public database of origin/destination of trips in
Montevideo [27, 28]. The pollution generated by a bus on a segment is estimated considering two
aspects: the type of bus, i.e., if it is electric, hybrid or diesel, and the population density of the
segment. Travel times were measured using the method proposed by Vázquez for OSRM [29].

Ten different instances were solved for each scenario. Three instances correspond to single-
objective versions of the problem presented in Section 3: SO-TT considers only the optimization
problem of Eq. (1a), SO-P considers the optimization problem of Eq. (1b) and SO-D considers the
optimization problem of Eq. (1c). In turn, seven instances consider the multiobjective problem,
using the weighting sum approach [30], in which the sum is normalized using the single-objective
results as in our previous work [31]. Seven different weight vectors of the form (wTT ,wP ,wD)
were used (wTT , wP , and wD are the respective weights assigned to Eq. 1a, Eq. 1b, and Eq. 1c
in the multiobjective weighted sum). The first three correspond to highly biased instances in
which the weight of one of the objectives is much larger than the others. Thus, MO-TT* instance
uses (0.98,0.01,0.01), MO-D* uses (0.01,0.98,0.01) and MO-P* uses (0.01,0.01,0.98). The other



Figure 1. Test i nstances on Montevideo city (background map f rom OpenStreetMap).

four multiobjective instances aim at computing more balanced compromise solutions. MO-TT
instance uses (0.6,0.2,0.2), MO-P uses (0.2,0.6,0.2), MO-D uses (0.2,0.2,0.6), and MO-CS uses
(0.33,0.33,0.33).

In turn, a fast heuristic (FH) procedure is proposed as a baseline for comparing exact
solutions computed by the proposed model. FH solves a simplified version of the model
presented in Section 3. The schema of FH is outlined in Algorithm 1. The objective function
minimizes the impedance of the used arcs, which is calculated as a random weighted sum of
the normalized travel time of the arc and the pollution generated at the destination segment.
The impedance function is optimized within a simplified linear programming model SP only
considering constraints Eqs. (1d)-(1h).

Algorithm 1 Global procedure of the fast heuristic FH

1: procedure Heuristic(I,K,wki, tij)
2: maxt ← max(tij) . Gets the maximum travel time
3: mint ← min(tij) . Gets the minimum travel time
4: maxwk

,minwk
← 0

5: for k ← 0; k + +; k ≤ K do . For each bus
6: maxw .append(max(wki[k])); . Gets the maximum pollution generation
7: minw .append(min(wki[k])) . Gets the minimum pollution generation

8: Create impedance matrix imp
9: for each (i, j) ∈ A(I) do . For each edge in the adjacency matrix

10: for k ← 0; k + +; k ≤ K do
11: α← random(0, 1) . Build impedance matrix

12: impij ←
tij [i,j]−mint
maxt−mint

(1− α) ∗ wki[k,j]−minw[k]
maxw[k]−minw[k]

13: Solve SP with cost←
∑

(i,j)∈A(I) impij −×xkij

Solutions were obtained using Pyomo [32] as the modelling language and Gurobi [33] as the
exact solver. The experimental analysis was performed on a computer with Intel Processor
i7-4790 CPU @3.60GHz and 32GB RAM, using a time limit of 2400 seconds for the solver.



Table 1 presents the experimental results. For each instance the Table reports: the value
of each objective (TT, P, and D); the deviation from the ideal solution Σ, computed as the
distance to the ideal solution with the L2 norm (Equation 2, where O = {TT, P,D} is the set
of objectives and besto and worsto are the best and worst value achieved for each objective);
the computing time in seconds; and the optimality gap estimated by Gurobi gapG. For the FH
heuristic gapG is not reported, since the solution is not obtained by an exact approach.√√√√∑

o∈O

(
value− besto
worsto − besto

· 100%

)2

(2)

Instance TT P D Σ time (s) gapG

yellow scenario

SO-TT 172.55 11.43 8968 108.20% 1 0.00%

SO-P 384.35 8.26 17956 142.73% 1 0.00%

SO-D 642.65 46.91 395029 200.00% 2400 6.78%

MO-TT* 172.55 11.43 9329 108.11% 1 0.00%

MO-P* 319.20 8.26 16587 129.22% 5 0.00%

MO-D* 555.31 31.18 342059 154.44% 2400 139.54%

MO-TT 172.55 11.34 9329 107.88% 3 0.00%

MO-P No feasible solution obtained within the specified time limit

MO-D 345.94 15.71 172667 113.76% 2400 80.40%

MO-CS No feasible solution obtained within the specified time limit

FH 286.44 10.32 27256 124.82% 3 -

red scenario

SO-TT 71.256 1.616 35536 119.37% 1 0.00%

SO-P 93.366 0.426 89216 105.49% 1 0.00%

SO-D 387.726 6.526 3988966 200.00% 2400 0.06%

MO-TT* 71.256 1.346 29986 115.08% 2 0.00%

MO-P* 92.86 0.846 109286 111.71% 3 0.00%

MO-D* 238.15 4.09 205100 161.85% 2400 98.10%

MO-TT 71.25 1.34 3376 114.99% 11 0.00%

MO-P 92.36 0.84 11395 111.43% 11 0.00%

MO-D 187.47 2.67 340330 88.40% 2400 19.09%

MO-CS 87.96 1.02 36567 106.64% 512 0.00%

FH 122.00 0.84 9976 121.16% 1 -

Table 1. Objective f unction values f or the proposed i nstances.

Results in Table 1 show that the proposed model was able to obtain a set of solutions with
different trade-off among the optimization criteria. In the case of the yellow scenario, the
instance with the smallest deviation was MO-TT* (108.11%); in the red scenario, it was MO-D
(88.40%). The instance with the largest deviation was SO-D (200% percentage deviation) in
both cases. Regarding the heuristic procedure (FH), it was able to compute good compromising
solutions, since the overall deviation is not far from the instance with the smallest deviation:
about 16.94% (compared to MO-TT*) in the yellow scenario and 32.76% (compared to MO-D)
in the red scenario.



Another important outcome of the experimentation is the impact that the number of relevant
integer variables of the model has on the resolution efficiency. Related to this issue, the increment
in the integer variables is usually negatively correlated to the computational complexity of the
problem [34]. In line with this concept, SO-TT and SO-P–in which the objective function
Eq. (1c) is not involved and, thus, Eqs. (1i)- (1k) (and integer variable f) become irrelevant
since they are not part of the optimization criteria–are easily solved by Gurobi. On the other
hand, in all the time-consuming instances (those for which the time limit is reached without
obtaining the optimal solution and those for which no solution is found) Eq. (1c) is included.
In these cases, Eqs. (1i)- (1k) (and integer variable f) become relevant for the optimization
process–since they participate in the objective function–and, thus, the problem has a larger
number of relevant integer variables.

5. Discussion and future work
The Bus Transit Network Design Problem arises in the context of public bus transportation
in modern cities and basically consists in the definition of buses lines layouts in an urban
area while aiming at enhancing some desired criteria. In this article, a novel multiobjective
mathematical formulation is presented for this problem which simultaneously optimizes two
traditional objectives, i.e., the number of passengers that are served by the network and the total
travel time of the buses, and a less conventional objective related to the pollution generation
of the network. This model was solved with exact and heuristic procedures for two realistic
scenarios of Montevideo city, Uruguay, obtaining different compromising solutions that allow
exploring the trade-off among the objectives.

The main lines for future research include the application of more advanced exact
multiobjective approaches for the exact resolution, such as augmented ε-constraint method.
Another feature that will be addressed to enhance the model is to consider uncertainty in the
pollution generation since this parameter can be affected by several elements (e.g., the season
of the year, the weather and traffic conditions, economic activities that are performed in the
segment, and buildings skyline affecting air circulation). In this sense, we are developing a model
based on artificial neural networks to estimate more accurately the pollution generation of a bus
that transits a certain area of the city. This network will be trained with data gathered by
air-quality monitors displaced in Montevideo.
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