
Equivalence for the G′
3-stable models semantics

José Luis Carballido1, Mauricio Osorio2, and José Ramón Arrazola1

1 Benemérita Universidad Autóma de Puebla,
Mathematics Department, Puebla, México
carballido, arrazola@fcfm.uap.buap.mx

2 Universidad de las Américas,
Sta. Catarina Mártir, Cholula, Puebla, México

osoriomauri@gmail.com

Abstract We study the notion of strong equivalence between two dis-
junctive logic programs under the G′3-stable model semantics, also called
the P-stable semantics, and we show how some particular cases of test-
ing strong equivalence between programs can be reduced to verify if a
formula is a theorem in some paraconsistent logics or in some cases in
classical logic. We also present some program transformations for dis-
junctive programs which can be used to reduce the size of a program.

1 Introduction

In [11,12], a new semantics for non-monotonic reasoning was introduced in terms
of weak completions of the three-valued G′3-logic. It is proved that this seman-
tics, as well as semantics defined with the same construct by other paraconsistent
logics, is equivalent to the P-stable model semantics for normal programs [12].
In [8] the result is extended to the class of disjunctive programs. The P-stable
semantics of a normal or disjunctive program P is defined by means of a fixed
point operator in terms of classical logic, after applying to P a transformation
similar to the reduction used to define the stable semantics [4]. Similar results
for disjunctive programs are presented in [13] for the more common stable se-
mantics. The stable semantics turns out to be equivalent to semantics defined in
terms of weak completions of any intermediate logic. In [8] the authors present
a simple translation of a disjunctive program D into a normal program N , such
that the P-stable model semantics of N corresponds to the stable semantics of
D over the common language.
The logic G′3 was introduced in [1] only to prove that the formula A ∨ (A → B)
is not a theorem of the logic Cw. In fact, the set of theorems of G′3 is a su-
perset of the set of theorems of Cw. One interesting feature of the G′3-logic is
that it can be expressed in terms of the Lukaciewicz L3-logic, and vice-versa,
the Lukaciewicz L3-logic can be expressed in terms of the G′3-logic [9]. In the
same survey it is proven that the logic G′3 admits a finite axiomatization, in fact
the axiomatization presented there, consists of the axioms for Cw plus four new
axioms.



Two programs P1 and P2 are said to be strongly G′3-stable equivalent, if for
every program P , the programs P1 ∪P and P2 ∪P are G′3-stable equivalent, i.e.
they have the same G′3-stable models. The notion of strongly equivalent logic
programs is interesting since, given two sets of rules that are strongly equiva-
lent, one of them can be replaced by the other one in any logic program without
changing the declarative semantics of the program. This replacement can be a
step toward program simplification. The notion of equivalence between logic pro-
grams has been studied by several authors in the context of the stable semantics,
for example [3,6,10]. In the present work a different kind of equivalence is con-
sidered along with strong G′3-stable equivalence for disjunctive programs, it is
called uniform G′3-stable equivalence and is weaker than strong G′3-stable equiv-
alence. G′3 is one of several paraconsistent logics that can express the p-stable
semantics for disjunctive programs, as defined in [8]. Therefore conditions under
which two programs are strongly G′3-equivalent also guarantee that two disjunc-
tive programs are strongly equivalent in the p-stable semantics. We present two
main results that guarantee G′3 strong equivalence, one for two arbitrary pro-
grams and another one for a couple of programs of the form P , P ∪ {a}, where
P is a disjunctive program and a is an atom. A similar result for the stable
semantics is presented in lemma 4.2 of [10] for disjunctive programs, but in this
case the necessary condition for the strong equivalence of P and P ∪{a} is more
stringent. Both of our results depend on verifying that certain formula is a theo-
rem in some particular logic. Finally, we present some program transformations
that help reduce the size of a program. In most cases the transformed program
is strongly G′3-equivalent to the original program.
The structure of the paper is as follows: we start with basic background and defi-
nitions of the G′3-logic, the P -stable semantics and the X-stable semantics for any
logic X. Section 3 presents first the main results relative to strong equivalence
of two disjunctive programs, and then it deals with some basic transformations
of programs. Then we present our conclusions and ideas for future work.

2 Background

A signature L is a finite set of elements that we call atoms, or propositional
symbols. The language of a propositional logic has an alphabet consisting of

proposition symbols: p0, p1, . . .
connectives: ∧, ∨, ←, ¬ auxiliary symbols: (, ).

Where ∧, ∨, ← are 2-place connectives and ¬ is a 1-place connective. Formulas
are built up as usual in logic. If F is a formula we will refer to its signature LF

as the set of atoms that occur in F . The formula F ≡ G is an abbreviation for
(F ← G) ∧ (G ← F ). A literal is either an atom a, or the negation of an atom
¬a.

When a formula is constructed as a conjunction (or disjunction) of literals,
F =

∧
` (or F =

∨
`) with ` a set of literals, we denote by Lit(F ) such set of

literals `. A clause is a formula of the form H ← B where H and B, arbitrary

2



formulas in principle, are known as the head and body of the clause respectively.
The body of a clause could be empty in which case the clause is known as a fact
and can be noted just by H.

An augmented clause is a clause where H and B are any formulas constructed
by using the ∨,∧,¬ connectives. A free clause is a clause of the form

∨
(H+ ∪

¬H−) ← ∧
(B+ ∪ ¬B−) where H+, H−, B+, B− are, possibly empty, sets of

atoms. Sometimes such clause might be written as H+ ∨ ¬H− ← B+,¬B−
following typical conventions for logic programs. When H− = ∅, there is no
negation in the head, the clause is called a general clause. If, moreover, H+ 6= ∅
(i.e. it is not a constraint) the clause is called a disjunctive clause. When the set
H+ contains exactly one element the clause is called normal.

Finally, a program is a finite set of clauses. If all the clauses in a program
are of a certain type we say the program is also of this type. For instance a
set of augmented clauses is an augmented program, a set of free clauses is a free
program and so on.

For general programs, and proper subclasses, we will use HEAD(P ) to denote
the set of all atoms occurring in the head of clauses in P .

Next, we proceed to give definitions of the relevant semantics and the three-
valued logic G′3

2.1 P-stable semantics

We will use the following notation: |= denotes the consequence relation in clas-
sical logic. We denote by `Cw the inference relation in logic Cw which is the
minimal paraconsistent logic defined by DaCosta [2]. We also assume that the
reader is familiar with the notion of classical minimal model [7].

Here we define the P-stable semantics for disjunctive programs.

Definition 1. [8] Let P be a disjunctive program and M be a set of atoms. We
define:

RED(P, M) = {H ← B+,¬(B− ∩M) | H ← B+,¬B− ∈ P}

Definition 2. [8] Let P be a disjunctive program and M be a set of atoms. We
say that M is a p-stable model of P if the conjunction of the atoms in M is a
logical consequence in classical logic of RED(P,M) (denoted as RED(P, M) |=
M) and M is a classical model of P (i.e. a model in classical logic).

2.2 G′
3 logic

G′3 logic is defined through a 3-valued logic with truth values in the domain
D = {0, 1, 2} where 2 is the designated value. The evaluation function of the
logic connectives is then defined as follows: x∧ y = min(x, y); x∨ y = max(x, y);
and the ¬ and → connectives are defined according to the truth tables given in
Table 1.

3



x ¬x

0 2
1 2
2 0

→ 0 1 2

0 2 2 2
1 0 2 2
2 0 1 2

Table 1. Truth tables of connectives in G′3.

2.3 The X-stable semantics

Given an arbitrary logic X and a set of atoms M ⊂ LP , we call the construct
P ∪¬M c a weak completion of the program P (with respect to the set of atoms
M), where the superscript c, denotes set theoretical complement operator with
respect to LP .

Definition 3. Let P be any theory and X be any logic. Also let M be a set of
atoms. M is a X-stable model of P if P ∪ ¬M c `X M and M is a classical
model of P .

The G′
3-stable semantics Of particular interest to us is the G′3-stable seman-

tics, which is the result of using the logic G′3 in the previous definition.

Example 1. Consider the following logic program:

P = {b ← ¬a, a ← ¬b, p ← ¬a, p ← ¬p}

It is easy to verify that this program has two G′3-stable models, which are
{a, p} and {b, p}.

The next result was first proven for normal programs in [12]; more recently
it has been extended to disjunctive programs in [8].

Theorem 1. [8] Let P be a disjunctive program and M a set of atoms. M is a
p-stable model of P iff M is a G′3-stable model of P .

As can be seen, G′3-stable models are defined for propositional logic programs
only. However this definition can be extended to predicate programs, which allow
the use of predicate symbols in the language, but without function symbols to
ensure the ground instance of the program to be finite. So a term can only
be either a variable or a constant symbol. The ground instance of a predicate
program, Ground(P ), is defined in [5] as the program containing all ground
instances of clauses in P . Then M is defined as a G′3-stable model of a predicate
program P if it is a G′3-stable model for Ground(P ).

We want to stress the fact that the general approach for calculating G3′-
stable models of logical programs is to work with their ground instances.

4



3 Main results

In this section we discuss the main contributions of the paper, one of them pro-
vides sufficient conditions for the strong G′3-stable equivalence of two arbitrary
programs, the other one deals more specifically with a couple of programs of the
form P and P ∪ {a}.

Definition 4. We denote by C the class of certain programs i.e. normal, dis-
junctive, positive, augmented, etc. We say that two programs P1 and P2 in C
are G′3-stable equivalent if they have the same G′3-stable models. We say that the
programs P1 and P2 in C are strongly G′3-stable equivalent with respect to the
class C, if for any other program P ∈ C, P ∪P1 and P ∪P2 are G′3-stable equiv-
alent.We say that the programs P1 and P2 are uniformly G′3-stable equivalent if
for any set of atoms M , P1 ∪M and P2 ∪M are G′3-stable equivalent.

Proposition 1. Let P1 and P2 programs in the same class C. If P1 and P2 are
strongly G′3-stable equivalent with respect to the class C then they are uniformly
G′3-stable equivalent. If P1 and P2 are uniformly G′3-stable equivalent then they
are G′3-stable equivalent.

Proof. The proof of this statement is a direct consequence of the definitions.

The next two examples show that two programs that are G′3-stable equivalent
are not necessarily uniformly G′3-stable equivalent. Our first counterexample is
with normal programs:

Example 2.
P1 = {a ← ¬b, b ← b}

P2 = {a, b ← b}
Both programs have as unique G′3-stable model the set: {a}.
If we take

P = {b},
then we see that P ∪ P1 has only one G′3-stable model, namely: {b}, whereas
P ∪ P2 has as its unique G′3-stable model the set {a, b}.
As a second counterexample we take two programs in the class of disjunctive
programs:

P1 = {a ∨ c ← ¬b}, P2 = {a ∨ c}.
These programs do not have G′3-stable models, but if we add the fact b, to both
of them, we get a program for which the set {b} is a G′3-stable model and a
program that does not have G′3-stable models.

Proposition 2. Let P1 and P2 be arbitrary programs, if P1 ≡G′3 P2 (i.e. they
are equivalent in the G′3 logic), then they are strongly G′3-stable equivalent with
respect to the class of arbitrary programs.

5



Proof. Let P be another arbitrary program, let M be a G′3-stable model of P1∪P ,
this means that M is a classical model of P1∪P and also that P1∪P ∪¬M c `G′3
M . Since P1 ≡G′3 P2, it follows that P1 ∪ P ≡G′3 P2 ∪ P and then we conclude
that M is a classical model of P2 ∪ P and P2 ∪ P ∪ ¬M c `G′3 M as desired.

A symmetric argument shows that a G′3-stable model of P2 ∪ P is also a
G′3-stable model of P1 ∪ P .

The converse of the proposition in general is not true. We consider a coun-
terexample in the class of disjunctive programs.

Example 3. Let P1 and P2 the following disjunctive programs:

P1 = {∨ci ← ∧aj ∧ ¬b, b ←}
P2 = {∨ci ← c1, b ←}

Let us see first that P1 and P2 are not equivalent in the G′3-logic: in order
to do this, it is enough to show that the two rules in P2 are not strong enough
in the G′3-logic to imply the first rule in P1. In other words, [(c1 → ∨ci) ∧ b] →
[(∧aj ∧ ¬b) → ∨ci] is not a G′3 tautology. This can be seen by working out a
truth table.
Now we proceed to check that the two programs are strongly G′3-stable equiv-
alent. Let P be a disjunctive program, we want to see that P1 ∪ P and P2 ∪ P
have the same p-stable models (by Theorem 1).
Let M be a p-stable model of P1∪P , in particular it must be the case that b ∈ M .
By definition, M is a classical model of P1 ∪P and also RED(P1 ∪P, M) |= M ,
this last condition is equivalent to: P1 ∪RED(P, M) |= M .
Now, from the fact that the expression: b → [(¬b ∧ A) → C] is a tautology in
classical logic for any formulas A and C, it follows that P2 |= P1. It is also true
that P1 |= P2 since the rule in P2 that does not appear in P1 is a tautology.
It follows that M is a classical model of P2 ∪P and that RED(P2 ∪P,M) |= M
since P2 ∪ RED(P, M) = RED(P2 ∪ P, M). The rest of the proof consist of a
similar argument.

Observation 1 : The same example works out as a counter-example for the
class of normal programs if we remove the disjunctions in the heads of the
disjunctive rules.

Observation 2 : Notice that if we do not restrict our programs to the class of
disjunctive programs, the counterexample does not work: consider the program
Q = {d ← (∨ci ← ∧aj ∧ ¬b)} consistent of a single clause. The two programs
P1 ∪Q and P2 ∪Q do not have the same G′3-stable models, so in this context P1

and P2 are not strongly G′3-equivalent.

Lemma 1. Let P be a disjunctive program and M be a classical model for P ,
then P ∪M has G′3-stable models.

Proof. By hypothesis M is a classical model for P , then it is also a classical
model for P ∪ M . Since RED(P ∪ M,M)= RED(P, M) ∪ M , it is clear that
RED(P ∪M, M) |= M . Hence M is a G′3-stable model of P ∪M .

6



For the next result we need the following fact [8].

Lemma 2. For a disjunctive program P , and an atom a we have that P |= a if
and only if P `Cω a.

Proposition 3. Let P be a disjunctive program and a be an atom, then P |= a
if and only if P and P ∪ {a} are strongly G′3-stable equivalent, if and only if P
and P ∪ {a} are uniformly G′3-stable equivalent.

Proof. From P |= a, it follows that P `Cω a and from the fact that the G′3-logic
is stronger than the Cω-logic, it follows that P `G′3 a. Hence we conclude that
P ≡G′3 P ∪ {a}, this in turn implies by proposition 2 that P and P ∪ {a} are
strongly G′3-stable equivalent and in particular, uniformly G′3-stable equivalent.
Conversely, let us assume now that the two programs are uniformly G′3-stable
equivalent. Assume for a moment that P 6|= a: then there exists a classical model
of P , say M such that M(a) = 0. By Lemma 1, M is a G′3-stable model of P ∪M ,
but M is not a G′3-stable model of P ∪ {a} ∪M . It means that P and P ∪ {a}
are not uniformly G′3-stable equivalent, but this is a contradiction and the proof
is complete.

Definition 5. Given a disjunctive program P , we define

to− pos(P ) = {
∨

i

ai ∨
∨

j

cj ← ∧l bl | ∨i ai ←
∧

l

bl ∧
∧

j

¬cj ∈ P}.

The transformation just moves negative literals from the body of every clause
to their heads by changing them to positive.

Corollary 1. Let P be a disjunctive program and a be an atom. Then to −
pos(P ) `Cω a if and only if P and P ∪ {a} are strongly G′3-stable equivalent, if
and only if P and P ∪ {a} are uniformly G′3-stable equivalent.

Proof. Follows from the fact that to − pos(P ) and P are equivalent in classical
logic, then by using Lemma 2 the result is simply a restatement of Proposition 3.

Definition 6. Given a disjunctive program P, Pos(P ) is the program obtained
from P after deleting all rules containing negative atoms.

In [10] it is shown that for a disjunctive program P and an atom a, P is
strongly equivalent to P∪{a} under the stable semantics if and only if Pos(P ) `I

a (here the I denotes Intuitionism). In the case of G′3-semantics the equivalence
does not hold. From Proposition 3 it follows that if Pos(P ) `I a then P and
P ∪ {a} are strongly G′3-stable equivalent. The next examples show that the
converse is not true.

Example 4. Let P1 be: {a ← ¬a} and let P2 be: P1 ∪ {a}.
Since (¬a → a) → a is a G′3-tautology, it follows that P1 ≡G′3 P2 which implies
strong G′3-stable equivalence, however Pos(P1) = ∅ and from the empty set no
atom can be derived.

7



Example 5. Let P3 and P4 the following disjunctive programs:

P3 = {a ← b, a ← ¬b, b ← a}
P4 = {a, a ← b, a ← ¬b, b ← a}

The two programs are equivalent in the G′3-logic, therefore they are strongly
G′3-stable equivalent, but the atom a is not implied by the rules of Pos(P3).

Finally we present some transformation defined for disjunctive programs that
can help reduce the size of the program, most of them do not change the G′3-
stable semantics of the original program. Similar results in the context of stable
semantics have been presented in [10].

Definition 7. The transformation RED+ replaces a rule A ← B+ ∧ ¬B− by
A ← B+ ∧ ¬(B− ∩Head(P )).

Proposition 4. For a disjunctive program P , P and RED+(P ) are equivalent
under the G′3-stable semantics.

Proof. The result follows from the observations:
1) Any G′3-stable model M of P has the property that M ⊂ Head(P )
2) Any set of atoms M ⊂ Head(P ) models a clause of the form A ← B+ ∧¬B−

if and only if, it models the clause A ← B+ ∧ ¬(B− ∩Head(P ))
3) The two clauses, A ← B+∧¬(B−∩M) and A ← B+∧¬(B−∩Head(P )∩M)
are the same whenever M ⊂ Head(P )

Definition 8. The transformation RED− deletes a rule A ← B+ ∧ ¬B− if
there is another rule A′ ← > such that A′ ⊂ B−.

Proposition 5. For a disjunctive program P , P and RED−(P ) are strongly
G′3-equivalent with respect to the class of disjunctive programs.

Proof. This follows from the fact that, under the hypothesis A′ ⊂ B−, the
formula A′ → (B+ ∧ ¬B− → A)is a tautology in classical logic, for then we can
derive all of the rules of P from RED−(P ) and vice versa.

Definition 9. The transformation Sub deletes a rule A ← B+ ∧ ¬B− if there
is another rule A′ ← B′+ ∧ ¬B′− such that A′ ⊂ A, B′+ ⊂ B+ and B′− ⊂ B−.

Proposition 6. For a disjunctive program P , P and Sub(P ) are strongly G′3-
equivalent with respect to the class of disjunctive programs.

Proof. This follows from the fact that P ≡G′3 Sub(P ), which in turn follows
from the various implications: B+∧¬B− → B′+∧¬B′− , B′+∧¬B′− → A′ and
A′ → A.

Definition 10. The transformation Taut deletes a rule A ← B+ ∧ ¬B− if
A ∩B+ 6= ∅

8



Proposition 7. For a disjunctive program P , P and Taut(P ) are strongly G′3-
equivalent with respect to the class of disjunctive programs.

Proof. This follows from the fact that a rule A ← B+∧¬B− for which A∩B+ 6= ∅
is a tautology in the G′3-logic, and so P ≡G′3 Taut(P ).

4 Conclusion

The results presented in this paper generalize to the G′3-stable semantics, and
in particular, to the P-stable semantics some results dealing with equivalence
and strong equivalence under the stable semantics presented in [10]. The re-
sults allow to substitute strongly equivalent programs or to add known facts to
programs in order to simplify them and make easier the computation of G′3-
stable and in particular P-stable models. All the transformations presented here
were studied in [10] in the context of the stable semantics, but there are some
transformations presented there that we have not explored yet. Among them,
the generalized principle of partial evaluation and the Dloop transformation.
Those transformations offer future work to continue our research of the P-stable
semantics.

References

1. W. A. Carnielli and J. Marcos. A taxonomy of C-Systems. In Paraconsistency:
The Logical Way to the Inconsistent, Proceedings of the Second World Congress on
Paraconsistency (WCP 2000), number 228 in Lecture Notes in Pure and Applied
Mathematics, pages 1–94. Marcel Dekker, Inc., 2002.

2. N. da Costa. On the theory of inconsistent formal systems. Notre Dame Journal
of Formal Logic, 15(4):497–510, 1974.

3. D. de Jongh and L. Hendriks. Characterization of strongly equivalent logic pro-
grams in intermediate logics. Theory and Practice of Logic Programming, 3(3):259–
270, 2003.

4. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In R. Kowalski and K. Bowen, editors, 5th Conference on Logic Programming,
pages 1070–1080. MIT Press, 1988.

5. V. Lifschitz. Foundations of logic programming. in principles of knowledge repre-
sentation, pages 69-127. CSLI publications, 1996.

6. V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic programs. ACM
Transactions on Computational Logic, 2:526–541, 2001.

7. J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, second edition,
1987.

8. M. Osorio, J. Carballido, and J. Arrazola. Logical weak completions of paracon-
sistent logics. submitted to the Journal of Logic and Computation.

9. M. Osorio and J. L. Carballido. Brief study of G’3 logic. In Unpublished paper,
2007.

10. M. Osorio, J. A. Navarro, and J. Arrazola. Equivalence in Answer Set Program-
ming. In A. Pettorossi, editor, Logic Based Program Synthesis and Transformation.
11th International Workshop, LOPSTR 2001, number 2372 in LNCS, pages 57–75,
Paphos, Cyprus, Nov. 2001. Springer.

9



11. M. Osorio, J. A. Navarro, J. Arrazola, and V. Borja. Ground nonmonotonic modal
logic S5: New results. Journal of Logic and Computation, 15(5):787–813, 2005.

12. M. Osorio, J. A. Navarro, J. Arrazola, and V. Borja. Logics with common weak
completions. Journal of Logic and Computation, 16(6):867–890, 2006.

13. D. Pearce. Stable Inference as Intuitionistic Validity. Logic Programming, 38:79–91,
1999.

10


