
Toward Example-Driven Program Synthesis of Story Sifting Patterns

Max Kreminski, Noah Wardrip-Fruin, Michael Mateas
University of California, Santa Cruz

{mkremins, nwardrip, mmateas}@ucsc.edu

Abstract
Unlike in strong story narrative systems, where the creation of
narrative is orchestrated from the top down by a drama man-
ager or similar agent, stories in emergent narrative systems
emerge bottom-up from the behavior of autonomous charac-
ters in a simulated storyworld. As a result, emergent narrative
systems do not always know what stories they’re telling, and
a perennial challenge for these systems involves recognizing
and showcasing emergent stories as they unfold. Story sifting
technologies can enable a narrative system to automatically
recognize emergent stories that match certain sifting patterns,
but hand-authoring these sifting patterns can be difficult and
time-consuming. To support users in authoring these sifting
patterns, we present an interactive example-driven program
synthesizer that can generate realistic sifting patterns given a
few examples of target event sequences and refine the result-
ing patterns based on further user feedback.

Introduction
In emergent narrative systems, story emerges organically
from interaction between characters in a simulated sto-
ryworld (Louchart et al. 2015). Past research in player
retellings of their play experiences in simulation-driven
emergent narrative games has shown that these games of-
ten function as storytelling partners for the player (Eladhari
2018; Kreminski and Wardrip-Fruin 2019; Kreminski et al.
2019). To support this style of play, we would like to make
these games better at mixed-initiative co-creative (Liapis et
al. 2016) storytelling.

One difficulty in doing this is that it’s hard to get emergent
narrative games to understand the emergent stories they’re
producing. Unlike in strong story narrative systems (Mateas
and Stern 2000; Riedl and Bulitko 2013), where the creation
of narrative is orchestrated from the top down by a drama
manager or similar agent, emergent stories are not necessar-
ily recognized by the system that produces them. However,
the more understanding the system has of the stories that are
emerging, the more effectively it can surface these stories
to the player and support narrative development. In partic-
ular, understanding of the story that is emerging from the

Copyright c© 2020 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

human interactor’s perspective enables the narrative system
to present the interactor with offers of various ways in which
the story might be further developed (Louchart et al. 2008).
As a result, it’s often desirable to provide emergent narrative
systems with more sophisticated ways of understanding the
stories they’re creating.

Story sifting (Ryan, Mateas, and Wardrip-Fruin 2015;
Ryan 2018) is one way to build narrative systems that un-
derstand emergent stories. So far, implementing story sifting
has involved hand-writing lots and lots of small story sifting
patterns that recognize certain kinds of interesting emergent
microstories. While this approach has its advantages, think-
ing up and writing these sifting patterns can be both time-
consuming and error-prone. The Felt system (Kreminski,
Dickinson, and Wardrip-Fruin 2019) attempts to mitigate
some of the difficulties of authoring sifting patterns by intro-
ducing an approachable domain-specific language intended
to improve authorial leverage and open up the authoring of
sifting patterns to writers as well as dedicated narrative sys-
tem programmers, but substantial difficulties remain.

In order to partially address the difficulties of hand-
writing sifting patterns, we propose an approach to synthe-
sizing sifting patterns from user-provided examples of target
event sequences: an interactive, domain-specific example-
driven program synthesizer for story sifting patterns repre-
sented as Datalog-equivalent queries in the Felt story sifting
DSL. Our system leverages inductive logic programming,
along with other program synthesis techniques, to gener-
ate plausible story sifting patterns from few examples and
present these patterns to the user for interactive refinement.

Related Work
Our work draws on existing literature in program synthe-
sis, and specifically the synthesis of Datalog programs, to
which Felt sifting patterns are equivalent. Much past work
on synthesizing logic programs has been done under the ban-
ner of inductive logic programming (ILP). ILP systems—
including FOIL (Quinlan 1990), GOLEM (Muggleton and
Feng 1992), and Progol (Muggleton 1995)—attempt to learn
a logic program that correctly characterizes the distinc-
tion between a set of positive and a set of negative exam-
ples (Muggleton and De Raedt 1994). Most existing ILP sys-



tems aspire to generality, limiting the extent to which they
can use domain knowledge about what kinds of programs
are likely wanted to avoid exhaustively searching a rela-
tively unrestricted space of potential programs. However, the
Metagol system (Muggleton, Lin, and Tamaddoni-Nezhad
2015) compromises by allowing the user to provide a set of
meta-rules that encompass a sort of domain theory, render-
ing the problem of predicate invention more computationally
tractable by cutting down the search space.

More recently, a number of other techniques from the
wider program synthesis literature have been applied to
Datalog program synthesis, including constraint-based (Al-
barghouthi et al. 2017), syntax-guided (Si et al. 2018), and
provenance-guided (Raghothaman et al. 2019) approaches.
These newer systems have improved on both the perfor-
mance and the expressivity of classical ILP approaches to
logic program synthesis: they can either produce the same
programs substantially more quickly than older systems;
produce programs that older systems could not have pro-
duced at all, for instance by introducing new predicate in-
vention techniques; or both.

To the best of our knowledge, program synthesis has not
yet been applied in an interactive or generative narrative re-
search context. However, there has been some limited use of
program synthesis in the adjacent procedural content gen-
eration and game generation communities. For instance, the
ILP system Leda (Summerville 2018) synthesizes AnsPro-
log inference rules describing the relationship between low-
level game mechanics and higher-level aspects of player ex-
perience. Meanwhile, Butler, Siu, and Zook (2017) apply
non-ILP program synthesis techniques to the generation of
boss monster behaviors for digital games.

Background
Our goal is to synthesize Felt sifting patterns. As back-
ground, to showcase the features of the Felt sifting DSL, we
first present a complete hand-authored Felt sifting pattern,
adapted from the arson-revenge pattern documented in
(Ryan 2018):

(eventSequence ?e1 ?e2)
[?e1 eventType hatchRevengeScheme]
[?e2 eventType setFire]
(contributingCause ?e1 ?e2)
[?e1 actor ?arsonist]
[?e2 actor ?arsonist]
(not [?e2 tag accidental])

This pattern matches a sequence of two events: a
hatchRevengeScheme event, followed by a non-
accidental setFire event with the same protagonist and to
which the first event was a contributing cause. Tokens begin-
ning with a question mark, such as ?e1 and ?arsonist,
denote logic variables, whose values are unified with one
another across the whole sifting pattern. Square-bracketed
clauses (such as [?e2 eventType setFire] and
[?e1 actor ?arsonist]) indicate assertions of
the form [entity attribute value], which
can be read as stating that the entity on the left has an
attribute with the name in the middle whose value is

the string, number, or entity ID on the right. Parenthe-
sized clauses (such as (eventSequence ?e1 ?e2)
and (contributingCause ?e1 ?e2)) denote
invocations of domain-specific Datalog inference
rules, defined as part of the simulation. Clauses can
also be negated with the special not syntax, as in
(not [?e2 tag accidental]) here.

From a program synthesis perspective, the problem of
generating story sifting patterns has several unusual aspects
that informed our approach.

• Our past experience authoring sifting patterns has given
us a strong domain theory about which relations be-
tween events, characters, and other storyworld entities are
worthwhile to explore when sifting, enabling us to aggres-
sively prune the search space of candidate programs.

• We don’t want our synthesis algorithm to generate rela-
tions involving certain properties. For instance, in a sift-
ing pattern, relationships between the numeric IDs of in-
volved entities shouldn’t be considered, nor should re-
lationships including characters who aren’t directly in-
volved in the events under consideration. Further, because
we want to create interpretable sifting patterns that can be
presented to an end user directly, to explore these irrele-
vant relationships would run the risk of overwhelming the
user with extraneous information.

• Ideally, for easy interoperability with other tools (includ-
ing Felt), we want our synthesis algorithm to be fast
enough to run interactively in a web browser—a task
for which state-of-the-art general-purpose ILP systems, in
spite of their significant performance improvements in re-
cent years, are still not well-suited.

• We don’t need to tackle the difficult ILP problem of in-
venting reusable intermediate predicates ourselves, as we
can generally rely on the authors of the simulation domain
to have provided relevant intermediate predicates for us.

For these reasons, instead of leveraging an existing off-
the-shelf ILP system or other synthesizer, we elected to build
a small domain-specific ILP system of our own, intended for
interactive use as a human-in-the-loop authoring tool.

Approach
Given a database of storyworld events, we first present the
user with an interface for selecting positive examples: se-
quences of events that the synthesized sifting pattern should
match. Initially, each positive example is represented as a se-
quence of one or more numeric event IDs. Once the user has
selected a set of positive examples, we enrich each exam-
ple with background information by running several queries
against the database to fetch and cache information about
the events and characters that are directly involved in this
example. What background information needs to be fetched
depends on how events and characters are represented in the
simulated storyworld at hand; for the simple storyworld we
used to evaluate this technique, the information fetched by
this process includes the type and tags of each event in the
sequence, as well as the numeric IDs of the characters that
participated in each event as an actor or target.



We then pick an example at random and generate a set
of properties for this example. As in Odena and Sutton
(2020), a property is a small program that takes in an ex-
ample and returns a boolean value indicating whether this
property holds for this example. Intuitively, a property can
be thought of as a straightforwardly answerable yes/no ques-
tion about the example: for instance, “Does the first event in
the sequence have event type betray?” or “Is the protago-
nist of the first event the same person as the target of the last
event?” Once a set of properties intended to be applied to all
of the user-provided examples has been generated, we can
test these properties against an example to produce the ex-
ample’s property signature: the subset of all generated prop-
erties that hold for this example.

Our current approach generates two kinds of proper-
ties, based on the most commonly used features in an ex-
isting library of sifting patterns developed for the emer-
gent narrative game Why Are We Like This? (Kreminski
et al. 2020a; 2020b). First, we examine the distinguish-
ing attributes of each event in the example sequence and
generate event attribute properties. In our test simula-
tion, events are distinguished by their eventType and
tag attributes, so we generate properties of the form
eventType_eN_type for each event’s type and prop-
erties of the form eventTag_eN_tag for each tag on
each event. For instance, if the first event in the example se-
quence is an insultDismissively event with the tags
unfriendly and highStatus, the example’s property
signature would include the following properties:

• eventType_e1_insultDismissively

• eventTag_e1_unfriendly

• eventTag_e1_highStatus

Next, we generate entity relationship properties based
on a simulation-specific library of Datalog inference
rules relating involved entities to one another. These
rules include character/character relationships, e.g. likes,
dislikes, and ancestor; character/event relationships,
e.g. eventAdvancesHeldValue; and event/event rela-
tionships, e.g. indirectCause. These rules form a sig-
nificant part of the domain theory about which relationships
might be relevant to story sifting in a particular simulation,
and our system is able to translate these rules directly into
properties, allowing the domain theory to evolve as new
rules are defined.

Once we’ve generated a complete property signature for
the first example, we test these properties against the second
example and remove any that don’t hold. We then iteratively
repeat this process for all the other examples, winnowing
down the set of properties to just those that hold for all pos-
itive examples.

The resulting set of properties may need to be pruned to
eliminate redundancies. First, we prune properties that log-
ically duplicate other properties, for instance by asserting a
relationship between two logic variables representing char-
acters for which the same relationship has already been as-
serted. (If the protagonist of the first event and the target
of the second event are known to be the same character,

and we’ve already asserted that the target of the first event
is friends with the protagonist of the first event, we don’t
need to reassert the same relationship between the target of
the first event and the target of the second.) Then we prune
properties that are fully logically subsumed by other prop-
erties. For instance, in our test simulation, an event’s tags
are always dependent on its type; therefore, we eliminate all
properties of the form eventTag_eN_TAG if a property of
the form eventType_eN_TYPE is also present.

At this point, we can synthesize a story sifting pattern (i.e.
a Datalog-equivalent query in the Felt story sifting DSL) and
run it against the storyworld state database to get any other
matches that might exist, besides the user-selected positive
examples, and show these to the user.

If the user thinks the pattern shouldn’t match one or more
of these examples, then they can add these examples as neg-
ative examples. We generate properties for each negative ex-
ample in the same way as before, and identify which proper-
ties are consistently true for all negative examples and con-
sistently untrue for all positive examples. Then we refine the
synthesized sifting pattern to exclude these negative proper-
ties and re-present the matches to the user.

Usage Examples
Story sifting can be applied to event sequences from a va-
riety of sources. At one end of the spectrum, sifting tech-
niques are sometimes used to extract narrative from se-
quences of game events that were initially generated with-
out regard for narrativity, as in many sports games (Rhodes,
Coupland, and Cruickshank 2010). At the other end of the
spectrum, sifting can also be applied to the output of sophis-
ticated narrative simulations like Talk of the Town (Ryan
et al. 2015) and Dwarf Fortress (Bay 12 Games 2006;
Garbe 2018), which employ high-fidelity models of char-
acter motivation and other narrative-relevant concerns at the
level of event generation, before sifting is applied. Because
these event sources vary widely in the baseline level of nar-
rative structure and sophistication they provide, we want our
approach to testing to assume minimal narrative structure
in the storyworld database. This allows us both to stress-
test the generality of our synthesis approach (ensuring that
it doesn’t implicitly depend on regularities in a particular
simulation) and to place the primary authoring affordance
on example specification (rather than spreading it between
example specification and simulation authoring).

Therefore, in order to test our system, we first gener-
ated a simple storyworld containing five characters and 200
random events. To establish a rudimentary social graph, a
handful of directed likes and dislikes relationships
and a handful of symmetric coworkers relationships were
added between some pairs of characters at random. Addi-
tionally, from a pool of eight values (such as authority,
communalism, and comfort), each character was ran-
domly assigned two values that they support and one value
that they oppose.

For each event, we randomly selected one of 35 possi-
ble event types, then randomly assigned two different char-
acters to be the actor and target of this event. Events were
also assigned a handful of tags based on their event type; the



storyworld as a whole contained 12 total distinct event tags,
with each individual event having between one and four tags.
Events of certain types were also marked as supporting or
opposing some of the values held by characters: for instance,
a rejectSuperiority event might be marked as oppos-
ing the authority value. The resulting storyworld was
then used as background for the following examples.

Simple Positive Examples
We attempted to synthesize sifting patterns for several recur-
ring, emergent patterns of events that we found narratively
compelling. First, we attempted to synthesize a sifting pat-
tern for the microstory “romantic failure followed by roman-
tic success”, which we chose to operationalize as a sequence
of two romantic failures for the same character, followed by
a romantic success for that same character. We provided the
system with one positive example of this pattern:

1. Sarah tried to flirt with Mira, but was rejected.

2. Sarah tried to ask Mira out on a date, but was rejected.

3. Sarah tried to ask Emin out on a date, and succeeded.

Given only this example, our system generates 35 proper-
ties. 3 of these (one per event in the example) involve event
types; 10 involve event tags; 4 involve statements about
the same character being involved in two different roles,
for instance as the target of both the first and the second
events. The remaining 18 properties involve various charac-
ter/character relationships, for instance indicating that Mira
dislikes Sarah; Mira likes Emin; and that Emin and Sarah
are coworkers.

We then provided another positive example for the same
pattern:

1. Zach tried to ask Emin out on a date, but was rejected.

2. Zach tried to rekindle a romantic relationship with Sarah,
but was rejected.

3. Zach tried to flirt with Mira, and succeeded.

This second example was sufficient to reduce the set of
common properties between both examples down to just
nine:

• eventTag_e1_negative

• eventTag_e1_romantic

• eventTag_e2_negative

• eventTag_e2_romantic

• eventTag_e3_positive

• eventTag_e3_romantic

• sameCharacter_e1actor_e2actor

• sameCharacter_e1actor_e3actor

• sameCharacter_e2actor_e3actor

By prepending a set of static setup clauses and pruning
setup clauses that introduced unused logic variables, these
properties were then translated into the following complete
Felt sifting pattern:

(eventSequence ?e1 ?e2 ?e3)
[?e1 actor ?e1actor]
[?e2 actor ?e2actor]
[?e3 actor ?e3actor]
[?e1 tag negative] [?e1 tag romantic]
[?e2 tag negative] [?e2 tag romantic]
[?e3 tag positive] [?e3 tag romantic]
[(= ?e1actor ?e2actor ?e3actor)]

The eventSequence setup clause here ensures that
all of its arguments are database entities of type event,
and that all of these events occurred in chronological order
from left to right (potentially interspersed with arbitrarily
many other events). Meanwhile, setup clauses of the form
[?eN actor ?eNactor] are used to bind characters in-
volved in these events to temporary logic variables, so that
they can be referenced in later clauses.

Besides the two provided positive examples, the resultant
sifting pattern also matched 41 other event sequences in the
database, all of which fulfilled the intended requirements.
Many of these matches included some, but not all, of the
events provided in the positive examples.

Adding Negative Examples
Building on the same “romantic failure followed by roman-
tic success” microstory, we next attempted to refine the syn-
thesized sifting pattern to specifically require that the first
event in the sequence is not a major romantic failure (such
as a breakup or failed proposal). Some events in our test sim-
ulation had the major tag, but there was no corresponding
minor tag for non-major events, so this had to be accom-
plished through the use of negative properties.

From the set of matches for the previous sifting pattern,
we added the following match as a negative example:

1. Mira tried to propose to Emin, but was rejected.

2. Mira tried to ask Zach out on a date, but was rejected.

3. Mira tried to flirt with Zach, and succeeded.

The system initially proposed several candidate negative
properties, all of which were true for the single negative ex-
ample but false for both of the positive examples:

• eventType_e1_propose_rejected

• sameCharacter_e2target_e3target

• likes_e1actor_e1target

However, the first of these three properties was too spe-
cific (targeting the event type, rather than the tags, of the first
event in the sequence), while the latter two were incidentally
applicable, but unrelated to our intent. To further refine the
pattern, we then provided a second negative example:

1. Emin broke up with Vincent.

2. Emin tried to flirt with Vincent, but was rejected.

3. Emin tried to ask Sarah out on a date, and succeeded.

This enabled the system to further filter down the set of
candidate negative properties, resulting in the addition of the
following (correct) clause to the sifting pattern:



(not [?e1 tag major])

Note that this negative clause was initially subsumed by
the more specific eventType constraint when only a sin-
gle negative example was provided. A second negative ex-
ample was needed to show the system that it was the event
tags (rather than the event type) of the first event in the se-
quence that we actually intended to restrict.

Incorporating Entity Relationships
Next, we attempted to synthesize a sifting pattern for a mi-
crostory in which a character’s ideological rival calls them
out on a hypocritical action. An example of this pattern
might look something like the following sequence of events:

1. A performs an action opposed to one of their own values.

2. B criticizes A.

...where B is a character who holds a value to which A
is opposed, or vice versa. Although this sequence of events
is short, matching instances of this microstory requires the
synthesis of a pattern that includes both a character/character
relationship (i.e. that characters A and B hold opposed val-
ues) and a character/event relationship (i.e. that the first ac-
tion in the sequence harms a value held by A, or advances a
value to which A is opposed).

We first provided the system with two positive examples.
This was sufficient to produce the following nearly-correct
sifting pattern:

(eventSequence ?e1 ?e2)
[?e1 actor ?e1actor]
[?e2 actor ?e2actor]
[?e2 target ?e2target]
[?e2 eventType criticize]
[(= ?e1actor ?e2target)]
(likes ?e2actor ?e1actor)
(opposedValues ?e1actor ?e2actor)
(eventHarmsHeldValue ?e1 ?e1actor)

We then had to provide one more positive example to
eliminate the spurious (likes ?e2actor ?e1actor)
clause, introduced by a property that incidentally happened
to hold for the first two examples we provided but that was
not part of our intent. Alternatively, an attentive user might
notice that this clause was not part of their intent and man-
ually eliminate it from the sifting pattern without giving the
system any further examples.

Currently Unsupported Negative Constraints
Besides the constraint types illustrated here, there exists one
other type of constraint that’s fairly common in existing
Felt sifting patterns, but that our system currently doesn’t
make any attempt to synthesize. These are compound nega-
tive event constraints, which (among other uses) allow sift-
ing patterns to avoid matching candidate event sequences
that are interrupted by events with certain attributes. For in-
stance, suppose you want to write a sifting pattern to match
a “violation of hospitality” microstory, in which a traveling
character enters a town, is shown hospitality by a resident of
this town, and then experiences harm at the hands of this

same town resident character. A naı̈ve implementation of
this sifting pattern might look like this:

(eventSequence ?e1 ?e2 ?e3)
[?e1 eventType enterTown]
[?e1 actor ?guest]
[?e2 eventType showHospitality]
[?e2 actor ?host] [?e2 target ?guest]
[?e3 tag harm]
[?e3 actor ?host] [?e3 target ?guest]

However, this sifting pattern would also match event se-
quences like the following, in which the intended interpreta-
tion of the matched events is invalidated by the traveler leav-
ing the town before the final event of the intended sequence
plays out:

1. Yann enters town.
2. Yann is shown hospitality by Ema.
∗ Yann leaves town.
3. Ema pickpockets Yann, getting away with all their money.

To address this problem, an additional clause might be
appended to the end of the sifting pattern, taking advantage
of the not-join syntax (inherited from the DataScript li-
brary atop which the Felt sifting pattern DSL is built) to
specify that the traveler must not leave town between the
first and last events of the sequence. This clause essentially
states that there must not exist any event with the specified
characteristics (?eMid) between ?e1 and ?e3:

(not-join [?e1 ?e3 ?guest]
(eventSequence ?e1 ?eMid ?e3)
[?eMid eventType leaveTown]
[?eMid actor ?guest])

However, the search space of possible compound negative
event clauses for any given set of user-provided examples is
very large. The first difficulty lies in identifying which event
or events that aren’t part of the provided negative example
are somehow disqualifying the negative examples from con-
sideration. We could narrow down the search space some-
what by considering only events that occurred between the
start and the end of the provided negative example, and that
involved at least one of the characters involved in the exam-
ple events directly, but this could still include prohibitively
many events. And the second difficulty lies in determining
what aspects of the disqualifying event are responsible for
the disqualification: is it the event type, the tags, the actor,
the target, one of the relationships between these entities to
one another (or to other entities in the example), or some
combination of these factors?

Perhaps the most promising way to cut down this search
space is to ask the user for further guidance as to which in-
terceding events are responsible for disqualifying each neg-
ative example. This guidance could then allow the system
to suggest reasonable combinations of negative properties
involving these events. However, presenting the user with
an interface that allows them to easily identify the relevant
events may be difficult due to the sheer volume of events
generated by many emergent narrative systems. For the time
being, we leave this problem to future work.



Figure 1: A screenshot of the system’s current user interface. On the left sits a scrolling, filterable log of all events that have
occurred in the storyworld so far, allowing the user to select event sequences to use as examples. On the right sits an editable
view of the current synthesized sifting pattern; the sets of positive and negative examples the user has provided; and the set of
additional matches for the current candidate sifting pattern, which the user can add as positive or negative examples.

Discussion
Our approach avoids many of the difficulties associated with
general program synthesis by encoding a lot of information
about the domain, especially in the form of hand-authored
Datalog rules about relationships between characters and
events. We don’t need to try to discover these rules gener-
ically if we’ve been provided with a good set of special-
case rules up front, so we don’t have to do the actually-hard
part of Datalog program synthesis (i.e. trying to invent these
potentially-recursive rules ourselves given just the concrete
examples.)

We avoid some of the other difficulties by including a
human in the loop and building our synthesized programs
out of relatively straightforward, individually comprehensi-
ble building blocks. Individual Datalog clauses can be pre-
sented to the human user as short, declarative natural lan-

guage sentences, so even a relatively naı̈ve user can figure
out which clauses of the synthesized sifting pattern make
sense and which ones don’t. In this sense, program synthe-
sis serves as an on-ramp that teaches users about the DSL
used to define sifting patterns and the set of features that
this DSL supports, so that users can move from exclusively
defining sifting patterns via examples toward modifying ex-
isting sifting patterns and maybe even constructing new sift-
ing patterns from scratch via the textual DSL.

We consider our approach to be an example of human-
centric program synthesis (Crichton 2019), which deals with
“what applications [of program synthesis] open up when a
user has the programming skills to express specifications at a
level beyond examples”. For us, synthesis functions partly as
a teaching tool for introducing users to the textual language
in which sifting patterns are expressed and making them



aware of what affordances this language provides. Our syn-
thesized programs aren’t treated as black boxes, but exposed
to the user for editing, and it’s our hope that users will com-
bine the programming-by-example features that this tool af-
fords with direct manipulation of generated sifting patterns
to modify, add, and remove constraints.

Moreover, our tool remains useful even for experienced
sifting pattern authors, who might not immediately notice
all of the properties they intend the sifting pattern they’re
writing to contain. In addition, since the set of relationships
that might exist between characters is likely to evolve over
the course of developing a complex simulation-driven emer-
gent narrative game, even experienced sifting pattern authors
might benefit from the existence of a system that can surface
new clause types to them as new Datalog rules are imple-
mented by other developers.

Limitations
As discussed previously, our current system makes no at-
tempt to synthesize compound negative event constraints. To
support synthesis of these clauses will likely require further
work on both the core synthesis algorithm and the user inter-
face to provide the user with a way to explain why negative
examples are negative by pointing out the specific interced-
ing events that invalidate them.

Currently, our approach enforces an implicit total order-
ing constraint on the events matched by the synthesized sift-
ing pattern. All examples provided for a single sifting pattern
(positive and negative) must be of the same length, and it’s
assumed that the Nth event of each example event sequence
is intended to play the same role in the target microstory as
the Nth event of every other example. This strict constraint
may not always be intended or desirable; for instance, it’s
sometimes preferable to construct a sifting pattern in which
the middle events (between the first and last events of the
matched sequence) are permitted to occur in any chrono-
logical order. However, assuming an implicit total ordering
constraint allows us to simplify our approach to generating
both properties and setup clauses. In the future, we may seek
to relax this constraint, but to do so would require significant
modification to our current approach.

Like many learning approaches, our approach may overfit
when few examples are available. In preliminary testing with
an even smaller simulated storyworld, the system was prone
to including properties in synthesized patterns that were in-
cidentally true of all examples but not part of our intent.
This can be mitigated by users reviewing the synthesized
sifting patterns and removing unintended clauses. Addition-
ally, we may be able to help users debug overfitted patterns
by procedurally relaxing each clause of the pattern and pre-
senting the user with “almost matches”, inspired by Writing
Buddy’s “almost actions” (Samuel, Mateas, and Wardrip-
Fruin 2016). This could help users diagnose which clause
of a synthesized pattern is responsible for overfit.

Conclusion
We present a domain-specific inductive logic programming
system capable of synthesizing story sifting patterns in the

Felt sifting DSL, given several user-provided examples of
narratively interesting event sequences. Our system is in-
tended for interactive use with a human user in the loop. We
avoid or mitigate some of the difficulties of general-purpose
program synthesis (especially the problem of intractably
large search spaces) by encoding a lot of domain knowledge
into the architecture of the synthesis algorithm. Our system
features several key limitations, especially around the syn-
thesis of complex negative constraints, but is nevertheless
able to synthesize useful, realistic sifting patterns from a
small number of example event sequences.

Potential future work includes extension of the user in-
terface and synthesis algorithm to better support complex
negative constraints; incorporation of the synthesizer into a
more full-featured and user-friendly sifting pattern author-
ing tool; evaluation of the resulting tool with a larger num-
ber of potential users; and a more detailed comparison of
our hand-rolled domain-specific synthesizer against existing
general-purpose Datalog program synthesizers, to determine
whether we could feasibly re-encode the problem in a way
that makes it more amenable to attack by a general-purpose
synthesizer.

References
Albarghouthi, A.; Koutris, P.; Naik, M.; and Smith, C. 2017.
Constraint-based synthesis of datalog programs. In Interna-
tional Conference on Principles and Practice of Constraint
Programming, 689–706. Springer.
Bay 12 Games. 2006. Dwarf Fortress. bay12games.com/
dwarves.
Butler, E.; Siu, K.; and Zook, A. 2017. Program synthesis
as a generative method. In Proceedings of the 12th Interna-
tional Conference on the Foundations of Digital Games.
Crichton, W. 2019. Human-centric program synthesis. In
PLATEAU Workshop @ UIST.
Eladhari, M. P. 2018. Re-tellings: the fourth layer of narra-
tive as an instrument for critique. In International Confer-
ence on Interactive Digital Storytelling, 65–78. Springer.
Garbe, J. 2018. Simulation of history and recursive narrative
scaffolding. project.jacobgarbe.com/simulation-of-history-
and-recursive-narrative-scaffolding.
Kreminski, M., and Wardrip-Fruin, N. 2019. Genera-
tive games as storytelling partners. In Proceedings of the
14th International Conference on the Foundations of Digi-
tal Games.
Kreminski, M.; Samuel, B.; Melcer, E.; and Wardrip-Fruin,
N. 2019. Evaluating AI-based games through retellings.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment, volume 15,
45–51.
Kreminski, M.; Dickinson, M.; Mateas, M.; and Wardrip-
Fruin, N. 2020a. Why Are We Like This?: Exploring writ-
ing mechanics for an AI-augmented storytelling game. In
Proceedings of the Electronic Literature Organization Con-
ference.
Kreminski, M.; Dickinson, M.; Mateas, M.; and Wardrip-
Fruin, N. 2020b. Why Are We Like This?: The AI archi-



tecture of a co-creative storytelling game. In Proceedings of
the Fifteenth International Conference on the Foundations
of Digital Games.
Kreminski, M.; Dickinson, M.; and Wardrip-Fruin, N. 2019.
Felt: a simple story sifter. In International Conference on
Interactive Digital Storytelling, 267–281. Springer.
Liapis, A.; Yannakakis, G. N.; Alexopoulos, C.; and Lopes,
P. 2016. Can computers foster human users’ creativity?
Theory and praxis of mixed-initiative co-creativity. Digital
Culture & Education 8(2):136–153.
Louchart, S.; Swartjes, I.; Kriegel, M.; and Aylett, R. 2008.
Purposeful authoring for emergent narrative. In Joint In-
ternational Conference on Interactive Digital Storytelling,
273–284. Springer.
Louchart, S.; Truesdale, J.; Suttie, N.; and Aylett, R. 2015.
Emergent narrative, past, present and future of an interac-
tive storytelling approach. In Interactive Digital Narrative:
History, Theory and Practice. Routledge. 185–199.
Mateas, M., and Stern, A. 2000. Towards integrating plot
and character for interactive drama. In Working notes of the
Social Intelligent Agents: The Human in the Loop Sympo-
sium, 113–118. Menlo Park: AAAI Fall Symposium Series.
Muggleton, S., and De Raedt, L. 1994. Inductive logic pro-
gramming: Theory and methods. The Journal of Logic Pro-
gramming 19:629–679.
Muggleton, S., and Feng, C. 1992. Efficient induction of
logic programs. Inductive logic programming 38:281–298.
Muggleton, S. H.; Lin, D.; and Tamaddoni-Nezhad, A. 2015.
Meta-interpretive learning of higher-order dyadic datalog:
Predicate invention revisited. Machine Learning 100(1):49–
73.
Muggleton, S. 1995. Inverse entailment and progol. New
generation computing 13(3-4):245–286.
Odena, A., and Sutton, C. 2020. Learning to represent pro-
grams with property signatures. In International Conference
on Learning Representations (ICLR).
Quinlan, J. R. 1990. Learning logical definitions from rela-
tions. Machine learning 5(3):239–266.
Raghothaman, M.; Mendelson, J.; Zhao, D.; Naik, M.; and
Scholz, B. 2019. Provenance-guided synthesis of datalog
programs. Proceedings of the ACM on Programming Lan-
guages 4(POPL):1–27.
Rhodes, M.; Coupland, S.; and Cruickshank, T. 2010. En-
hancing real-time sports commentary generation with dra-
matic narrative devices. In Joint International Conference
on Interactive Digital Storytelling, 111–116. Springer.
Riedl, M. O., and Bulitko, V. 2013. Interactive narrative: An
intelligent systems approach. AI Magazine 34(1).
Ryan, J. O.; Summerville, A.; Mateas, M.; and Wardrip-
Fruin, N. 2015. Toward characters who observe, tell, mis-
remember, and lie. In Eleventh Artificial Intelligence and
Interactive Digital Entertainment Conference.
Ryan, J. O.; Mateas, M.; and Wardrip-Fruin, N. 2015. Open
design challenges for interactive emergent narrative. In In-

ternational Conference on Interactive Digital Storytelling,
14–26. Springer.
Ryan, J. 2018. Curating Simulated Storyworlds. Ph.D. Dis-
sertation, UC Santa Cruz.
Samuel, B.; Mateas, M.; and Wardrip-Fruin, N. 2016. The
design of Writing Buddy: a mixed-initiative approach to-
wards computational story collaboration. In International
Conference on Interactive Digital Storytelling, 388–396.
Springer.
Si, X.; Lee, W.; Zhang, R.; Albarghouthi, A.; Koutris, P.; and
Naik, M. 2018. Syntax-guided synthesis of Datalog pro-
grams. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, 515–527.
Summerville, A. 2018. Towards inductive logic program-
ming for game analysis: Leda. In Workshops at the Thirty-
Second AAAI Conference on Artificial Intelligence.


