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Abstract

Integrated meaningful play is the idea that player’s choices
should have a long-term effect on the game. In this paper we
present I-score (for integrated), a scoring function for scoring
integrative game play as a function of the game’s storylines.
The I-scores are in the range [0,1]. In games with I-scores
close to one, player’s early choices determine the game’s end-
ing; choices made later in the game do not change the final
ending of the game. In contrast, games with I-scores close to
zero, players’s choices can change the ending until the very
end. Games with scores closer to 0.5 provide a more balanced
player choice whereby the game’s ending still can be changed
despite early decisions, but not so much that the ending could
be changed at any point.

Introduction
Some games are famous for their storyline and how the play-
ers’ choices play out in the final ending of the game. For
instance, Bioware’s Knights of the Old Republic is well-
known for a variety of aspects including how the player’s
choices throughout the game will result in a variety of end-
ings (and cinematics).

Having multiple endings is not a requirement for a game
to be considered to have a great storyline. Many first-person
shooters such as Valve’s Half-Life are linear, yet its storyline
is considered memorable. Nevertheless, the long term effect
that player’s choice has on the ending of a game is one of the
most intriguing aspects of game design. Researchers have
introduced evaluative definitions assessing player choices.
Salen, Tekinbaş, and Zimmerman (2004) define the inte-
grated component of meaningful play to indicate if the play-
ers’ choices have long term repercussions on the game. The
idea is that by enabling long term repercussions of player’s
choices in the game, the game empowers the players and
makes their choices have more meaning.

In this paper, we propose the I-score (for integrated) met-
ric. It scores how much player’s choice impacts game end-
ing. In games with a I-score close to 0, the player’s can
change the ending at any point in the game including at the
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latter stages. On the other extreme, if the game has multi-
ple endings, but “locks” the player once the initial choice is
made, then its I-score is 1. If a game has an I-score close to
0.5 it indicates that the game is balanced between these two
extremes providing more choice to the player.

Game’s storylines can be represented as directed graphs,
where each node is an state in the storyline (e.g., beginning
of the game, each of the possible endings) and edges repre-
sent transitions between states as a result of player’s choices
(Riedl and Young 2006). The basis for computing the I-
score is the use of Reinforcement Learning (RL) techniques
with the aim at finding the “true” value (defined in RL is a
metric of the suitability of every state to reach a goal based
on the rewards) of every state based on the reward function.
We then find the distances between those true state values to
compute the overall I-score of the graph.

The premise of our work is that integrated meaningful
play assess the relationship between player choices and the
game ending. As the value of being in a state is intrinsi-
cally linked to player choice, Reinforcement learning finds
the value of each state.

We present an empirical evaluation on both synthetic
graphs, representing different topologies of player choices,
as well as actual games and discuss their resulting I-scores.

Preliminaries
Our work links two different concepts: Q-learning and
Meaningful Play. We introduce these concepts here.

In reinforcement learning, the agent aims to maximize its
future rewards while interacting with the environment from
a starting time t: rt+rt+1+...+rT (Sutton and Barto 2018).
For our purposes we focus on episodic tasks, where the agent
terminates its execution after reaching a concluding state.

Tabular reinforcement learning algorithms maintain a two
dimensional table Q : S × A → R, where S represents the
states that the agent can visit, A represents the actions that
the agent can take, and R represents the real numbers. The
entry Q(s, a) indicates the estimated reward the agent gains
from taking action a in state s. The estimated value Q(s, a)
is updated after the agent takes an action and receives a re-
ward using the following formula:



Q(s, a)← (1− α)Q(s, a) + α[r + γmax
a′

Q(s′, a′)]

Where s′ is the state reached after executing action a in
state s. α is the step-size parameter determining how much
weight to give the previous estimate Q(s, a) and how much
weight to give the update (i.e., the [r+γmax

a′
Q(s′, a′)] part

of the equation). γ is the learning rate indicating how much
weight to give to prior estimates of Q(s′, a′).

Reinforcement learning algorithms can use a variety of
techniques such as ε-greedy: with a probability 1− ε where
the agent chooses the greedy action pi(s) and with a prob-
ability ε it pics a random action. Based on the estimates,
Q(s, a), the so-called greedy policy can be defined:

π(s) = max
a′

Q(s, a′)

To guarantee that future reward is maximized, the policy
enforces that for every state s the action a’ with the highest
current estimate Q(s, a′) is chosen.

In Rules of Play: Game Design Fundamentals Salen et
al. proposes a game design framework for not only com-
puter games, but all games — from board games to sporting
games. Meaningful play is highlighted as a core concept of
game design and integral to a game’s success. Salen et al.
define meaningful play as a relationship within a game be-
tween action and outcome. There are two types of meaning-
ful play: integrated and discernable. Integrated meaningful
play means that a player’s action has some long term conse-
quences, i.e. the decision or play is woven or integrated into
the game as a whole. Discernable meaningful play refers to
when a player has immediate or discernable consequences
to a given action. This work posits that successful games in-
clude game actions and outcomes that are both discernable
and integrated (Salen, Tekinbaş, and Zimmerman 2004).

The notion of meaningful play provides a conceptual as-
sessment of the design of a video game. It evaluates the re-
lationship between actions taken by a player and the out-
comes of those actions. It says that in order for the interac-
tion between players’ actions and the actions’ outcomes to
be meaningful, they must be discernable and integrated.

Discernable means that the immediate outcome of the
action is observable by the player. For example, when the
player press the “w” key, they observes their avatar moving
forward. Integrated means that the players’ actions have a
long-term effect on the course of the game. For example, in
games like Knights of the Old Republic, players actions such
as killing or saving a particular NPC, will assign “good” or
“bad” karma points and these in turn will determine how the
storyline in the game will end.

This work solely focuses on assigning a score to the
amount of integrated meaningful play in story driven games.
Our algorithm determines the integrated impact of every
player choice made using two main processes: (1) We calcu-
late overall “meaningfulness” of a choice; (2) we weigh the
obtained choice value to account for integration level. First,
to calculate the impact of a choice we use Q-learning to de-
termine how much reward is obtained by making a given

choice with the goal of getting to a desired ending state.
Then we use the Manhattan distance to compare all pos-
sible routes from the same starting point to a desired end
point to determine the variance of paths, i.e. the importance
of certain choices. Second, we weigh user’s earlier choices
higher than future ones to account for the fact earlier choices
have the opportunity to have a more integrated impact than
choices made near the end of a game.

Scoring the Integration Level of a Game
We present a procedure computing the I-score, a scoring
function I: GAME → [0, 1] such that if a score is closer
to 0.0, this indicates a high degree of overlap between the
paths from the beginning of the game to each ending of the
game. Conversely, if a score is 1.0, the paths from the start
of the game to each ending have more separation at the end.

For our study we developed synthetic graphs to repre-
sent choice driven games with varying amounts of choices
for players. The synthetic topologies have a single starting
node connected to four succeeding nodes. There are four
levels, and a final ending level each with four nodes. The
term “branch” will refer to the direct paths made from the
first decision nodes to the respective ending nodes vertical
to them.

Figure 1 shows two of these topologies. The starting node
represents the starting state in a video game. After a player
makes an in-game decision, the game state transitions to the
corresponding connected node.

We begin with both extremes. In Figure 1 (a), each node
in each level is connected to every subsequent level’s node
allowing for a transition into any other branch. Most player
choices made during the duration of the game have no im-
pact on the ending of the game. Instead, only the final player
decision determines the game’s ending state. We refer to this
topology as “non-integrated” because aside from the last
choice, all other decisions made by the player have no af-
fect on the final outcome of the game. Its I-score is given
by I(non-integrated) = 0.1585, an unsurprisingly low score.
Only the player’s final decision has a direct impact on the
ending, but this decision is not integrated because it is made
at the end of the game.

For our opposite synthetic graph, we construct a topology
such that after a player makes their first choice, they become
locked into a specific branch with no possibility of chang-
ing their outcome. Thus, the very first choice the player
makes determines the outcome. We refer to this topology
as “rigid-integrated”. It is shown in Figure 1 (a). It has an
score I(rigid-integrated) = 1.

Underlying assumptions on game structure. As a first
work computing a numeric measurement of integrated
meaningful play, we make some assumptions about the
graphs of the games we have chosen to test. First, we as-
sume that the graph is a directed acyclic graph (DAG). That
is, from any game’s state there is no sequence of player’s
choices that will lead to that same state. Many games do
have such cycles, but we have chosen games that do not
have such cycles for simplicity. Second, we assume that the



(a) (b)

Figure 1: (a) Non-integrated topology; regardless of the
choices made the player can always reach any of the end-
ings; it has an I-score of 0.15; (b) Rigid-integrated topol-
ogy; once the player makes a choice in the first decision, the
outcomes are fixed for the remaining of the game; it has an
I-score of 1.

graphs have multiple ending states. Games such as Knights
of the Old Republic have multiple endings depending on the
player choices. Multiple endings are not a requirement for
a well-received narrative-based game, but they provide an
intuitive way to compare routes for scoring a game.

While many successful narrative-based games only have
one ending, or include cycles in their structure, this paper
describes a new proof-of-concept procedure. As such, we
leave these other types of game structures for future work.

Computing Integration Score
We present a procedure to compute the I-score of a game. It
is a composite of four elements:

I(Game) = (M ◦N ◦W ◦Q)(Game)

Computing the Q-values
For the games we are considering, a story can be seen as
a DAG, where nodes are precise points in the story and
edges are players’ choices advancing the story. Our goal
is to analyze the overall level of integration in a story. To
do so, we use Q-learning to calculate the reward value of
every state-action pair by defining a matrix of dimensions
1 . . . Nodes× 1 . . . Nodes. Our scoring system accepts this
matrix as input, with all cells initialized to 1. Additional pa-
rameters include the position of the start node, represent-
ing the beginning of the story, and the positions and num-
ber of ending nodes, representing all possible story endings.
We give a reward of 100 to the desired ending state in or-
der to incentivize our Q-learning agent to reach this destina-
tion. We then run Q-learning on the resulting matrix for each
ending state. After 100,000 iterations, the resulting Q-tables
show the expected rewards for each choice in each given
story point. For each ending, we get a separate Q-table with
the updated reward values. Let this procedure be defined by
the function Q(Game), which accepts an adjacency matrix
representation of a game as input and outputs a series of n
Q-tables, where n is the number of available endings in the
game’s story.

Computing Weighting Function W
Integrated play is defined as the effect a given action has
later on in a game. Therefore, it stands to reason that earlier
actions have more opportunity to have a long-lasting impact
on the game. To reflect this, we assign weights to actions
based on how early in the game they occur, with more weight
given to earlier actions.

We calculate a set of n weights such that they sum to 1,
where n is the number of transitions in the longest route in
the graph. We then apply these weights in descending order,
with the higher weights being applied closer to the graph’s
start node and smaller weights being closer to the graph’s
endings.

Algorithm 1 describes the procedure for calculating the
set of weights. It first initializes an empty set of weights
(Line 2). Then, it calculates the slope of a line according
to graphHeight, the length of the longest route from start
to any ending in the graph (Lines 3-10). Our initial unpro-
cessed weights are given by i*slope. Once this is done, the
algorithm calculates the average difference, toAdd, between
the sum of all unprocessed weights and 1 (Line 7). Because
the unprocessed weights are much smaller than 1, we add
toAdd to each i*slope (Lines 8-10). Lastly, we reverse the
weights to put them into descending order.

Algorithm 1 Weight Calculation
1: procedure GETWEIGHTS(graphHeight)
2: new List weightSet
3: slope← 1/graphHeight2

4: sum← 0
5: for i← 1; i ≤ graphHeight; i++ do
6: sum← sum+ (i ∗ slope)
7: toAdd← (1− sum)/(graphHeight)
8: for i← 1; i ≤ graphHeight; i++ do
9: weight← ((i ∗ slope) + toAdd)

10: weightSet.append(weight)

11: weightSet.reverse()
12: return weightSet

Once we have a set of linearly descending weights, we
can apply them to the Q-tables to construct a set of weighted
Q-tables that we will call “I-tables.” This is done by con-
ducting a depth-first search of each Q-table and multiplying
each Q-value by the weight corresponding to the Q-value’s
height in the graph.

If two or more branching paths in the graph of differing
lengths re-converge, the “height” of the node could be the
height of either prior node plus one. However, this is not
consequential in the overall score, as the weights maintain
their descending order before the branching and after the
re-convergence. Therefore, choices are still weighed higher
when found earlier, preserving integration.

Integrated play means that a decision has long-lasting
consequences, and a decision made earlier on has more op-
portunity to have long-lasting impact. Therefore, this func-
tion allows our scoring system to detect integration in games
by placing higher value on decisions made earlier in the



story. Let this procedure be defined by the function W (Q−
tables), which accepts a set of n Q-tables as input and out-
puts a set of n I-tables.

Computing the Normalized Scores N
To ensure that our final score is normalized between 0 and
1, we run softmax on a vector containing all non-zero values
in a given I-table, producing a set of normalized values. We
can then take our normalized set and overwrite the original
values with their normalized values.

In order to normalize all values in a given weighted Q-
table, all non-zero values in the table are compiled into a
one-dimensional vector. As non-zero values signify connec-
tions, they are the only values of interest in this operation.
We then use softmax to normalize the values in this vector,
and replace the old non-zero values in the table with the cor-
responding new ones from softmax (Bridle 1990). Let this
procedure be defined by the functionN(Q−Tables), which
accepts a set of n weighted Q-tables as input and outputs a
set of n normalized, weighted Q-tables.

Computing the Manhattan Scores M
Once this is done for each table, we can calculate the Man-
hattan distances in a pairwise fashion between each I-table,
getting a sense of how different each route is in the process.
Once these distances are averaged, we have our I-score.

Finally, we take the Manhattan difference between each
pair of the game’s I-tables. If two I-tables for different end-
ings have different paths, then the Manhattan distance will
be higher, reflecting the greater amount of integrated play as
a result of the game. Conversely, if a nearly identical path
can be taken to two different endings, the Manhattan dis-
tance will be lower. The final average is divided by 2 so that
a different choice between two I-tables is not counted twice.
Let this Manhattan distance procedure be defined by a func-
tion M(Q− tables), which accepts n weighted, normalized
I-tables as input and outputs a numeric score from 0 to 1.

Empirical Evaluation
Synthetic Graphs
In addition to non-integrated and the rigid-integrated graphs
we created other synthetic graphs as shown in Figure 2. They
combine various levels of inter-connectivity.

Game Graphs
We choose four story-driven video games on which to test
our scoring system because we were able to formulate their
topologies from online sources. For each game, we construct
a simplified graph where each choice is a transition from one
node to another. Choices related solely to non-story elements
of the game such as achievements are ignored for simplicity.
From these graphs, we construct adjacency matrices to pass
as input to our scoring algorithm.

The first and most complex game that we inspect is
Steins;Gate, a game of the visual novel genre. 1 Game play
primarily takes the form of dialogue trees where the player

1https://en.wikipedia.org/wiki/Steins;Gate

(a) (b) (c)

Figure 2: (a) The two-on-two graph allows for crossover in
every other level alternating between the two endings.; it has
an I-score of 0.9708; (b) The rigid-top topology, top half is
identical to the rigid-integrated and the bottom half is iden-
tical non-integrated graph; it has an I-score of 0.1590; (c)
The rigid-bottom topology, inverts the connectivity of the
rigid-top. It has a score of 0.9995

makes decisions from time to time when prompted. The
player can check the protagonist’s cell phone at any time,
and respond to messages from other characters using one of
a finite number of options. For simplicity, dialogue routes
that only lead to achievements are ignored.

The graph constructed from Steins;Gate is shown in Fig-
ure 3. There are many branching points in the story with 6
endings of varying difficulty to achieve, the true ending be-
ing the most difficult. Each time a critical decision is made,
the player is denied access to one ending, but can still access
all the remaining endings from the new branch. Steins;Gate
received an I score of 0.6829.

Next, we investigate a browser-based puzzle game called
No One Has to Die.2 In each level of this game, the player
must manipulate elements on the board to save characters
from a fire, but the puzzles are always designed such that
one character must be sacrificed. The ending of the game
is dependent upon which characters remain alive. Once all
endings have been seen, the “true route” is unlocked, which
is ignored as it is linear, and, thus not of interest for this
study.

No One Has to Die’s graph is much simpler than
Steins;Gate, with 5 major endings based on who lives or
dies. There are 3 choices the player will make in a given
play through of the game. The first choice forces the player
down one of two paths, each of which can either access one
of a different pair of endings, or rejoin on a single ending.
This game was assign a I-score of 0.6782.

In the game Shadow the Hedgehog,3 players move
through levels collecting rings and engaging in combat with
enemies much as they would in the Sonic the Hedgehog se-
ries. The key difference from typical Sonic the Hedgehog
games is that each level in Shadow the Hedgehog contains
multiple objectives, and which objective the player com-
pletes leads them to a different next stage. Based on which

2https://levelskip.com/puzzle/No-one-has-to-die-Walkthrough
3https://en.wikipedia.org/wiki/Shadow the Hedgehog (video

game)



Figure 3: Graph of the Steins;Gate game.

route the player completed, they will receive one of 10 dif-
ferent endings. Similarly to No One Has to Die, there is a
“true ending” route unlocked once all other endings have
been seen, but this is once again linear and ignored for the
purposes of this paper. The graph of Shadow the Hedgehog
is constructed with each node representing a level, and each
edge representing one of the possible objectives to complete.
This game is notably non-committal in comparison to the

other games we have discussed so far, allowing the player to
move between several routes almost freely, and only deny-
ing access to certain endings after the third or fourth choice.
Shadow the Hedgehog received an I-score of 0.8354. This
score closer to 1 is indicative of higher difference between
routes and more “strictness.” While there is less impact on
the player’s early choices, the player decisions begin to mat-
ter more and more as they reach the end.



The last game we investigate is Zero Escape: Virtue’s Last
Reward,4the second installment in the “Zero Escape” series
of games. Zero Escape is a series of visual novel games in
which the player solves puzzles to advance the story, and
occasionally makes decisions that change the route. Among
the games we cover in this paper, this game is unique in
that it prohibits access to certain endings at first through var-
ious means. Information required to solve certain puzzles
is found on different routes, making progression essentially
impossible without having been down the correct routes.
Other endings are fully locked, the player being met with a
screen reading “To be Continued...” if they reach the ending
prematurely. This is meant to enforce a degree of linearity to
the storytelling.

For simplicity, we construct two different graphs: A
“complete” graph with prologue and all endings “unlocked”,
and a “locked” graph with no prologue segment and only
initially unlocked endings. Both graphs have a very similar
structure to that of No One Has to Die, albeit with more end-
ings and length.

The complete graph has 20 accessible endings, with the
first decision the player makes denying access to over half
of the endings. With the large amount of denial from end-
ings, the complete graph receives a I-score of 0.9763. The
similarity to the synthetic rigid-integrated graph is expected,
as there is no overlap between routes in this game.

Meanwhile, the locked graph has a nearly identical struc-
ture, but only allows access to 9 endings. This proves to have
very little impact on the I-score, as this graph receives a
score of 0.9983. The increase in score can be attributed to
the reduced number of endings, meaning that each choice
denies a player access to a higher percentage of the total
number of endings.

Experimental Setup
Our Q-learning parameters are as follows: α = 0.90, γ =
0.75, and ε = 0.20. For each game, we run Q-learning on the
game’s weighted adjacency matrix 100,00 times. We repeat
this process 10 times and average the outputs.

Experimental Results
Table 1 shows the I-scores; the synthetic graph’s I-scores
are very near to either 0 or 1– the ends of the spectrum. Both
the non-integrated and the rigid-top graphs receive very low
scores demonstrating that graphs with lots of crossover be-
tween branches thereby the choices have little impact. In
fact, the non-integrated graph allows for complete crossover
– a player in states can always move to any state in the fol-
lowing level of the topology, yielding an I-score near 0. On
the other hand, the rigid-integrated, rigid-bottom, and two-
on-two graphs have very high scores. This illustrates the lim-
ited amount of crossover between branches in their topolo-
gies. The rigid-integrated graph receives a perfect score of
1 indicating that there is absolutely no crossover between
branches.

4https://en.wikipedia.org/wiki/Zero Escape: Virtue’
s Last Reward

Game Score
Steins;Gate 0.6829

No One Has to Die 0.6782
Shadow the Hedgehog 0.8354

Zero Escape: Virtue’s Last Reward (Unlocked) 0.9763
Zero Escape: Virtue’s Last Reward (Locked) 0.9983

Non-Integrated 0.1585
Rigid-Integrated 1.0000

Rigid-Top 0.1590
Rigid-Bottom 0.9995
Two-on-Two 0.9708

Table 1: Resulting I-scores

Both unlocked and locked Zero Escape: Virtue’s Last Re-
ward yields I-scores in the range of 0.9 indicating a close to
rigid topology. Shadow the Hedgehog has a slightly lower
score of 0.8354 suggesting that this game has slightly more
divergence between the branches of its topology. In a pre-
view of Shadow the Hedgehog, Gooseberry commented
“gamers will decide in a race against time by choosing be-
tween any number of routes by which to unveil the secrets
of his past. Multiple endings will reflect critical decisions at
every stage of the game. Gamers have ultimate control over
Shadow’s past, with the potential to rewrite his history time
and time again.” 5 The game’s high score reflects the gamer’s
“ultimate control” early game decisions do not immediately
lock player’s out of endings, late decisions made in the game
still have the power to swap branches.

Steins;Gate and No One Has to Die have similar scores in
the range of 0.6. Both of these games have complex topolo-
gies that contain a mixture of paths. We hypothesize that
games between these two extremes, with a I-score close to
0.5 have more interesting story lines. Daily Star reviewers of
Steins;Gate remarked, “As you proceed, once trivial choices
you make reveal themselves to have a direct effect on the
game’s finale. Multiple endings both good and bad are up
for grabs hindering even seemingly simple decisions with a
heavy weight, even more so as you debate the consequences
of altering time and the potential butterfly effect it’ll have on
the characters you’ve fabricated deep ties with.”6 This quote
exhibits how meaningful play is highly impactful on player
experience. Even trivial choices end up having an effect on
the ending. When a player must put thought into their game
decisions it can make for a more engaging, thought provok-
ing, interactive game experience. A review of No One Has
to Die posits, “The main highlight is the plot and the music.
Both had me intrigued, seriously absorbing. I always love it
when alternate paths somehow link together. It is definitely
worth finding all the endings!” 7 This quote emphasises the
converging game paths. The reviewer suggests that players’
choices creates a more enjoyable game experience.

5https://cheatcc.com/xb/rev/shadowhedgehogreview.html
6https://www.dailystar.co.uk/tech/reviews/steins-gate-elite-

ps4-review-16905592
7http://gamescheat22.blogspot.com/2013/04/no-one-has-to-

die-game-review.html



Related Work
Player enjoyment is difficult aspect of a game to quantify,
thus there is a need for a validated and generalized model
that can be used to design and evaluate game enjoyment
(Bostan and Öğüt 2009; Sweetser and Wyeth 2005).

Fabricatore, Nussbaum, and Rosas (2002) used single
player games to construct a qualitative design model aim-
ing at understanding what players want in a video game.
Participants had a playing session with one of 39 selected
games (picked by their popularity). During the play session
participant’s activities and opinions were logged. This study
resulted in the formation of a hierarchical design model us-
ing entities, scenario, and goals as three aspects of the game
that were found to be deterministic of the player experience.

In Desurvire, Caplan, and Toth (2004) a study was con-
ducted to assess the usefulness and validity of various
heuristics by tracking participants navigation and feedback
in a game shell. The user study provided evidence to us-
ing heuristics to evaluate games for playability. They deter-
mined game heuristic categories such as game story (e.g.,
character development) and game play (e.g., challenges
users must overcome to move forward throughout a game).

Sweetser and Wyeth (2005) report on a model to eval-
uate player enjoyment. Various design heuristics proposed
in previous research are integrated into a model to evaluate
game enjoyment using flow. Flow occurs when the challenge
level matches the skill level of the user. The proposed model
GameFlow adapts the idea of flow experiences to games.
The model consists of components such as: concentration,
challenge and skills. Bostan and Öğüt (2009) further develop
a GameFlow model specifically for RPGs to aid in maximiz-
ing player experience. User’s freedom of choice and mean-
ingful play are deemed important aspects of a games story-
line. A game’s difficulty curve should keep player engage-
ment high and minimize frustration by increasing game dif-
ficulty as the player progresses through the game.

Purdy et al. (2018) study a collection of story features to
assess an storyline’s quality. For instance, the temporal or-
dering feature looks at the plausibility that one sentence fol-
lows from its previous sentence in the story. Our study is
orthogonal to story’s quality. We are looking at measuring
the integrated level of a game between the player’s choices
and the outcome of the game.

Mawhorter, Mateas, and Wardrip-Fruin (2015) present a
system capable of generating choices to achieve poetic ef-
fects. The system assumes that the player has intrinsic goals
such as avoiding injury and diffuse threats to innocent NPCs.
It can generate three kinds of choices in relation to the
player’s goals. For instance, in dilemma choices, player’s
choices will lead to achieve one of the player’s goals but
will cause other goals to fail. The focus of these criteria is
on individual players’ choices whereas our focus is on how
the player’s choices affect the outcome of the game.

Conclusions
We introduce the I-score, a metric that evaluates the in-
tegrated level of a game with respect to its possible end-
ings. This is the first work attempting to provide a numerical

measure integrated meaningful play for storylines. As such,
we made some underlying assumptions about the kinds of
graphs in the storylines: (1) we assume there are no loops in
the storyline: that is, there is a sequence of player’s choices
from a state decisions that will lead to that same state; (2)
we assume that games have multiple ending states. While
some games do violate these assumptions, for the purposes
of this paper we are only considering games that do not.
Our empirical results show that games that ”lock” the player
on early choices have a I-score close to 1 whereas those
where choices do not matter as much have scores closer to 0.
Games that contain a balance of the two have I-scores close
to 0.5. In future work, we would like to examine games such
as Bioware’s Mass Effect 3, where endings are also influ-
enced by internal scoring functions. Our code for this pa-
per is available at https://github.com/abettis56/meaningful-
play-ml.
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