
Explainability via Responsibility

Faraz Khadivpour and Matthew Guzdial
Department of Computing Science, Alberta Machine Intelligence Institute (Amii)

University of Alberta, Canada
{khadivpour, guzdial}@ualberta.ca

Abstract

Procedural Content Generation via Machine Learning
(PCGML) refers to a group of methods for creating game
content (e.g. platformer levels, game maps, etc.) using ma-
chine learning models. PCGML approaches rely on black box
models, which can be difficult to understand and debug by hu-
man designers who do not have expert knowledge about ma-
chine learning. This can be even more tricky in co-creative
systems where human designers must interact with AI agents
to generate game content. In this paper we present an ap-
proach to explainable artificial intelligence in which certain
training instances are offered to human users as an explana-
tion for the AI agent’s actions during a co-creation process.
We evaluate this approach by approximating its ability to pro-
vide human users with the explanations of AI agent’s actions
and helping them to more efficiently cooperate with the AI
agent.

Introduction
In science and engineering, a black box is a component that
cannot have its internal logic or design directly examined. In
artificial intelligence (AI), “The black box problem” refers
to certain kinds of AI agents for which it is difficult or im-
possible to naively determine how they came to a partic-
ular decision (Zednik 2019). Explainable artificial intelli-
gence (XAI) is an assembly of methods and techniques to
deal with the black box problem (Biran and Cotton 2017).
Machine Learning (ML) is a subset of artificial intelligence
that focuses on computer algorithms that automatically learn
and improve through experience. (Goodfellow, Bengio, and
Courville 2016). The current state-of-the-art models in ML,
deep neural networks, are black box models. Intuitively, it
is difficult to cooperate with an individual when you cannot
understand them. This is critical in co-creative systems (also
called mixed-initiative systems), in which a human and an
AI agent work together to produce the final output. (Yan-
nakakis, Liapis, and Alexopoulos 2014).

There is a wealth of existing methods in the field of XAI
(Adadi and Berrada 2018). For example, those that draw
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comparisons between the input and the output of a model
(Cortez and Embrechts 2011; 2013; Simonyan, Vedaldi,
and Zisserman 2013; Bach et al. 2016; Dabkowski and
Gal 2017; Selvaraju et al. 2017), or analyze the output in
terms of the model’s parameters (Boz and Hillman 2000;
Garcı́a, Fernández, and Herrera 2009; Letham et al. 2015;
Hara and Hayashi 2018). Alternatively, there is the strat-
egy to attempt to simplify the model (Che et al. 2015;
Tan et al. 2017; Xu et al. 2018). The major difference be-
tween our approach and these previous ones is that we
present a method which makes it possible to explain an AI
agent’s action through a detailed inspection of what it has
learned during the training phase.

Questions we might want to ask an AI agent include “How
did you learn to do that action?” or “What did you learn
that led you to make that decision?” (Cook et al. 2019). We
sought to develop an approach that could answer these ques-
tions. Thus, our approach needed to find explanations for the
AI agent’s decisions based on its training data.

In this paper, we make use of the problem domain of a
co-creative Super Mario Bros. level design agent. We use
this domain since XAI is critical in co-creative systems. We
introduce an approach to detect the training instance that
is most responsible for an AI agent’s action. We can then
present the most responsible training instance to the human
user as an answer to how the AI agent learned to make a par-
ticular decision. To evaluate this approach we compare the
quality of these responsible training instances to random in-
stances as explanations in two experiments on existing data.

Related Work
Our problem domain is generating explanations for a
PCGML co-creative agent. Therefore we separate the prior
related work into three main areas: Procedural Content Gen-
eration via Machine Learning (PCGML), co-creative sys-
tems, and Explainable Artificial Intelligence (XAI).

Procedural Content Generation via Machine
Learning (PCGML)
Procedural Content Generation via Machine Learning
(PCGML) is a field of research focused on the creation of
game content by machine learning models that have been



trained on existing game content (Summerville et al. 2018).
Super Mario Bros. level design represents the most consis-
tent area of research into PCGML. Researchers have applied
many machine learning methods such as Markov chains
(Snodgrass and Ontanón 2016), Monte-Carlo Tree Search
(MCTS) (Summerville, Philip, and Mateas 2015), Long
Short-Term Recurrent Neural Networks (LSTMs) (Sum-
merville and Mateas 2016), Autoencoders (Jain et al. 2016),
Generative Adversarial Neural Networks (GANs) (Volz et
al. 2018), and genetic algorithms through learned evaluation
functions (Dahlskog and Togelius 2014) to generate these
levels. In a recent work, Khalifa et al proposed a framework
to generate game levels using Reinforcement Learning (RL),
though they did not evaluate it in Super Mario Bros. (Khalifa
et al. 2020). We also draw on reinforcement learning for our
agent, however our approach differs from this prior work in
terms of focusing on explainability.

Co-creative systems
There are numerous prior co-creative systems for game de-
sign. These approaches traditionally have not made use of
ML, instead they rely on approaches like heuristics search,
evolutionary algorithms, and grammars (Smith, Whitehead,
and Mateas 2010; Liapis, Yannakakis, and Togelius 2013;
Yannakakis, Liapis, and Alexopoulos 2014; Deterding et al.
2017; Baldwin et al. 2017; Charity, Khalifa, and Togelius
2020). ML methods have only recently been incorporated
into co-creative game content generation. Guzdial et al. pro-
posed a Deep RL agent for co-creative Procedural Level
Generation via Machine Learning (PLGML) (Guzdial, Liao,
and Riedl 2018). In another recent work, Schrum et al. pre-
sented a tool for applying interactive latent variable evolu-
tion to generative adversarial network models that produce
video game levels (Schrum et al. 2020). The major differ-
ence between our approach and previous ones is that it ex-
plains an AI partner’s actions based on what it learned dur-
ing training.

It is important to note that we are not actually evaluating
our approach in the context of co-creative interaction with a
human subject study. We are only making use of data from
prior studies in which humans interacted with ML and RL
agents in co-creative systems.

Explainable Artificial Intelligence (XAI)
The majority of existing XAI approaches can be sepa-
rated according to which of two general methods they rely
on: (A) visualizing the learned features of a model (Er-
han et al. 2009; Simonyan, Vedaldi, and Zisserman 2013;
Nguyen, Yosinski, and Clune 2015; 2016; Nguyen et al.
2017; Olah, Mordvintsev, and Schubert 2017; Weidele, Stro-
belt, and Martino 2019) and (B) demonstrating the relation-
ship between neurons (Zeiler and Fergus 2014; Fong and
Vedaldi 2017; Selvaraju et al. 2017). Olah et al. developed a
unified framework that included both (A) and (B) methods.
(Olah et al. 2018).

There are a few prior works focused on XAI applied to
game design and game playing. Guzdial et al. presented
an approach to Explainable PCGML via Design Patterns in
which the design patterns act as a vocabulary and mode of

Figure 1: General steps of our approach

interaction between user and model (Guzdial et al. 2018).
Ehsan et al. introduced AI rationalization, an approach
for explaining agent behavior for automated game playing
based on how a human would explain a similar behavior
(Ehsan et al. 2018). Zhu et al. proposed a new research area
of eXplainable AI for Designers (XAID) to help game de-
signers better utilize AI and ML in their design tasks through
co-creation (Zhu et al. 2018).

There exist a few approaches to explain RL agent’s ac-
tions (Puiutta and Veith 2020). Madmul et al. presented
an approach that learns structural causal models to derive
causal explanations of the behavior of model-free RL agents
(Madumal et al. 2019). Kumar et al. presented a deep re-
inforcement learning approach to control an energy storage
system. They visualized the learned policies of the RL agent
through the course of training and visualized the strategies
followed by the agent to users (Kumar 2019). Cruz et al. pro-
posed a memory-based explainable reinforcement learning
(MXRL) where an agent explained the reasons why some
decisions were taken in certain situations using an episodic
memory (Cruz, Dazeley, and Vamplew 2019). In another re-
cent paper, an approach was presented that employs expla-
nations as feedback from humans in a human-in-the-loop re-
inforcement learning system (Guan, Verma, and Kambham-
pati 2020).

To the best of our knowledge, this is the first XAI work
focused on the training data of a target ML model. Our ap-
proach differs from existing XAI work in detailed inspection
and alteration of the training phase.

System Overview
In this paper, we present an approach for Explainable AI
(XAI) that aims to answer the question “What did the AI
agent learn during training that led it to make that specific
action?”. As is shown in Figure 1, the general steps of the
approach are as follows: First, during training a DNN, we
detect the training instance (or instances) that maximally al-
ters each neuron inside the network. Secondly, during test-
ing, we pass each instance through the network and find the
neuron that is most activated (Erhan, Courville, and Bengio
2010). Then given the information from the first step, we
can easily identify an instance (or instances) from the train-
ing data that maximally impacted the most activated neuron.
We refer to this as “the most responsible training instance”
for the AI agent’s action. The intuition is that the user can
take this explanation as something akin to the end goal of



the agent taking that action. Our hope is that it will be help-
ful in the user deciding whether to keep or remove some
addition by the AI. For example in Figure 3, given the most
responsible level as the explanation, the user might keep the
lower of the two Goombas, despite the fact that it seems to
be floating, if they can match it to the Goombas from the
most responsible level.

For this purpose, we pre-trained a Deep RL agent using
data from interactions of human users with three different
ML level design partners (LSTM, Markov Chain, and Bayes
Net) to generate the Super Mario Bros level. This is the same
Deep RL architecture and data from prior work by Guzdial
et al. (Guzdial, Liao, and Riedl 2018) for co-creative Proce-
dural Level Generation via Machine Learning (PLGML), in
which they made use of the level design editor from (Guzdial
et al. 2017) which is publicly online.1 The agent is designed
to take in a current level design state and to output additions
to that level design, in order to iteratively complete a level
with a human partner.

Our training inputs are states and the outputs are the Q
table values for taking a particular action for the particular
state. The input comes into the network as a state of shape
(40x15x34). The 40 is the width and 15 is the height of a
level chunk. At each x,y location there are 34 possible level
components (e.g. ground, goomba, pipe, mushroom, tree,
Mario, flag, ...) that could be placed there. As is shown in
the visualized architecture of the Convolutional Neural Net-
work (CNN) in Figure 2, it has three convolutional layers
and a fully connected layer followed by a reshaping function
to make the output in the form of the action matrix which is
(40x15x32). The player (Mario) and flag are the level en-
tities that cannot be counted as an action, so there are 32
possible action components instead of the 34 state entities.
Our activation function is “Leaky ReLu” for every layer and
the loss function is “Mean Squared Error” and the optimizer
is “Adam”, with the network built in Tensorflow (Abadi et
al. 2016). We make use of this existing agent and data since
it is the only example of a co-creative PCGML agent where
the data from a human subject study is publicly available.

During each training epoch we employ a batch size of
one to track when each training instance passes through
the network. We calculate and store the change of neuron
weights between batches. After training, by summing over
the changes of each neuron weight with respect to training
data, we are able to identify which training instance max-
imally results in alteration of a neuron. Since positive and
negative values can counteract each other’s effects, it is im-
portant to not look at the absolute values until the end of
the training. We can then sum and store this information in-
side eight arrays of shape (4x4x34) for the first convolutional
layer, 16 arrays of shape (3x3x8) for the second convolu-
tional layer, and 32 arrays of shape (3x3x16) for the third
convolutional layer. These are the shapes of the filters in
each layer. We name these arrays Most Responsible Instance
for each Neuron in each Convolutional layer (MRIN-Conv1,
MRIN-Conv2, and MRIN-Conv3). These data representa-
tions link neurons to IDs representing a particular instance

11https://github.com/mguzdial3/Morai-Maker-Engine

Figure 2: Architecture of our Convolutional Neural Network
(CNN).

of a human user working with the AI in the co-creative tool.
We can then search these arrays and find the ID of a training
instance that is the most responsible for changes to a partic-
ular weight.

Our end goal is to determine the most responsible train-
ing instance for a particular prediction made by our trained
CNN. To do that, we need to find out what part of the net-
work was most important in making that prediction. We can
then determine the most responsible instance for the final
weights of this most important part of the network. The most
activated filter of each convolutional layer is a filter that con-
tributes to the slice with the largest magnitude in the output
of that layer. Hence the most activated filter can be con-
sidered the most important part of the convolutional layer
for that specific test instance (Erhan, Courville, and Bengio
2010). For example, we pass a test instance into the network.
A test instance is a (40x15x34) state that is a chunk of a par-
tially designed level. Since the first convolutional layer has 8
4x4x34 filters with the same padding, the output would be in
the shape of (40x15x8). Then we find the (40x15) slice with
the largest values. The most activated filter is a (4x4x34) ar-
ray in our convolutional layer which led to the slice with the
greatest magnitude.

Finally, once we have the maximally activated filter we
can identify the most responsible training instance (or in-
stances) by querying the MRIN-Conv arrays we built during
training. The most responsible training instance is the ID
that most repeated in the MRIN-Conv array associated with
the maximally activated filter. We chose the most repeated
ID since it is the one that most frequently impacted the ma-
jority of the neurons in the filter during training.

Evaluation
In this section, we present two evaluations of our system.
We call the first evaluation our “Explainability Evaluation”
as it addresses the ability of our system to provide explana-
tions that help a user predict an AI agent’s actions. We call
the second evaluation our “User Labeling Error Evaluation”
as it addresses the ability of our system to help human users
identify positive and negative AI additions during the co-
creative process. Both evaluations approximate the impact
of our approach on human partners by using existing data of
AI-human interactions. Essentially, we act as though the pre-



Figure 3: An example of explaining an AI agent’s action by
representing the most responsible level.

recorded actions of the AI agent were outputs from our Deep
RL agent and identify the responsible training instances as
if this were the case. Due to the fact that our system derives
examples as explanations for the behavior of a co-creative
Deep RL agent, a human subject study would be the natu-
ral way to evaluate our system. However, prior to a human
subject study, we first wanted to gather some evidence of the
value of this approach.

Explainability Evaluation
The first claim we made was that this approach can help hu-
man users better understand and predict the actions of an
AI agent. In this experiment we use the most responsible
level as an approximation of the AI agent’s goal, in other
words what final level the AI agent is working towards. The
most responsible level refers to a level at the end of a human
user’s interactions with an AI agent. We identify this level
by finding the most responsible training instance as above
and identifying the level at the end of that training sequence.
This experiment is meant to determine if this can help a user
to predict the AI agent’s actions. To do this, we passed test
instances into our network and found the most responsible
training instances. We then compared the most responsible
level for some current test instance to the AI agent’s action
in the next test instance. If the most responsible level is sim-
ilar to the action it would indicate that the most responsible
level can be a potential explanation for the AI agent’s action
by priming the user to better predict future actions by the AI
agent. In comparison, we randomly selected 20 levels from
the training data and found their similarities to the AI agent’s
action in the next test instance. If our approach outperforms
the random levels, it will support the claim that the respon-
sible level is better suited to helping predict future AI agent
actions compared to random levels.

We used two different sets of test data:

(A) Our first testset is derived from a study in which users
interacted with pairs of three different ML agents as men-
tioned in our System Overview section (Guzdial, Liao,
and Riedl 2018). We used the same testset identified in
that paper.

(B) Our second testset is obtained from a study in which ex-
pert level designer users interacted with the trained Deep
RL agent (Guzdial et al. 2019).
If we find success with the first testset then that would in-

dicate that our trained Deep RL agent is a good surrogate
for the original three ML agents, since we would be in ef-
fect predicting the next action of one of these agents. Good
results for the second testset would demonstrate the capa-
bility for prediction of the Deep RL agent’s actions itself.
Since the first convolutional layer is the layer that most di-
rectly reasons over the level structure, we decided to find
the most responsible training instance of just the first con-
volutional layer. However, this setup puts our approach at a
disadvantage, since we are going to compare only one most
responsible level to 20 random ones.

For comparing the most responsible level and the random
levels to the actions, we needed to define a suitable metric.
We desired a metric that detects local overlaps and repre-
sents the similarity between a level and action. We wanted
to pick square windows which are not the same size as the
first convolutional layer, to capture some local structures
without biasing the metric too far towards our first convo-
lutional layer. As a result, we found all three-by-three non-
empty patches for both a given level and an action. Then
we counted the number of exact matches of these patches
on both sides, removing the matched ones from the dataset
since we wanted to count the same patches only once. Fi-
nally, we divided the total number of the matched patches
by the total number of patches in the action, since this was
always smaller than the number from the level. We refer to
this metric as the local overlap ratio.

Explainability Evaluation Results
We had 242 samples in the first testset and 69 samples in the
second one. Since we wanted to compare instances in which
the AI agent actually made some serious changes, we chose
instances where the AI agent added more than 10 compo-
nents in its next action. Thus we came to 38 and 46 instances
from the first and second testsets, respectively.

Our approach outperforms the random baseline in 78.94
percent of 38 instances for the ML agents data and 67.29
percent of 46 instances for the Deep RL agent data. The av-
erage of the local overlap ratios is shown in Table 1 (higher
is better). The minimum value here would be 0 for zero over-
lap and the maximum value would be 1 for complete overlap
between the action and the most responsible level or the ran-
dom level. This normalization means that even small differ-
ences in this metric represent large perceptual differences.
For example, a 0.04 difference in the local overlap ratio be-
tween the most responsible level and the random levels in
Table 1 indicates the most responsible level has 20 more
three-by-three non-empty overlaps. We expect that the rea-
son that the Deep RL agent values are generally lower is
that the second study made use of published level designers
rather than novices and an adaptive Deep RL Agent, mean-
ing that there was more varied behavior compared with the
three ML agents.

An example of explainability is demonstrated in Figure 3.
As is shown in the figure, the AI agent made an action and



TestSet Most Responsible Level Random Levels
ML Agents 0.4653 0.3841
Deep RL 0.2880 0.2472

Table 1: A table comparing the average of the most respon-
sible levels to the average of the random levels for both test-
sets.

added some components (e.g. goomba and ground) to the
existing state. By looking at the chunk of the most respon-
sible level, the user might realize that the AI agent wants
to generate a level including some goombas as enemies and
some blocks in the middle of the screen. The AI agent also
added ground at the bottom and top of the screen, which the
user could identify as being consistent with both their input
to the agent and the most responsible level.

User Labeling Error Evaluation
For the second evaluation, we wanted to get some sense of
whether this approach could be successful in terms of as-
sisting a human user in better understanding good and bad
agent actions during the co-creation process. To do this, we
needed to identify specific instances where our tool could be
helpful in the data we have available. We defined two such
concepts: (A) false-positive decisions and (B) false-negative
decisions, based on the interactions between users and AI
partner during level generation:

(A) False-positive decisions are additions by the AI partner
that the user kept at first but then deleted later.

(B) False-negative decisions are additions by the AI partner
that the user deleted at first but then added later.

Given these concepts, if we could help the user avoid making
these kinds of decisions, our approach could help a human
user during level generation. We anticipated that one reason
that users made these kinds of decisions was from a lack of
context of the AI agent’s action. Thus, if the user had context
they may not delete or keep what they would otherwise keep
or delete, respectively.

To accomplish this, we implemented an algorithmic way
to determine false-positives and false-negatives among the
two testsets described in the previous evaluation. In this al-
gorithm, we first find all user decisions in terms of deleting
or keeping an addition by the AI agent. Then we look at the
level at the end of the user and the AI agent’s interaction. If a
deleted AI addition exists in the final level, it is counted as a
false-negative example, and if a kept addition does not exist
in the final level it is counted as a false-positive example.

Once we discovered all false-negative and false-positive
examples, we found the state before the example was
added by the AI agent and named it the Introduction-
state (I-state). We found the state in which false-positivity
or false-negativity occurred (i.e. when a user re-added a
false-negative or deleted a false-positive) and named it the
Contradiction-state (C-state). Since some change between
the I-state and the C-state led to the user altering their de-
cision, we wanted to see some sign that presenting the most
responsible level to the user could change their mind before

they reached this point. Thus we compared these two states
to find all the changes that the AI agent or the user made and
named this the Difference-state (D-state).

We compared each D-state with the final generated level
derived from the most responsible training instance. We also
compared each D-state with 20 other randomly selected lev-
els from the existing data. For the comparison, we used the
local overlap ratio defined in the previous evaluation. If our
approach outperforms the random baseline, we will be able
to say that there is some support for the responsible level
helping the user avoid false-positives and false-negatives in
comparison to random levels.

User Labeling Error Evaluation Results
We found five false-negative and 24 false-positive exam-
ples in the first testset and five false-negative and 54 false-
positive examples in the second one. The results of the eval-
uation are demonstrated in Figures 4.

For the first dataset which included the actions of the three
ML agents, our approach outperformed the random baseline
in 65.51 percent of the examples. The average of the local
overlap ratio values for our approach was 0.1717 which is
more than the 0.1647 for the random levels. For the sec-
ond dataset obtained from the Deep RL agent, our approach
outperformed the baseline in 59.32 percent of the examples.
The average of the local overlap ratio values were 0.2665
and 0.2328 for the most responsible level and random levels,
respectively. Again this represents a large perceptual differ-
ence of roughly 15 more non-empty 3x3 overlaps.

Interestingly, our approach outperforms the random levels
in all of the false-negative examples in the second dataset,
compared with just 20 percent of false-negatives in the first
dataset. Further, our approach performs around 1.5 times
better than the random levels in 15 false-positive examples
in the second dataset. These instances come from the study
that used the same RL agent as we used to derive our expla-
nations, which could account for this performance.

Discussion
In this paper, we present an XAI approach for a pre-trained
Deep RL agent. Our hypothesis was that our method could
be helpful to human users. We evaluated it by approximat-
ing this process for two tasks using two existing datasets.
These datasets are obtained from studies using three ML
partners and an RL agent. Essentially, we used the XAI-
enabled agent in this paper as if it were the agents used
in these datasets. The results of our first evaluation demon-
strates that our method is able to represent examples as ex-
planations to help users predict an agent’s next action. The
results of our second evaluation support our hypothesis and
give us an initial signal that this approach could be success-
ful in order to help human users more efficiently cooperate
with a Deep RL agent. This indicates the ability of our ap-
proach to help human designers by presenting an explana-
tion for an AI agent’s actions during a co-creation process.

A human subject study would be a more reasonable way
to evaluate this system since human users might be able to
derive meaning from the responsible level that our similar-
ity metric could not capture. Our approach performs better



Figure 4: Results of the User Labeling Error Evaluation.

than our baseline of random levels in both evaluation meth-
ods and this presents evidence towards its value at this task.
However, we look forward to investigating a human subject
study in order to fully validate these results.

There could be other alternatives to a human subject
study. For example, a secondary AI agent that predicts our
primary AI agent’s actions can play a human partner’s role in
the co-creative system. Thus making use of a secondary AI
agent to evaluate our system before running a human subject
study might be a simple next step.

It is important to mention that we only offer one most
responsible level from only the first convolutional layer as
an explanation. Looking into providing a user with multiple
responsible levels or looking into the most responsible lev-
els of the other layers could be a potential way to further
improve our approach. Our metric for determining the most
responsible training instance is based on finding the most
repeated instance inside the MRIN-Conv arrays associated
with the most activated filter. We identified the most acti-
vated filter by looking at the absolute values. We plan to in-
vestigate other metrics such as looking for the most activated
neurons outside of the filters. In addition, considering neg-
ative and positive values separately in the maximal activa-
tion process could also lead to improved behavior. Negative
values might indicate that an instance negatively impacted
a neuron. It could be the case then that the filter might be
maximally activated because it was giving a very strong sig-
nal against some action.

One quirk of our current approach is that the most respon-
sible training instance depends on the order in which it was
presented to the model during the training. Thus, this mea-
sure does not tell us about any inherent quality of a partic-
ular training data instance, only it’s relevance to a particu-
lar model that has undergone a particular training regimen.

In the future, we intend to explore how more general rep-
resentations of responsibility such as Shapely values might
intersect with this approach (Ghorbani and Zou 2019).

Only the domain of a co-creative system for designing Su-
per Mario Bros. levels is explored in this paper. Thus mak-
ing use of other games will be required to ensure this is a
general method for level design co-creativity. Beyond that,
we anticipate a need to demonstrate our approach on differ-
ent domains outside of games. We look forward to running
another study to apply our approach to human-in-the-loop
reinforcement learning or other co-creative domains.

Conclusions
In this paper we present an approach to XAI that provides
human users with the most responsible training instance as
an explanation for an AI agent’s action. In support of this
approach, we present results from two evaluations. The first
evaluation demonstrates the ability of our approach to of-
fer explanations and to help a human partner predict an
AI agent’s actions. The second evaluation demonstrates the
ability of our approach to help human users better identify
good and bad instances of an AI agent’s behavior. To the
best of our knowledge this represents the first XAI approach
focused on training instances.
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