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Abstract  
In the article architecture and learning method of the artificial evolving hyper basis neural 
network are proposed. The neural network under consideration tunes not only its synaptic 
weights, but automatically determines neurons number, coordinates of the kernel activation 
function centers and parameters of the receptive fields in online mode providing high speed 
data processing. 
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1. Introduction 

To date, artificial neural networks (ANNs) are widely used to solve various problems of Data Mining 
and first of all for intelligent control, identification, pattern recognition, classification, clustering, 
forecasting, emulation in conditions of uncertainty and significant nonlinearity. If data should be 
processed in a sequential online mode, a convergence rate of a learning process comes to the forefront, 
that significantly limits the ANNs class suitable for work under these conditions. ANNs, which use 
kernel activation functions (radial-basis, bell-shaped, potential), are very effective from the speed 
optimization point of view in the learning process. 

Radial-basis function neural networks (RBFN) are widely used because their output signal depends 
linearly on synaptic weights. The main idea of this ANNs is connected with potential function method 
[1], Parsen’s estimations [2], kernel [3] and nonparametric [4] regressions. Universal approximation 
properties and ability to process data sequentially in online mode are its main benefits. However, the 
RBFN is exposed to the so-called “curse of dimensionality” which means that when the input space 
dimensionality increases, there’s an exponential growth of the adjustable parameters’ (weights’) 
amount.  To overcome this problem for solving practical tasks possible by using hyper basis function 
neural network (HBFN) [5], with have more advantages comparatively to traditional RBFN. 

2. Radial basis and hyper basis function neural networks 

In Figure 1 standard architecture of the radial-basis function network is shown whose hidden layer 
implements some nonlinear transformation of the input space R! into higher dimension (h > n) hidden 
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space R" and its output layer is formed by adaptive linear associators that form the network response 
by performing a nonlinear transformation of the form 

y(#(k) = w$ +-w%φ%/x(k)1 =
"

%&'

-w%φ%/x(k)1 = w(φ2/x(k)1
"

%&$

 

where x(k) = /x'(k), x)(k), … , x!(k)1
(, φ%/x(k)1 = φ%(‖x(k) − c%‖, σ%) − radial-basis function, 

depended of distance ‖x(k) − c%‖ between input vector x(k) and activation function centers c% and 

width parameter σ%, k − is current discrete time, φ2/x(k)1 = 91, φ(/x(k)1;
(

, φ/x(k)1 = 9φ'/x(k)1;, 

φ)/x(k)1,…, φ"/x(k)1;
(

. 

 
Figure 1: Standard radial-basis function network 
 

The most commonly standard Gaussian function as activation function in the radial-basis ANNs is 
used in the form 

𝜑%/x(k)1 = exp ?− ‖+(-)/0!‖"

1!
" @ , l = 1,2, . . . , h   (1) 

where centers c% and wight σ% parameters are determined beforehand and do not tuned during learning 
process. The learning process itself is connected with adjusting of the synaptic weights vector w =
(w$, w', … ,w")(, for that different modifications of least-squares method or traditional gradient 
procedures are usually used. 

Using the multidimensional construction instead of the Gaussian (1) it is possible to improve the 
approximating properties of the network 

𝜑%/x(k)1 = exp 9−(x(k) − c%)(Σ%/'(x(k) − c%); = exp 9−‖x(k) − c%‖2!#$
) ; (2) 

where Σ3/' covariance matrix that determines shape, size and receptive field orientation of 𝑙 − 𝑡ℎ kernel 
activation function. This is the main difference between hyper basis function network and traditional 
RBFN. 

If Σ3 = 𝜎3)𝐼 (here 𝐼 = (𝑛 × 𝑛) − identity matrix) the receptive field is a hypersphere with a center 
𝑐3 and radius 𝜎3; if Σ3 = 𝑑𝑖𝑎𝑔(𝜎'), 𝜎)), … , 𝜎4)) − that is hyperelipsoid with axes coincide with input 
space axes and have length 𝜎5, at 𝑖67 axe, and finally, if Σ3 is arbitrary positive definite matrix 

Σ3 = 𝑄38Λ3𝑄3 
diagonal matrix of the eigenvectors Λ3 determines receptive field size and rotation orthogonal matrix 
𝑄3 − its orientation. 

Speaking about hyper basis function ANNs learning it should be noted that here not only synaptic 
weights vector 𝑤 can be adjusted but and centers 𝑐3, and matrixes Σ3. So, introducing into consideration 
the transformation implemented by the neural network in the form 

𝑦(9(𝑘) =-𝑤3𝜑3 9‖𝑥(𝑘) − 𝑐3‖2%#$
) ;
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learning criterion  
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(here 𝑦(𝑘) − external reference signal) and derivations by all tuned parameters 

⎩
⎪
⎨

⎪
⎧

;<(=)
;>%

= −𝑒(𝑘)𝜑3 9‖𝑥(𝑘) − 𝑐3‖2%#$
) ; ,

∇?%𝐸(𝑘) = 2𝑒(𝑘)𝑤3𝜑3@ 9‖𝑥(𝑘) − 𝑐3‖2%#$
) ; Σ3/'(𝑥(𝑘) − 𝑐3),

`;<(=)
;2%

#$ a = −𝑒(𝑘)𝑤3𝜑3@ 9‖𝑥(𝑘) − 𝑐3‖2%#$
) ; (𝑥(𝑘) − 𝑐3)(𝑥(𝑘) − 𝑐3)8 ,

  (3) 

the learning algorithm could be written [6]: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑤3(𝑘 + 1) = 𝑤3(𝑘) + 𝜂>(𝑘 + 1)𝑒(𝑘 + 1)𝜑3 9‖𝑥(𝑘 + 1) − 𝑐3(𝑘)‖2%#$(=)

) ; ,

𝑐3(𝑘 + 1) = 𝑐3(𝑘) − 𝜂?(𝑘 + 1)𝑒(𝑘 + 1)𝑤3(𝑘 + 1)𝜑3@ 9‖𝑥(𝑘 + 1) − 𝑐3‖2%#$(=)
) ; ×

× Σ3/'(𝑘)(𝑥(𝑘 + 1) − 𝑐3(𝑘)),
Σ3/'(𝑘 + 1) = Σ3/'(𝑘) + 𝜂2(𝑘 + 1)𝑒(𝑘 + 1)𝑤3(𝑘 + 1)𝜑3@ 9‖𝑥(𝑘 + 1) − 𝑐3(𝑘 + 1)‖2%#$(=)

) ; ×

× /𝑥(𝑘 + 1) − 𝑐3(𝑘 + 1)1/𝑥(𝑘 + 1) − 𝑐3(𝑘 + 1)1
8

 (4) 
where 𝜂>(𝑘 + 1), 𝜂?(𝑘 + 1), 𝜂2(𝑘 + 1) − learning rate parameters for the corresponding variables. 

Using as activation functions Gaussians (1) and (2) leads to learning procedure (4) becomes too 
cumbersome from computational point of view that naturally slows down the learning speed. In this 
regards we propose to introduce into consideration multidimensional modification of the V. 
Epanechnikov’s function [7] in the form  

𝜑3 9‖𝑥(𝑘 + 1) − 𝑐3(𝑘)‖2%#$
) ; = 1 − ‖𝑥(𝑘 + 1) − 𝑐3(𝑘)‖2%#$

) , 
whose derivations have the form 

⎩
⎪
⎨

⎪
⎧∇?%𝜑3 9‖𝑥(𝑘) − 𝑐3‖2%#$

) ; = −2Σ3/'(𝑥(𝑘) − 𝑐3),

c
;A%B‖C(=)/?%‖&%

#$
" D

;2%
#$ d = (𝑥(𝑘) − 𝑐3)(𝑥(𝑘) − 𝑐3)8 .

   (5) 

Relations (5) avoid to rewrite the system (3) in the form 

⎩
⎪
⎨

⎪
⎧
𝜕𝐸(𝑘)
𝜕𝑤3

= −𝑒(𝑘)𝜑3 91 − ‖𝑥(𝑘) − 𝑐3‖2%#$
) ; ,
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f
𝜕𝐸(𝑘)
𝜕Σ3/'

g = −𝑒(𝑘)(𝑥(𝑘) − 𝑐3)(𝑥(𝑘) − 𝑐3)8 ,

 

and learning algorithm –  

⎩
⎪
⎨

⎪
⎧ 𝑤3(𝑘 + 1) = 𝑤3(𝑘) + 𝜂>(𝑘 + 1)𝑒(𝑘 + 1) 91 − ‖𝑥(𝑘 + 1) − 𝑐3(𝑘)‖2%#$(=)

) ; ,

𝑐3(𝑘 + 1) = 𝑐3(𝑘) − 𝜂?(𝑘 + 1)𝑒(𝑘 + 1)𝑤3(𝑘 + 1)Σ3/'(𝑘)(𝑥(𝑘 + 1) − 𝑐3(𝑘)),
Σ3/'(𝑘 + 1) = Σ3/'(𝑘) + 𝜂2(𝑘 + 1)𝑒(𝑘 + 1)𝑤3(𝑘 + 1) ×

× /𝑥(𝑘 + 1) − 𝑐3(𝑘 + 1)1/𝑥(𝑘 + 1) − 𝑐3(𝑘 + 1)1
8 .

 (6) 

It is easy to see that procedure (6) from the computational point of view is simpler that algorithm  (4). 

3. Hybrid neural network and evolution of its architecture 

The question how to choose number of neurons in the network ℎ and initial center locations 𝑐3 it is 
very important. The easiest way to overcome this problem is to use Subtractive Clustering algorithm 
[8], that is effective enough for processing data in the batch mode. But this algorithm requires to select 



huge amount of the free parameters. If solving task is connected with processing of non-stationary data, 
then it is necessary to re-initialize the network from time to time. 

Dynamic Decay Adjustment (DDA) also is one of the possible methods to tune neural network with 
kernel activation functions [9]. This method is belonging to constructive learning algorithms and works 
fast enough. But, in the mode of online processing of the non-stationary signals this method becomes 
noneffective.  

Resource Allocation Network [10] uses hybrid learning based on both optimization and memory 
learning (the principle "Neurons in data points"), using of competition elements. At the same time, in 
the learning process using gradient procedures, both synaptic weights and the parameters of the 
neuron’s centers closest to the received observation are adjusted. It can be noted that the standard 
Epanechnikov’s functions are used instead of traditional Gaussians as activation functions in the 
network. The disadvantage of Resource Allocation Network is its high computational complexity. 

In this regard, it is necessary to develope artificial evolving hyper basis function neural network, 
that tunes not only its all parameters but and automatically determines number of neurons in online 
mode with high speed of data processing. 

In the figure 2 architecture of a hybrid evolving artificial neural network that is based on a hyper-
basis neural network with a variable number of neurons and T. Kohonen's self-organizing map (SOM) 
[11], that controls their number and adjusts centers location in the self-learning mode is demonstrated. 

 

 
Figure 2: Structural schema of the hybrid evolving network 
 

The functioning process of this system is as follows. When the first observation 𝑥(𝑘) is fed to the 
neural network input, where the first neuron is formed according to the principle of "Neurons at data 
points", i. e. almost instantly. In the next incoming of the data they firstly fed to SOM, where they are 
compared with the already existing centroids and then if no coincidences are found, a new center of the 
kernel function is formed and, accordingly, a new neuron in HBFN. 

According to the approach under consideration next method of the controlled numbers of neurons 
activation function is put into consideration:  

Stage 11: to encode all the values of the input variables into the interval −1 ≤ 𝑥5 ≤ 1 and set the 
receptive field radius of the neighborhood function in the interval 𝑟 ≤ 0,33; 

Stage 21: observation 𝑥(1) after this is fed set 𝑐' = 𝑥(1); 
Stage 31: observation 𝑥(2) is set: 
- if ‖𝑥(2) − 𝑐'‖ ≤ 𝑟, that 𝑐'(1) is corrected by the rule 

𝑐3(2) =
𝑐' + 𝑥(2)

2
; 

- if 𝑟 < ‖𝑥(2) − 𝑐'(1)‖ ≤ 2𝑟, 𝑐'(1) is corrected according to the self-learning of the self-
organizing Kohonen’s map by principle of "Winner takes more" (WTM) [11] 



𝑐'(2) = 𝑐'(1) + 𝜂(2)𝜓'(2)(𝑥(2) − 𝑐'(1)) 
with neighborhood function 

𝜓3(2) = 𝑚𝑎𝑥 c0,1 − p
‖𝑥(2) − 𝑐'(1)‖

2𝑟
q
)

d 

(Epanechnikov’s function with receptive field with radius equal 2𝑟) 
- if ‖𝑥(2) − 𝑐'(1)‖ > 2𝑟,  

new kernel activation function is formed with center 𝑐)(2) = 𝑥(2). 
This completes the first iteration of the activation functions forming of the hyper basis neural 

network. Let us for the 𝑘-th moment of time 𝑝 ≤ ℎ activation functions 𝜑3/𝑥(𝑘)1 are formed with 
centers 𝑐3(𝑘) and 𝑥(𝑘 + 1)-th observation is fed to processing. Next forming of the activation functions 
is performed as follows: 

Stage 1k+1: to determine neuron-winner for each distance ‖𝑥(𝑘 + 1) − 𝑐3(𝑘)‖ minimal among all 
𝑙 = 1,2, … , 𝑝; 

Stage 2k+1: 
- if ‖𝑥(𝑘 + 1) − 𝑐3(𝑘)‖ ≤ 𝑟 then 

𝑐3(𝑘 + 1) =
𝑐3(𝑘) + 𝑥(𝑘 + 1)

2
; 

- if 𝑟 < ‖𝑥(𝑘 + 1) − 𝑐3(𝑘)‖ ≤ 2𝑟,  
- then 𝑐3(𝑘 + 1) = 𝑐3(𝑘) + 𝜂(𝑘 + 1)𝜓3(𝑘 + 1)(𝑥(𝑘 + 1) − 𝑐3(𝑘)); 

𝜓3(𝑘 + 1) = 𝑚𝑎𝑥 c0,1 − p
‖𝑥(𝑘 + 1) − 𝑐3(𝑘)‖

2𝑟
q
)

d ; 

- if ‖𝑥(𝑘 + 1) − 𝑐3(𝑘)‖ > 2𝑟 then kernel activation function is formed with center 
𝑐EF'(𝑘 + 1) = 𝑥(𝑘 + 1); 

- if in the process of activation functions formation arises a situation ‖𝑥(𝑘 + 1) − 𝑐3(𝑘)‖ > 2𝑟 
and 𝑝 = ℎ, then it is necessary to increase the receptive field radius and return to stage2k+1 with an 
increased radius of the function 𝜓3(𝑘 + 1). 

As can be seen, this procedure is a hybrid of N. Kasabov's evolving algorithm [12] and T. Kohonen's 
self-organizing map. However, the proposed neural network is designed not only to solve clustering 
problems, but to control the number of neurons in the hyper basis neural network. 

4. Evolving cascaded hyper basic function neural network 

If we have a short learning sample then it is possible to overcome the problem of overfitting by 
dividing an initial task in some way to subtasks of lower dimensionality and by grouping the obtained 
solutions to get a required result. From a computational point of view, the most convenient method in 
this case is the Group Method of Data Handling (GMDH) [14-17] that have demonstrated its efficiency 
while solving a number of practical tasks. In [17], a multilayer GMDH-neural network is considered. It 
contains two-input N-adalines as nodes and each node’s output is a quadratic function of an input signal. 
Each neuron’s synaptic weights are defined in a batch mode using the conventional least squares 
method. One way use some more hidden layers to provide a necessary approximation quality. That is 
why an online learning procedure becomes impossible. In this connection it’s expedient to introduce a 
simplified architecture which is based on simple nodes and can be tuned under conditions of a short 
learning sample. 

Let’s introduce an architecture of the compartmental R-neuron that is shown in the Figure 4. 
Generally speaking, it’s a simplified architecture of the conventional RBFN with two inputs 𝑥5 and 𝑥G, 
𝑖, 𝑗 = 1,2, … , 𝑛, where 𝑛 is a dimensionality of initial input space. 

The compartmental R-neuron contains 𝑝 activation functions 𝜑7
5G/𝑥5G , 𝑐7

5G , Σ7
5G1, 𝑝 + 1 synaptic 

weights that are joined in vector 𝑤3
5G = /𝑤3$

5G , 𝑤3'
5G , … , 𝑤3E

5G1, 𝑝 two-dimensional centers’ vectors 𝑐7
5G =

/𝑐75 , 𝑐7
G1
8

, 𝑝 (2 × 2) −matrices of receptive fields’ activation functions Σ7
5G, a two-dimensional input 



vector 𝑥5G = /𝑥5 , 𝑥G1
8, output 𝑦(3; 𝑙 = 1,2, … , 𝑝; 𝑘 = 1,2, … ,𝑁 is a number of observations in a 

processing sample or an index of the current discrete time. 

 
Figure 3: The compartmental R-neuron 
 

Multidimensional Epanechnikov kernels are used as activation functions 𝜑7
5G/𝑥5G , 𝑐7

5G , Σ7
5G1 

𝜑7
5G/𝑥5G , 𝑐7

5G , Σ7
5G1 = 1 − u𝑥5G − 𝑐7

5Gu
H2'

()I
#$

)
   (7) 

which have a bell-shape form determined by a positive definite matrix of the receptive field Σ7
5G. An 

advantage of the activation function (7) comparing to conventional ones is linearity of its derivatives 
with respect to all the parameters that makes it possible to adjust synaptic weights as well as both centers 
and receptive fields (which is very important when we have a very short learning sample). At the same 
time, the compartmental R-neuron implements a transformation in the form 

𝑦(3 = 𝑤3$
5G +-𝑤37

5G𝜑7
5G/𝑥5G , 𝑐7

5G , Σ7
5G1 = 𝑤3$

5G +
E

7&'

-𝑤37
5G p1 − u𝑥5G − 𝑐7

5Gu
H2'

()I
#$

)
q

E

7&'

. 

It should be noticed that if we have a two-dimensional case it is easy to locate centers at the regular 
lattice’s nodes and to define receptive fields as circles. 

Introducing a (𝑝 + 1) × 1-vector of activation functions 𝜑5G = 91, 𝜑3
5G9𝑥5G(𝑘), 𝑐3

5G , ΣG
5G;, 

…,𝜑E
5G/𝑥5G(𝑘), 𝑐E

5G , ΣE
5G1;

8
 and a learning criterion 

𝐸3J = ∑ /𝑦(𝑘) − 𝑦(3(𝑘)1
)J

=&' = ∑ 𝑒3)(𝑘)J
=&' = ∑ p𝑦(𝑘) − /𝑤3

5G1
8
𝜑5G(𝑘)q

)
J
=&'   (8) 

it's easy to obtain a required solution with the help of the traditional least squares method in the form 

𝑤3
5G = w-𝜑5G(𝑘) 9𝜑5G(𝑘);

8
J

=&'

x

F

-𝜑5G(𝑘)𝑦(𝑘)
J

=&'

 
 
(9) 

where (∙)F is a symbol of the Moore-Penrose inversion. If data are fed sequentially in an online mode, 
recurrent from of the expression (8) can be used in the form 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑤3
5G(𝑘) = 𝑤3

5G(𝑘 − 1) +
𝑃5G(𝑘 − 1)p𝑦(𝑘) − 9𝑤3

5G(𝑘 − 1);
8
𝜑5G(𝑘)q

1 + /𝜑5G(𝑘)1
8
𝑃5G(𝑘 − 1)𝜑5G(𝑘)

𝜑5G(𝑘),

𝑃5G(𝑘) = 𝑃5G(𝑘 − 1) −
𝑃5G(𝑘 − 1)𝜑5G(𝑘) 9𝜑5G(𝑘);

8
𝑃5G(𝑘 − 1)

1 + /𝜑5G(𝑘)18𝑃5G(𝑘 − 1)𝜑5G(𝑘)
,			𝑃5G(0) = 𝛾𝐼,			𝛾 ≫ 0.

 

(10) 
The algorithms (9) and (10) are effective only in those cases when a required solution is stationary 

which means that optimal values of the synaptic weights aren’t variable in time. But most of real-word 
practical tasks are characterized by an opposite situation. A high-performance adaptive learning 



algorithm with both tracking and filtering properties [18] can be used for adaptive identification of non-
stationary objects and non-stationary time series prediction in the form 

⎩
⎪
⎨

⎪
⎧𝑤3

5G(𝑘) = 𝑤3
5G(𝑘 − 1) + 𝑝>/'(𝑘)p𝑦(𝑘) − 9𝑤3

5G(𝑘 − 1);
8
𝜑5G(𝑘)q𝜑5G(𝑘) =

= 𝑤3
5G(𝑘 − 1) + 𝑝>/'(𝑘)𝑒3(𝑘)𝜑5G(𝑘),

𝑝>(𝑘) = 𝛽𝑝>(𝑘 − 1) + u𝜑/𝑥(𝑘)1u
)
,			0 ≤ 𝛽 ≤ 1.

 (11) 

To tune centers and covariance matrices, one could use a procedure 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝑤3

5G(𝑘) = 𝑤3
5G(𝑘 − 1) + 𝜂>(𝑘)𝑒3(𝑘)𝜑5G(𝑘),

𝜂>/'(𝑘) = 𝑝>(𝑘) = 𝛽𝑝>(𝑘 − 1) + u𝜑/𝑥(𝑘)1u
)
,

𝑐7
5G(𝑘) = 𝑐7

5G(𝑘 − 1) + 𝜂?(𝑘)𝑒3(𝑘)𝑤3
5G(𝑘) 9Σ7

5G(𝑘 − 1);
/'
9𝑥5G(𝑘) − 𝑐7

5G(𝑘 − 1); =

= 𝑐7
5G(𝑘 − 1) + 𝜂?(𝑘)𝑒3(𝑘)𝑔7(𝑘),
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An architecture in Figure 4 combines the GMDH ideas and cascade neural networks. 

 
Figure 4: An evolving cascade neural network 
 

The first hidden layer of the network is formed similarly to the first hidden layer of the GMDH 
neural network [17] and contains a number of neurons that equals to a number of combinations of 𝑛 in 
2, that is 𝐶4). A selection block SB executes a sorting procedure by accuracy, for example, the most 
accurate signal among all output signal 𝑦(3

['] is 𝑦('
[']∗ in the sense of variations, then comes 𝑦()

[']∗ and the 
worst one is 𝑦(M+"

[']∗. The SB outputs 𝑦('
[']∗ and 𝑦()

[']∗ are fed to the only neuron in the second cascade layer 
𝐶𝑅 − 𝑁[)] that computes a signal 𝑦[)] which is later joined in the third cascade with the selection 
block’s output 𝑦(N

[']∗. A process of cascades’ increasing goes on unit the required accuracy is obtained. 
An overall neurons’ number of this network is defined by a value 2𝐶4) − 1. The neural network can 
process information that is fed in real time by adjusting both its parameters and its architecture in time 
[19]. 

5. Experimental results 

In first series of experiments, we used synthetics generated data set that describes Normal Gauss 
bivariate distribution. In this data set number of clusters was chosen arbitrary and all data were 
generated in the interval [−1; 1]. Result of processing synthetic data set by evolving hyper basis 
function neural network (EHBFNN) are shown at Figure 5. 



 
Figure 5: Result of processing synthetic data set by EHBFNN 
 

For the next experiments series data set “Wine” and data set “Ionosphere” from UCI Repository [13] 
were taken. Efficiency of proposed evolving hyper basis function neural network (EHBFNN) has been 
investigated and compared with the standard radial-basis neural network and the standard T. Kohonen’s 
self-organizing map (SOM). Firstly, data preprocessing that include outliers and gaps analysis was 
made. Investigated data were coding into hypercube. For results visualization principal component 
analysis method was used. 

The Figure 6 demonstrates evaluation of the centroid’s coordinates (as a visualization example data 
set “Wine” was taken). 

Comparison of numerical results of proposed EHBFNN, standard RBFN and SOM are shown in the 
Table 1. Clustering quality were measured by Calinski-Harabash index [19] and in the Table 1 
maximum, average and minimum values has been demonstrated.  

This index in general formulation has a form 

𝐶𝐻(𝑚) =
1

𝑚 − 1
𝑇𝑟𝑆OP ?

1
𝑁 −𝑚

𝑇𝑟𝑆>P@
/'

 

where 𝑆OP = '
J
∑ 𝑁GP/𝑤GP −𝑤/P1/𝑤GP −𝑤/P18 , j = 1,2, … ,m −P
G&'  the inter-cluster distance 

matrix for 𝑚 clusters; 𝑤/P = '
J
∑ 𝑁GP𝑤GP −P
G&'  gravity data set center 𝑥; 𝑁GP − number of observation 

belonged to the j-th clusters; 𝑆>P = '
J
∑ ∑ 𝑢G(𝑘)/𝑥(𝑘) − 𝑤GP1J

=&' /𝑥(𝑘) − 𝑤GP1
8 −P

G&'  intra-cluster 
distance matrix for 𝑚 clusters,  

𝑢𝑗 = !
1, 𝑖𝑓	𝑥(𝑘)	𝑏𝑒𝑙𝑜𝑛𝑔𝑠	𝑡𝑜	𝑗 − 𝑡ℎ	𝑐𝑙𝑢𝑠𝑡𝑒𝑟,

0,			𝑜𝑣𝑒𝑟𝑤𝑖𝑠𝑒
 

where 𝑢G − crisp membership function. 
In situation when observations came to process sequentially in online mode is it necessary to 

organize calculation of the Calinski-Harabash index on the sliding window of dimensional 𝑠 
(𝑠 = 1,2, … ,𝑁)	and we could rewrite this index in the form 

𝐶𝐻(𝑚, 𝑘) =
1

𝑚 − 1∑ 𝑁GP(𝜏)u𝑤GP(𝜏) − 𝑤/P(𝜏)u)P
G&'

1
𝑁 −𝑚∑ 𝑢G(𝜏)u𝑥(𝜏) − 𝑤GP(𝜏)u

)P
G&'

 

where 

𝑤/P(𝜏) =
1
𝑠

- 𝑥(𝜏).
=

R&=/SF'

 

 



 
Figure 6: Evaluation of the centroid’s coordinates 
 

Visualizations of clustering results by proposed evolving hyper basis function neural network are 
presented at the Figure 7 (Figure 7a – data set “Wine”; Figure 7b – dada set “Ionosphere”) 

 

  
a) b) 

Figure 7: Visualizations of clustering results by proposed evolving hyper basis function neural network: 
a) data set “Wine”, 
b) dada set “Ionosphere” 
 
Table 1 
Comparison of numerical results of investigated ANNs 

 
Investigated ANNs 

Calinski-Harabash index 
avg max min 

“Wine” data set 
RBFN 65.34 69.98 40.93 
SOM 56.20 70.67 47.62 

EHBFNN 69.52 70.94 41.90 
“Ionosphere” data set 

RBFN 62.78 90.52 55.35 
SOM 70.56 86.16 64.82 

EHBFNN 74.70 122.64 62.78 
 



6. Conclusions 

The approach, which combines training of both synaptic weights and activation functions’ centers, 
and which is based on both supervised learning and self-learning, is proposed in this paper. The main 
advantage of the proposed approach is that it can be used in an online mode, when a training set is fed 
to a system’s input sequentially, and its volume is not fixed beforehand. The results can be used for 
solving a wide class of Dynamic Data Mining and Data Stream Mining problems. 
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