
Implementation  of  probabilistic  data  structures  in  the 
processes of neuroevolutionary synthesis  
 
Serhii Leoshchenkoa, Andrii Oliinyka, Sergey Subbotina, Viktor Lytvyna and Oleksandr 
Korniienkoa  

 
a National university “Zaporizhzhia polytechnic”, Zhukovskogo street 64, Zaporizhzhia, 69063, Ukraine  

  
Abstract  
Neuroevolutionary synthesis is an alternative to training a pre-designed neural network. The 
use of neuroevolution methods is explained by fewer free parameters, less dependence on the 
expert, and usually better adaptive characteristics. However, neuroevolution methods are 
more resource-intensive, because the synthesis uses populations consisting of a large number 
of networks. Various mechanisms, such as parallelization, can be used to solve problems 
related to synthesis time. However, they usually lead to even more memory usage in the 
process. Mechanisms such as selective pressure only partially solve this problem. 
Probabilistic data structures have proven to be a fairly compact storage mechanism. 
Therefore, the paper provides an example and analysis of ways to use probabilistic data 
structures during the neuroevolutionary synthesis of artificial neural networks. 
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1. Introduction 

Artificial neural networks (ANN) are one of the areas of scientific research in the field of creating 
artificial intelligence [1-3], which is based on the desire to imitate the human nervous system [3-5]. 
Including its (nervous system's) ability to correct mistakes and self-learn [5-7]. The scope of 
application of ANNs is constantly expanding, today they are used in such areas as: 

 machine learning, which is a type of artificial intelligence [1-7]. It is based on training the 
ANN on the example of millions [8-11] of tasks of the same type. Nowadays, machine learning is 
actively implemented by Google [12-15], Bing [16], [17], and Baidu [18], [19] search engines. So 
based on the millions of search queries that we all enter into search systems every day, their 
algorithms learn to show us the most relevant results so that we can find exactly what we are 
looking for [14], [15]; 
 in robotics [20], [21], neural networks are used to develop numerous algorithms for the Iron 
"brains" of robots. Here, training usually uses methods that implement a reinforcement learning 
strategy, such as swarm intelligence or the actor-critical method (A2C and A3C) [22-25]; 
 computer system architects use neural networks to solve the problem of parallel computing 
[4], [7]; 
 with the help of neural networks, scientists can solve various complex mathematical problems 
[6]. 
As already mentioned in one of the theses, before direct training of the ANN, it is necessary to 

train. This can be done using certain examples (supervised learning), using information about the 
environment and the state of the "agent" in that environment (reinforcement learning), or without any 
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clear input information at all (unsupervised learning) [26-33]. Neuroevolution methods can be used 
for all approaches, because usually, in addition to conventional training (parametric synthesis), 
neuroevolution methods adjust the structure (topology) of the ANN (structural synthesis) [37], [38]. 
Such methods are separated into a separate group of methods for the evolution of interneuronal 
connections and network topologies (TWEANNs) [37] ,[38], which are individuals in the population. 

However, one of the main disadvantages of neuroevolution methods is their resource intensity. 
Large amounts of synthesis time are usually explained by the search for the most optimal ANN 
structure, which is achieved by using evolutionary mechanisms in individual populations. On the 
other hand, taking into account the fact that in usual network training, using gradient methods, it is 
necessary to design topologies first and only then train it, it should be noted that neuroevolutionary 
synthesis automates this subprocess [39-42]. Moreover, the use of parallelization can significantly 
speed up the synthesis process [39-42]. And given the fact that almost all neuroevolution methods can 
be parallelized, this removes the speed problem. However, parallelization imposes additional memory 
requirements on the computing system. The use of selective pressure mechanisms [43] can increase 
the level of adaptability of final decisions and reduce memory usage, but in sequential systems it can 
lead to a low level of genetic diversity. 

Therefore, the question arises about using certain special structures to preserve information about 
the population. Moreover, the use of these structures is possible at the stage of encoding genetic 
information about an individual, even at the beginning of synthesis. 

Probabilistic data structures (PDS) are a group of data structures that are extremely useful for big 
data and streaming applications [44-46]. Generally speaking, these data structures use hash functions 
to randomize and compactly represent a set of elements. Data collisions are ignored (usually using a 
number of mechanisms that prevent such situations), and errors are controlled at a certain threshold. 
Compared to error-free approaches, these algorithms use much less memory and have a constant 
query time. Moreover, support for union and intersection operations provides a low level of 
parallelization complexity. 

Therefore, let's look at what stages of synthesis the use of PDS is justified and appropriate. The 
main stages are shown in Figure 1. 

 

 
 Figure 1: Synthesis stages where PDS can be implemented 
 



Analyzing Figure1 note that the implementation of PDS during synthesis is advisable at the 
following stages: 

 encoding of genetic information about ANN, as individuals of the population; 
 crossover of individuals (since PDS supports unification and intersection). 
Special cases can be considered situations when information about the ANN is transmitted, for 

example, between the cores of parallel computing systems or computing nodes, as shown in Figure 2. 
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 Figure 2: ANNs forwarding in parallel systems 
 

2. Literature Review 

Statistical analysis and analysis of data that related to big data is a common and quite relevant task, 
especially in such areas as smart systems, Internet of things (IoT), Cognitive Internet of Things 
(CIoT), web analytics [44-47]. One of the options for organizing data storage when analyzing big data 
is powerful distributed databases and data warehouses: Hydra [48], [49], Hadoop [50] and NetApp 
[51], [52]. For processing, the same methods can be used, as in MapReduce, to search for a HashSet 
[49], [52]. However, such approaches are fraught with low problems in real-time data processing, due 
to the excessive importance of high-latency analytical processes and poor applicability. Therefore, if 
simple additive metrics (such as total transactions, total page views, or average conversion price) are 
most valuable during analytics, it is obvious that the raw data can be effectively summed up, for 
example, on a daily basis or using simple counters in the flow. Calculating more complex metrics 
(such as average humidity, the number of unique users, or the most frequently encountered elements) 
is more complex and requires more resources if implemented consistently. PDS allows to evaluate 
these and many other metrics and manipulate [44-46] the accuracy of estimates for memory 
consumption. These data structures can be used as temporary data accumulators in query processing 
procedures, or perhaps more importantly, as a compact, sometimes surprisingly compact, replacement 
for raw data in streaming computing. 



A number of PDS’s will be analyzed in abstracts, while others are described in detail using a 
detailed mathematical analysis of these structures can be found in the original articles.  Preliminary 
comments are as follows [47]: 

 for some structures, such as Loglog Counter or Bloom filter, there are simple and practical 
formulas that allow you to determine the structure parameters based on the expected amount of 
data and the required error probability. Other structures, such as Count-Min Sketch or Stream-
Summary, have a complex dependence on the statistical properties of data, and experiments are the 
only reasonable way to understand their applicability to real-world use cases; 
 the applicability of the PDSs is not strictly limited to the above queries or a single set of data. 
Experiments and other works prove that structures filled with different data sets can often be 
combined to handle complex queries, and other types of queries can be supported using custom 
versions of the described algorithms. 

2.1. Bloom filter 

Bloom filter is probably the most well-known and widely used PDS [53-56]. Bloom filter is 
similar to Linear Counting, but it is designed to maintain the identity of each element, not statistics. A 
Bloom filter is a bit array of M  bits initialized at 0. To add an element, it is processed by k  hash 
functions to get k  array positions, and set the bits in these positions to 1. To request an element, it is 
passed to k  hash functions to get k  array position. If any of the bits in these positions are 0, then the 
element is definitely not included in the set. If all bits are equal to 1, then the element can be in the 
set. That is, If the filter has a relatively large size compared to the number of individual elements, 
each element has a relatively unique signature and you can check a specific value – whether it is 
already registered in the bit set or not. If all the bits of the corresponding signature are units, then the 
answer is yes (with a certain probability, of course). Bloom filter with a false positive rate of 1% 
requires only 9.6 bits per element, regardless of the size of the elements [54-56]. 

Similar to Linear Counting, Bloom filter supports bit typing. However, as the from description 
makes clear, each value is mapped not to one, but to a certain fixed number of bits using several 
independent k  hash functions.  

Let's consider formulas that allow us to calculate the parameters of the Bloom filter as a function 
of error probability and capacitance. Given false positive probability p  and the estimated number of 
insertions n , the length of the bit array can be calculated as [54-56]: 
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where m  is filter (sketch) size (bits); 
p  is an error probability (false positive); 
n  is maximum cardinality (capacity). 
The hash functions used for bloom filter should generally be faster than cryptographic hash 

algorithms with good distribution and collision resistance.  
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where k  is number of hash functions. 
In Figure 3 shows an example of placing elements in Bloom filter. 
Consider an example: we enter x , y  and z  in the filter with 3k  hash functions, as shown in the 

figure above. Each of these three elements has three bits, each with a value of 1 in the bit array. When 
we search for w  in the set because one of the bits is not set to 1, Bloom filter will tell us that it is not 
in the set [53-56]. 

 



 
 Figure 3: Placing elements in Bloom filter 

2.2. MinHash 

To begin with, MinHash is not just a PDS. In computer science and data mining, MinHash is a 
method for quickly estimating how similar two sets are. This scheme was invented by Andrei Broder 
(1997) [57] and was originally used in the AltaVista search engine to detect duplicate web pages and 
exclude them from search results [58]. It has also been used in large-scale clustering tasks, such as 
clustering documents based on the similarity of their word sets. 

Let's introduce the concept of Jacquard similarity coefficient (Jaccard similarity coefficient) [57], 
[58]: 
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In other words, the number of elements in the cross-section is divided by the number of elements 
in the union. This estimate is called the Jacquard coefficient, the coefficient is zero when the sets have 
no common elements, and one when the sets are equal, in other cases the value is somewhere in the 
middle. In general, the calculation of such a coefficient boils down to the fact that at the beginning we 
need to divide the sets into separate parts, these will be the elements of our sets, then we need to 
somehow calculate the dimensions of the intersection and union. Usually, to efficiently perform the 
last two operations, sets are represented as hash tables without key-associated values.this structure 
works very quickly. Building a table:  nO , you need two of them, calculating the cross section:  nO  
and calculating the union is also  nO , where n is the number of elements in the set [57], [58]. 

Here are two sets A , B  and h a hash function that can count hashes for elements of these sets. 
Next, we define the function  Shmin , which calculates the function h for all members of any set S  
and returns its lowest value. Now, let's start calculating  Ahmin  and  Bhmin  for different pairs of sets, 

the question is: what is the probability that    BhAh minmin  . 
This probability must be proportional to the size of the intersection of sets: in the absence of 

common terms, it tends to zero, and to one, when the sets are equal, in intermediate cases it is 
somewhere in the middle. This is the  BAJ ,  so Jacquard coefficient. 

However, if we just count  Ahmin  and  Bhmin  for our two sets and then compare the values, it 
won't give us anything, because there are only two options: equal or not equal. We need to somehow 
get enough statistics for our sets to calculate  BAJ ,  close to the truth. This is done simply, instead of 
one function h , we introduce several independent hash functions, or rather k functions [57]: 
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where   is the highest error value is desired. So, to calculate  BAJ ,  with an error of no more than 
0.1, you need 100 hash functions. On the one hand, this is a lot. So let discuss in what will be the 
optimization. 

First, we can calculate the so-called  SH min  signature, i.e. the minima of all hash functions for the 

set S . The complexity of calculating it is greater than when building a hash table, but, nevertheless, it 



is linear, and you only need to do this for each document once, for example, when adding it to the 
database, then it is enough to operate only with signatures [58]. 

Secondly, the signature has a fixed size for a given maximum error value. In order to compare any 
two sets of any size, you need to perform a fixed number of operations. In addition, in theory, 
signatures are much more convenient to index. In theory, because their indexing does not fit very well 
on relational databases, it is also not particularly suitable for full-text engines. 

2.3. Count‐Min Sketch 

Count-min sketch is a PDS that is a table of event frequencies in a data stream. It uses hash 
functions to map events to frequencies, but unlike a hash table, it uses only sublinear space, by 
recalculating some events due to collisions [47], [59]. 

The Count-min sketch structure can be represented as a sketch with depth d  and width w  as at 
Figure 4.  

 

Depth d
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Figure 4: Count‐min sketch with depth d and width w 

 
Then we represent the distribution of values in the Count–min sketch array, based on the principle 

shown in Figure 5 this distribution can be considered a sketch. 
 

 
Figure 5: Distribution of values in the structure 

 
In general, we will have a representation with a distribution according to the following rules (4) 

and (5). 
 sketchonhashfunctiestimation widthycardinalit /max2  ,  (4) 

 sketchdepth5.01 ,  (5) 

estimation  is an evaluation error; 
  is a probability for a value with Count-min sketch; 

onhashfunctiycardinalit  is a power of the hash function; 

sketchdepth  is a sketch depth (height) ; 

sketchwidth  is a sketch width. 
It is worth noting that the width of the sketch limits the error value (4), and the height (depth) 

controls the probability that the score will break this limit (5) [47], [59]. 



2.4. Comparison of PDS for further work 

Let's compare the analyzed PDS. The comparison is shown in tabular form in Table. 1.  
 

Table 1 
PDS comparison 

Comparison criteria  Bloom Filter  MinHash  Count‐Min Sketch 

Required number of 
hash functions 

Low  High  Low 

Complexity of hash 
functions 

Low  Low  Low 

Sketch size  Medium  Big  Small 
Frequency of false 

positives 
Very low  Low  Low 

Ability to add / / delete 
items 

Requires modifications  Missing  Maybe 

 
As can be seen from the tabular comparison, all the analyzed PDS have certain disadvantages, 

which may become certain limitations for their further practical use during neurosynthesis [47], [60]. 
So for Bloom Filter, there are restrictions on adding or removing elements. This problem is solved in 
the latest modifications, but such mechanisms significantly complicate the work. MinHash requires a 
large number of hash functions while running, and while they may be quite simple, calculating them 
still takes up some time resources. Moreover, when using a large number of such hash functions, the 
sketch of the resulting view also becomes more complicated. Count-Min Sketch looks like the best 
option in this comparison, precisely because of the low complexity of the sketch and low 
requirements for the number and complexity of hash functions. However, it should still be noted that 
there is a higher probability of false triggering (although it is also noted in other PDS cases) [47], 
[60]. 

Therefore, we will plan the further use scheme based on these shortcomings. 

3. Materials and methods 

Based on the above-mentioned features, subprocesses of neurosynthesis and analysis of the most 
popular PDS, we will determine the scheme of implementation of PDS in the process of 
neuroevolutionary synthesis of ANN: 

 Bloom Filter will be used when sending information about the ANN between the cores of a 
parallel system; 
 MinHash is used in the sequential execution of neuroevolutionary synthesis to encode genetic 
information about individuals, to assess acceleration at the breeding stage; 
 Count-Min Sketch will also be used to encode genetic information about individuals during 
neuroevolution synthesis. 
Previously, it has been noted that all genetic information about neural networks is encoded using 

direct coding sequencing [61-64]. In general, this approach is based on coding connections: the 
genotype of an individual presents information about the weights (WW ) of interneuronal connections 
of the neuromodel, but each gene will contain information about the indices of the initial ( iN ) and 
final ( oN ) communication neuron, as well as its weight. In the case when the method works with 
recurrent neural networks, an additional cell with the feedback weight is added, its index is 
determined by the index of the original neuron.  

When using Bloom filter, four hash functions will be used, which will be used to sequentially 
encode values from an array of interneuronal relationships [65]: 
        WWfHHH WWNN oi

 321 ,  (6) 



So, to find the value of  WWf , hash WW  four times, perform three table searches, and exclude-or 
combine-four values. In practice, four v hashes can be reduced to a single 64-bit or 128-bit hash, 
which is divided into four 16-bit or 32-bit values, respectively. 

Such an operation will be performed with the best individuals before sending them from parallel 
cores to the main thread of the parallel system to investigate the reduction of overhead costs. 

MinHash will be used for coding and subsequent comparison in sequential neuroevolution 
synthesis. However, since adding or removing data from such a structure is not possible (or not 
rational due to computational costs), the population size will increase and the number of epochs will 
decrease [57]. 

When using Count-min Sketch, an array of data about the ANN is represented as a specific sketch 
and decoded afterwards as at Figure 6. 

 
Figure 6: Encoding and decoding information about the ANN using Count‐min sketch 

 
Thus, the proposed encoding method begins with an initial representation of a matrix constructed 

from so called polymer cells containing information about the input-output connections between 
neurons and the weights of such connections. 

Next, hash functions are defined (by default, we recommend taking 4 hash functions) and a matrix 
is created for their output, as shown in Figure6. 

After that, hash outputs are calculated for each element of the ANN data stream and the 
corresponding counter in the matrix is increased. 

Thus, increasing the corresponding counts in the matrix, we get an updated matrix. 
In some cases, due to a hash collision, it is possible that the received frequency of the element is 

slightly higher than expected. The encoding accuracy will depend on how unique the hash functions 
that return the element value are. Also, the larger the hash function, the more accurate the frequency 
will be. 

In this case, the probabilistic data structure Count–min sketch allows you to calculate the 
frequency of big data flows in sublinear space with an estimated time complexity, that is  1O , with a 
constant time component that does not depend on the parameters of the neural network model. 

4. Experimental research 

For an experimental study of the work, it was decided to choose a moderate sample of data as a 
sample, which would not initially require additional complications of neural networks, since this can 
become a problem in the case of using MinHash. test it on two tasks that would differ in scale. This is 
how the Tic-Tac-Toe Endgame Data Set was selected [66-69]. The main characteristics of the sample 
are shown in Table 2. 

As a parallel computing system, the equipment of Department of the software tools the National 
university "Zaporizhzhia polytechnic" was used: Xeon processor E5-2660 v4 (14 cores), RAM 4x16 
GB DDR4, the programming model of Java threads.  



Table 2 
Characteristics of the tic‐Tac‐Toe endgame data set sample 

Tic‐Tac‐Toe Endgame Data Set 

Data Set Characteristics:  Multivariate  Number of Instances:  958 
Attribute Characteristics:  Categorical  Number of Attributes:  9 

 
To test the MinHash case, the metaparameters specified in Table 3 will be set. 
 

Table 3 
Metaparameters for the MinHash use case 

Comparison criteria  Bloom Filter 

Population size  100 
Number of training epochs  1 

Elite size  5% 
Activation function (fitness functions)  hyperbolic tangent 

Probability of mutation   25% 
Crossover type  two‐point 

Types of mutation  deleting an interneuronal connection 
removing a neuron 

adding interneuronal connection 
adding a neuron 

changing the activation function 

 
For testing the Count–min sketch case, the main parameters remain unchanged, but the number of 

epochs increases to 5. 
When testing the Bloom Filter use case, not only the meta parameters of the method were met, but 

also the hardware usage parameters specified in Table 4. 
 

Table 4 
Metaparameters for the Bloom Filter use case 

Comparison criteria  Bloom Filter 

Population size  100 
Number of training epochs  5 

Elite size  5% 
Activation function (fitness functions)  hyperbolic tangent 

Probability of mutation   25% 
Type of crossover on parallel threads  two‐point 
Type of crossover on the main thread  uniform (two‐point) 

Types of mutation  deleting an interneuronal connection 
removing a neuron 

adding interneuronal connection 
adding a neuron 

changing the activation function 
Number of cores (threads)  14 

 
The test results for the tic-tac-Toe Endgame data set sample presented using MinHash are shown 

in Table 5. 
The test results for the tic-tac-Toe Endgame data set sample presented using Count-Min Sketch are 

shown in Table 6. 
 
 



Table 5 
Test results using MinHash 

Method 
Synthesis 
Time, s 

Time at the 
selection 
stage, s 

Memory usage 
(at the 
selection 
stage) 

Error in the 
training 
sample 

Error in the 
test sample 

MGA  2487  561  91%  0.11  0.24 
MGA + 
MinHash 

2189  287  61%  0.11  0.25 

 
Table 6 
Test results using Count‐Min Sketch 

Method 
Synthesis 
Time, s 

Time at the 
selection 
stage, s 

Memory usage 
(at the 
selection 
stage) 

Error in the 
training 
sample 

Error in the 
test sample 

MGA  5364  1742  94%  0.024  0.13 
MGA + 

Count‐Min 
Sketch 

4865  1025  56%  0.029  0.15 

 
The test results for the tic-tac-Toe Endgame data set sample presented using Bloom filter are 

shown in Table 7. 
 

Table 7 
Test results using Bloom filter 

Method 
Synthesis 
Time, s 

Communication 
overhead 

Average time 
of 

communication 
overhead 

Error in the 
training 
sample 

Error in the 
test sample 

MGA  2494  0.4  199.5  0.022  0.1 
MGA + 
Bloom 
filter 

1867  0.28  104.6  0.03  0.174 

 

5. Analysis of experimental results 

Analyzing the presented results, we can come to the following conclusions. When using MinHash, 
there were no significant improvements: it was at the selection stage that memory usage decreased 
from 92% to 61%, but up to this point, memory usage has not changed. Also, the acceleration was 
only at the selection stage, namely from 1742 s to 1025 s. However, the time for encoding and 
decoding networks increased significantly, precisely because of the complexity of this process, so the 
optimization was rather point-based and cannot be recommended for use in the future. In addition, we 
should mention the low accuracy due to the reduction in the number of epochs and the inability to use 
crossbreeding. 

When using Count-min Sketch, the acceleration situation was similar, because during the 
execution of the method, the acceleration was noticeable, but the process of encoding and decoding 
individuals took too long, so the total synthesis time is almost the same. But memory usage has really 
become justifiably optimized from 94% to 56%. This can be explained by the fact that, unlike 
MinHash, almost during the entire process, in addition, such encoding made it possible to perform 



mutation and crossing without significant problems. On the other hand, we should note a slight 
decrease in the accuracy of operation (due to false positives of the decoded network). 

Using Bloom filter made it possible to reduce the share of shipments and their time, because data 
was sent from cores in a compact format. In addition, decoding networks on the main core did not 
impose additional complex calculations on parallel cores. However, even this strategy did not 
significantly improve the speed of work. Moreover, although uniform crossing was chosen on the 
main core, during the development of information modules, the problem of organizing multi-parent 
crossing arose. Therefore, unfortunately, it was necessary to use uniform crossover as a two-point 
crossover. 

In general, it can be seen that the most promising is the use of Count-min Sketch, because this 
made it possible to perform the full synthesis process without additional complications. 

6. Conclusions 

The paper examines the variants and possibilities of using PDS in neuroevolutionary synthesis of 
ANNs, which can significantly reduce memory usage during synthesis and speed up this process.  

The scientific novelty lies in the fact that during neuroevolutionary synthesis at different stages 
and with different execution schemes (sequential and parallel), it is proposed to use different PDS. 
This made it possible to study options for reducing resource intensity pointwise and in general. 
Studies have shown that despite the popularity of PDS for preserving big data in neuroevolutionary 
synthesis, this approach meets a number of obstacles. Moreover, during the work, recommendations 
were developed for the use of individual PDS for individual stages and approaches. 

The practical significance lies in the fact that practical problems of coding the ANN are solved, 
which can later be used for diagnostics, forecasting, evaluation and modeling. The results of the 
experiments showed that the proposed coding methods make it possible to encode information about 
the ANN more compactly for its subsequent transmission to workstations for use as a model for 
diagnosis, prediction, evaluation and modeling.  

Prospects for further research and development areas include a detailed analysis of the use of the 
Count-Min sketch data structure. This is due to the most acceptable results when testing various PDS 
and approaches to their use. 
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