
Agnes Koschmider, Judith Michael (eds.): EMISA Workshop 2021
CEUR-WS.org Proceedings 30

Copyright © 2021 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Software Design Patterns for AI-Systems

Marius Take1, Sascha Alpers1, Christoph Becker1, Clemens Schreiber2
and Andreas Oberweis1,2

Abstract: Well-established design patterns offer the possibility of standardized construction of
software systems and can be used in various ways. The systematic use of design patterns in the field
of Artificial Intelligence (AI) Systems however, has received little attention so far, despite AI being
a popular research area in recent years. AI systems can be used for a wide variety of applications
and play an increasingly important role in business and everyday life. AI systems are becoming more
complex however, the actual machine learning (ML) task comprises only a small part of the total
source code of a system. In order to maintain a clear and structured architecture for such systems
and to allow easy maintenance, standardized elements should be reused in the design. This paper
describes possible applications of well-known design patterns in AI systems to improve traceability
of the system design.

Keywords: Artificial Intelligence, Machine Learning, Design Patterns

1 Introduction

Artificial Intelligence Systems are composed of many different components. The source
code for the actual machine learning task comprises only a small part of the total source
code [Sc15], this is illustrated in Figure 1. Regarding the nomenclature, this paper
distinguishes between AI systems and ML algorithms to illustrate the different levels. The
ML-algorithm represents solely the code for learning and prediction, whereas the AI-
system comprises additional components required to embed ML algorithms into a system.
One way to support the integration of ML algorithms in AI systems is the use of design
patterns. This approach is further investigated within this paper. Design patterns can
facilitate the integration of ML algorithms and ensure certain properties of the system
behavior, such as data quality. AI systems in particular have all the maintenance problems
of traditional systems plus an additional set of ML-specific problems, such as a significant
lack of strong abstractions [Sc15]. Design patterns are a promising approach for this
challenge. They support the standardized design of software systems, while increasing the
clarity of the implemented system architecture.

In the following, Section 2 describes how design patterns are currently used in relation to
AI systems. In Section 3 we show application scenarios for two selected and adapted

1 FZI Forschungszentrum Informatik, Haid- und Neu-Straße 10-14, 76131 Karlsruhe, {alpers, christoph.becker,

oberweis, take}@fzi.de
2 Karlsruhe Institute of Technology, AIFB, Kaiserstraße 12, 76131 Karlsruhe, {andreas.oberweis,

clemens.schreiber}@kit.edu

Software Design Patterns for AI-Systems 31

design patterns. Further design patterns, as well as a more detailed description of the AI
system components and related work can be found in the extended version of the paper
[Ta21]. The paper ends with a conclusion and an outlook on possible further steps.

Figure 1: Overview of the components of an AI system, based on [Sc15]

2 Related work

Washizaki et al. [Wa19] observed that at the time of their publication (October 2019) no
papers exist that list, classify, and discuss design patterns for AI systems. Research
conducted in advance of this paper did not reveal any further approaches. However, the
authors also postulate, backed by a survey of a smaller group of developers, that such
patterns are needed. Ozkaya furthermore shows in her article [Oz20] that engineering AI-
enabled systems is different from other systems. In addition, there would be a research
gap regarding development strategies for AI systems or the transferability of existing
general approaches.

Design patterns in general enjoy a high level of attention in software development
[CW16]. At the same time, AI systems are becoming increasingly important in software
development, as evidenced by the high annual market growth. For this reason, there are
also approaches to combine both fields. Machine learning methods can be used to identify
design patterns within program code [e.g. DTR16], and design patterns can be used to
support the development of AI systems [e.g. Sc15, Wa19]. Other works use design patterns
for a unified representation of theories and systems, as in [HT19] where a set of patterns
is presented that can be used to describe techniques for combining learning and reasoning
systems in a unified way (used for example in [FH20]). In this paper, we examine the
development and structured design of AI systems. The existing work on this approach
differs from this paper, mainly in the type of patterns considered. In the following section,
we will focus on the GoF-design patterns (Gang of Four) [Ga94] and demonstrate how
they can be used for the development of AI systems. These patterns represent individual

32 Marius Take, Sascha Alpers, Christoph Becker, Clemens Schreiber and Andreas Oberweis

elements of object-oriented programming such as classes, methods, attributes and their
relationships in contrast to the patterns presented in [Sc15], which merely provides textual
pattern description. Furthermore, this paper does not consider concrete systems in order
to make architectural recommendations in this respect, but rather demonstrates how
patterns can be used to improve particular aspects of AI systems, such as data quality
(management) and ML model selection.

3 Software design patterns for AI systems

This section presents exemplary applications and adaptations of individual GoF patterns
for the field of AI systems. The selection of the patterns adapter, factory method, observer,
strategy and state in [Ta21] is based on their popularity [CW16], applicability and
successful use in existing AI projects. However, the adaptation of design patterns with
regard to AI requirements is not limited to the aforementioned patterns but could also be
extended to further patterns. For reasons of limited space, only two design patterns are
presented below, a more detailed description of these, as well as the presentation of the
adapted patterns adapter, observer and state can be found in [Ta21].

3.1 Factory method

The design pattern factory method belongs to the class of creational patterns. As the name
suggests, creational patterns are used to create new objects. This is done by calling a
method factory_method()(see Figure 2). The factory_method() returns a new
product object with each call [Ga94]. In the context of AI systems, the design pattern
factory method can be used to create training data objects. For machine learning models
from the field of supervised learning, training elements require both a training object (for
example, a picture or a natural language sentence) as well as a label that indicates the class
which the object belongs to. Both attributes are mandatory. To achieve similar predictive
accuracy for each existing class and each desired feature, it is necessary to ensure that each
class and each feature is represented equally often in the training data. Features here
represent subclasses between which no distinction is made in terms of classification.
However, differences in the features must not lead to different prediction accuracies.
Adjustments to the well-known factory method design pattern provide the means to
address this requirement at an architectural level (see Figure 2).

The pattern displayed in Figure 2 shows the creation of N*M training objects, where N is
the number of existing classes and M the number of different features. To ensure a
balanced set of training data one object is created for every possible class and feature
combination. With the adjusted factory method pattern, there will always be the same
amount of training data for all classes and features, thereby postulating the fundamentals
for achieving the same prediction accuracy. This provides leverage towards addressing the
recently more frequently discussed ethical requirement of equity at the architectural level.

Software Design Patterns for AI-Systems 33

Publications such as [ZS18] address this issue, which appears in many current AI
applications. As described in [ZS18], accuracies regarding the classification of images of
people can vary, for example, with respect to skin color or gender due to unevenly
distributed training data. The potential equality of the prediction accuracy with regard to
the individual classes and features is usually still dependent on the actual training data
content. However, by using the adjusted factory method pattern, the equal distribution of
training data can already be ensured at the architecture level. In general, this pattern is
suitable for any use case where a fixed distribution of the frequency of certain classes in
the training data is to be enforced.

Figure 2: Adapted design pattern factory method for the AI domain

3.2 Strategy

The strategy design pattern is categorized as a behavioral pattern and allows the context
(the AI system components) to be implemented separately and independently from the
actual ML algorithm. The context class holds different strategy objects [Ga94].
Transferred to the AI context, the individual strategies can represent different ML models.
Each ML model must implement fixed necessary methods. The context class does not
need any information about the concrete implementation or the type of ML models.
Functionalities are abstracted from the rest of the system. In addition to the integration of
in-house developed ML models, the integration of external models is of interest in many
use cases. The abstraction is implemented by the design pattern strategy. The actual
external model integration is implemented using the adapter pattern [Ga94]. The newly
created design pattern is visualized in Figure 3.

Using different ML models in AI systems can be useful in many areas, especially in
decision-critical application domains. If an AI system is used either to check the
creditworthiness of potential borrowers or to diagnose serious illnesses, a minimum degree
of certainty regarding the predictions is required. By using several different ML models
for the same request, statements can be made about the reliability of the individual results.
If the different models provide different predictions, a high degree of uncertainty is
assumed, but if all models produce the same result, the statement is more reliable. The
combination of several neural networks (ensembles of NNs or deep ensembles) is used for

34 Marius Take, Sascha Alpers, Christoph Becker, Clemens Schreiber and Andreas Oberweis

example by Lakshminarayanan et al. in [LPB17] for uncertainty estimation. The design
pattern strategy provides a flexible way of implementing such deep ensembles. Developers
of the AI system do not need knowledge about the concrete processes in the model but can
easily integrate different ML models in a system by using the methods train() and
predict().

Figure 3: Use of the design pattern strategy in the AI context

4 Conclusion

This paper investigates the use of design patterns for the development of AI systems. The
patterns discussed in this paper serve as means for a structured and clear design of AI
systems. However, assumptions and conclusions made in this paper should be further
investigated in subsequent work. As part of our further research activities, we plan to
extensively investigate the application as well as the advantages and disadvantages of the
adapted patterns. However, with regard to the use cases described in this paper a general
benefit is expected. For example, a variant of the adapted design pattern strategy presented
here was successfully used in the “Intelligente-Diagnostik”3 project to design an AI model
management platform.

As shown in [Ta21] further patterns have been adjusted to serve a neat and clean design
of AI Systems. Nevertheless, there remains a large number of patterns that should be
investigated to determine their suitability for the development of AI systems. In later work,
the scenarios and adaptations presented here could thus be supplemented with further
design patterns. We plan to further explore the use of design patterns to ensure ethical
principles (especially in the context of medical diagnostic systems) at an architectural
level. With the help of design patterns, ethical requirements could be implemented in a
more standardized way. Ethical conditions and possible solutions based on design patterns
could thus also be examined in future work.

3 The Intelligent Diagnostics project deals with AI based skin cancer detection based on images from a special

optics. The joint project of five research institutions is funded by the state of Baden-Württemberg. Further
information: https://www.intelligente-diagnostik.de

Software Design Patterns for AI-Systems 35

References

[CW16] Czyczyn-Egird, D.; Wojszczyk, R.: Determining the Popularity of Design Patterns Used
by Programmers Based on the Analysis of Questions and Answers on
Stackoverflow.com Social Network. In Computer Networks: 23rd International
Conference: Brunów, Poland, p. 421–433, 2016.

[DTR16] Dwivedi, A. K.; Tirkey, A.; Ray, S. K.: Software design pattern recognition using
machine learning techniques. In Proceedings of the 2016 IEEE Region 10 Conference
(TENCON): Singapore, p. 222–227, 2016.

[FH20] Fill, H.-G.; Härer, F.: Supporting Trust in Hybrid Intelligence Systems Using
Blockchains. In AAAI Spring Symposium on Combining Machine Learning and
Knowledge Engineering in Practice (AAAI-MAKE), Vol. 1, 2020.

[Ga94] Gamma, E. et.al.: Design Patterns: Elements of Reusable Object-Oriented Software, 1st
ed., Addison-Wesley, 1994.

[HT19] Harmelen, F. v.; Teije, A. t.: A Boxology of Design Patterns for Hybrid Learning and
Reasoning Systems. In Journal of Web Engineering, Vol. 18 1-3, p. 97-124, 2019.

[LPB17] Lakshminarayanan, B.; Pritzel, A.; Blundell, C.: Simple and Scalable Predictive
Uncertainty Estimation using Deep Ensembles. In Advances in Neural Information
Processing Systems 30, p. 6402–6413, 2017.

[Oz20] Ozkaya, I.: What Is Really Different in Engineering AI-Enabled Systems?. In IEEE
Software, Vol. 37, No. 4, p. 3-6, 2020.

[Sc15] Sculley, D. et.al.: Hidden Technical Debt in Machine Learning Systems. In Advances in
Neural Information Processing Systems 28, p. 2503–2511, 2015.

[Ta21] Take, M. et.al.: AI-system development with design patterns, Extended Version of this
paper. https://url.fzi.de/wp-ai-pattern, 2021.

[Wa19] Washizaki, H. et.al.: Studying Software Engineering Patterns for Designing Machine
Learning Systems. In 10th International Workshop on Empirical Software Engineering
in Practice (IWESEP), 2019.

[ZS18] Zou, J.; Schiebinger, L.: AI can be sexist and racist - it's time to make it fair. In Nature
559, pp. 324-326, 2018.

