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Abstract  
In the given paper the main relations that describe an adaptive multi-step algorithm for 

training ADALINA are obtained. The use of such an algorithm accelerates the learning 

process by using information not only about one last cycle, but also about a number of 

previous cycles. The robustness of the estimates is ensured by the application of the 

maximum correlation criterion.  
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1. Introduction 

ADALINA (Adaptive Linear Element) was the first linear neural network proposed by Widrow B. 

and Hoff M.E. and represented an alternative to the perceptron [1]. Subsequently, this element and the 

algorithm for its training found a fairly wide application in problems of identification, control, 

filtering, etc. The Widrow-Hoff learning algorithm is a Kachmazh algorithm for solving systems of 
linear algebraic equations. Properties of this algorithm for the solution of the identification problem 

are described in sufficient detail in [2]. In [3], the Kachmazh (Widrow-Hoff) regularized algorithm 

was used to train ADALINA in the problem of estimating non-stationary parameters. In this paper, a 
multistep learning algorithm is considered, which is a recurrent current regression analysis (TPA) 

algorithm that accelerates the ADALINA learning process by using information not only about one 

last cycle (as in the Widrow-Hoff algorithm), but also about a number of previous cycles. 

2. The task of the ADALINA training 

ADALINA is described by the equation 
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where 1ny  – observed output signal; T
nNnnn xxxx ),..,( 1,1,21,11   – vector of the input signals 

1N ; T
Ncccc ),..,( 21
   –  is the vector of the required parameters 1N ; 1n  – noise; n – discrete 

time. 

The task of its training is to determine (estimate) the vector of parameters 
c  and is reduced to 

minimizing some preselected quality functional (identification criterion) 
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where ;ˆiii yye     i
T
ii xcy 1ˆ output signal of the model; c vector estimate 

c ;  ie  – some 

differentiable loss function satisfying the conditions  
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The identification task is to find an estimate ̂ defined as a solution to the extreme minimum 
problem 
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or as a solution to the system of equations 
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If we introduce the weight function   eee /)(  , then the system of equations (4) can be 

written as follows: 
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and minimization of functional (2) will be equivalent to minimization of the weighted quadratic 

functional, which is most often encountered in practice 
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When choosing   25,0 ii ee   influence function   ii ee  , i.e. grows linearly with increasing ie , 

which explains the instability of the LMS estimate to outliers and to interference, the distributions of 

which have long “tails”.  

A robust M-score represents a score c , defined as a solution to the extremal problem (3) or as a 

solution to the system of equations (4), but the loss function  ie  should be chosen other than 

quadratic.  

There is a fairly large number of functionals that provide robust M-estimates; however, the most 

common are the combined functionals proposed by Huber [4] and Hempel [5] and consisting of a 
quadratic one, which ensures the optimality of estimates for a Gaussian distribution, and a modular 

one, which makes it possible to obtain a more robust distribution with heavy tails estimate. However, 

the efficiency of the obtained robust estimates substantially depends on the numerous parameters used 

in these criteria and selected on the basis of the researcher's experience. 
Recently, when solving problems of identification, filtration, etc. robust algorithms that are 

obtained not on the basis of minimization (3), but on the basis of maximizing the correlation criterion 

[6–13] are gaining popularity. These algorithms are simple to implement and efficient. 

3. Correntropy and algorithms for its maximization 

Correntropy, defined as a localized measure of similarity, has proven to be very effective for 

obtaining robust estimates due to the fact that it is less sensitive to outliers [6–13]. 

For two random variables X  and Y , the correlation is defined as  

 ,),(),( YXkMYXV   (7) 

where )(k  – rotation invariant Mercer kernels;   – kernel width. 

The most widely used in calculating the correlation is Gaussian function, defined by the formula 
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When calculating the correlation, it is necessary to know the joint distribution of random variables

X  and Y , which are usually unknown. In practice, there is often a finite number of samples

  .,...,2,1,, Niyx ii   Therefore, the most simple estimate of the correlation is calculated as follows: 
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In tasks of identification, filtering, etc. as a functional, the correlation between the required output 

signal id  and the output signal of the model iy ... is used. In case of using Gaussian kernels, the 

optimized functional takes the form 
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where iii yde  – identification (filtering) error. 

Gradient optimization algorithm (10) with 1N  looks like [6–9] 

,
2

exp 12

2
1

1 


 












 nn

n
nn xe

e
ww


  (11) 

where  – a parameter that affects the convergence rate.  

In [12], to eliminate impulse noise, a recurrent weighted least squares method (RWLS) was 

proposed, which minimizes the criterion 
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and having the form 
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Here  10  weighing coefficient. 

Thus, when obtaining the formula for calculating 1nP  (14) the approximation  

T
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is used. 

As it is known, the introduction into the algorithm of the parameter   is advisable for identifying 

non-stationary parameters. 

Another approach to estimate nonstationary parameters is to use a limited number of 

measurements in RLS, which leads to the algorithm of the current regression analysis method [14].  

4. Recurrent TPA algorithm with correlated interference 

Consider the problem of training ADALINA described by equation (1), which in matrix form 

(after obtaining information on 1n  iteration) is written like this 
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where  Tnn yyyY 1211 ,...,   – vector of output signals; 

 Tn
T
n xxxX 1211 ,...,,   – matrix of input signals; 



T
Ncccc ),..,( 21
  – vector of estimated parameters; 

 Tnn 1211 ,...,,     –  is the vector of noise. 

Covariance matrix nD  order n  interference 1n  
has the following form 
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As known, the application of the assessment 
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to the model with correlated noise gives estimates, the variances of which will be underestimated.  

The Gaussian-Markov estimate (LMS) obtained by minimizing a quadratic functional has the form 
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The current regression analysis algorithm, which has the form  
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was proposed in [14]. In [15] a modification of this algorithm is considered, using the mechanism of 

forgetting the past information (smoothing). Here )( NLconstL  – algorithm’s memory. 

By analogy with the Gaussian-Markov estimate (17), the following estimate can be obtained: 
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Let's assume that on n m cycle the following estimate 
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is received.  

The arrival of new information (adding a new dimension) leads to the calculation of an estimate, 

which, by analogy with (17), can be written as follows: 
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Also similarly calculate 
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When discarding outdated information received at n – L + 1 step, we come from evaluation 

1|1  Lnc to the assessment Lnc |1 ... To obtain the corresponding rules for correcting the estimate, we 

will proceed as follows. 
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Thus, the algorithm will have the form (the first two relations describe the inclusion of newly 

arrived information, and the next ones describe the discarding of outdated information) 

 ;1|111|1|1|1







  n

T
LnnnLnLnLn xcyxPcc  (27) 

.
1 1|1

|11|
|1|1 
















nLn
T

n

Ln
T

nnLn
LnLn

xPx

PxxP
PP  (28) 

 ,11|111|11|11








  Ln
T

LnLnLnLnLnLn xcyxPcc  (29) 

.
1 11|11

1|1111|1
1|1|1 


















LnLn
T

Ln

Ln
T

LnLnLn
LnLn

xPx

PxxP
PP  (30) 

If at first outdated information is discarded, and then the newly received information is included, 

then the algorithm takes the form 
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5. Recurrent TPA algorithm in the presence of outliers and correlated noise 

As noted above, the current regression analysis algorithm, which has the form (5), allows two 

forms of presenting estimates, due to the order of using information about newly received 

measurements and the oldest ones. 
Let's dwell on this in more detail. 

Obtaining new information (adding a new dimension) leads to the calculation of an estimate, 

which can be written in the form (23) 



Since at each cycle, when constructing an estimate, constL  , then consider the case when new 

dimensions are added first, and then obsolete ones are excluded. 

The recurrent form of estimate (23) can be obtained by standard methods using the block 

representation of vectors and matrices (24), (25), which allows rewriting (23) as follows: 
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Let us consider a modification of the current regression analysis algorithm used to maximize the 

correlation (12) and which, unlike (36), will have the form 
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and taking into account (24), (25), we have 
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Applying the matrix inversion lemma to (37), we can obtain, as already noted, two forms of 

computations: in one, the accumulation of information is used first (the newly arrived signal 1nx ), 

and then outdated information is discarded (signal 1Lnx ) and vice versa. So the calculation of the 

matrix and the refinement of estimates when accumulating information occurs, respectively, 

according to the formulas 
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Thus, the recurrent estimation algorithm obtained by adding new information and then excluding 
obsolete information is described by relations (38) – (41). 

 

 



6. Parameter   selection  

There are many ways to choose the optimal kernel size. One of the most commonly used methods 

of choosing an appropriate kernel width in machine learning is cross validation. Another fairly simple 

approach is the Silverman's rule of thumb [16] 

,9,0 51 AN  (42) 

where A is the smallest value between the standard deviation of the data sample and the interquartile 

range of the data, scaled by 1.34, and N is the number of data samples.  

As can be seen from (10), the cost function (criterion) of algorithms based on correntropy changes 

depending on the width  , the size of which affects the accuracy of the estimate. Since the reference 

signals change at random, this leads to the need to apply a time-varying kernel size. 

The rule of thumb proposed by Silverman was applied in [17] as follows: 
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where ̂  denotes the variance of the signal sample.  

These relations were used in [18] to recursively update the kernel size based on the sample 

variance using the formula 

  ,ˆ122
1   nn  (45) 

where )10(    is close to 1, and ̂  is a sample of the variance of the reference signal nx ... 

Since the value
2
n  proportional to the variance of the control sample, a noisy pulse standard can 

cause a large
2
n , which weakens the stability of the algorithm. Therefore, in this work, the threshold 

  is set  for 
2
n   

,2  n  (46) 

where   is determined based on the real situation. 

In [19], an algorithm for adaptive changes in the kernel width is proposed, which is based on the 

analysis of the following rule: 
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When choosing a variable  , the function  2f  will also be variable and therefore the rule for 

updating the weights can be controlled.  

In [20], the case of correction  under the assumption that the kernel width linearly depends on 

the instantaneous error, i.e. 

,11   nn ek  (48) 

where k  is a positive constant.  

In [21], it is proposed to use the following function in the estimation algorithm  2f : 
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This function has all the necessary properties and is based on the Butterworth filter. In (11)   – 

gain; m and B – filter order and throughput, respectively. Options  and m can be either fixed or 

adaptively changeable. Since the bandwidth B  is another parameter that significantly affects  f , an 



attempt is made to adapt it at each iteration based on the analysis of the error 1ne  The quantity B

determines whether 1n outlier or not. Therefore, in this work as B at time n the average of all past 

error patterns is selected. Such choice of B allows to reduce the influence of outliers of sampling 
errors and leads to a slowdown in the rate of convergence of the estimation algorithm. 

In [13], to determine the optimal value of the variable n the optimization problem is solved. To 

maximize  nf   the derivative of (11) with respect to n  equals to zero 
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which produces the following expression:  
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Here 11   n
T
n

a
n xe  – a priori error;
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a
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Since the information about the implementation of the noise 1n usually absent, it is not possible 

to use this formula. Therefore, for the practical application of the correction rule
2

1n in this paper it is 

proposed to replace 
2

1n  
with noise variance 

2
  and furthermore, it is assumed that the prior error 

a
ne 1 , does not depend on noise 1n , i.e. it is assumed that   .011  n
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neM   As noted in this paper, 

the introduction of the approximation 011  n
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ne   is quite reasonable, since on average this product 

is zero. Thus, in the final form, the correction rule
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has following form: 
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(52) 

For a smooth update 
2

1n  using the moving average method [22], the following rule is proposed 

in the work: 
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where   – smoothing coefficient close to one, and 
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As seen in (53), to provide a positive square kernel width
2

1n  the suggested kernel value is 

updated when 0 < 1n <1. In addition, it can be seen from (53) that in the update
2

1n  plays a major 

role 1n , which, as follows from (54), depends on the values 
2

1ne , 
2

1nx  and 
2
 ... In the case of 

noise with time-varying characteristics, the learning strategy described in [23] can be used to estimate 
the time-varying noise variance. Thus, the approach proposed in this paper is applicable to non-

stationary noise as well. 

In [24], a modification of the RLMS is proposed, supplemented by an online recursive scheme for 

adapting the kernel size, using the analysis of error values on a number of observations 



1,,1,   nnn mmm   (55) 

where  
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Here Nw is the size of the observation window. In the paper, en is estimated rather roughly using 
only the manifold of the window’s edge. 

In [25], the following correction scheme is proposed for 
2

1n : 
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(57) 

It should be noted that terms I and II can be considered as compensation for estimating ne ... To 

reduce the computational load, this expression can be simplified as follows: 

.2
1,

22
1   nnn m  (58) 

Analysis of the above approaches to parameter selection   shows that there is no single rule for 

choosing this parameter; therefore, in the practical implementation of algorithms based on 
maximizing the correlation, one should be guided by the recommendations discussed above.   

7. Conclusion 

In this work, the main relations that describe an adaptive multi-step algorithm for training 

ADALINA are obtained, which allows to adjust its parameters in real time in the presence of outliers 
and correlated noise. The use of such an algorithm accelerates the learning process by using 

information not only about one last cycle (as in the traditional Widrow-Hoff learning algorithm), but 

also about a number of previous cycles. The robustness of the estimates is ensured by the application 
of the maximum correlation criterion.   
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