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Abstract  
Intelligent Machine (IM) control is based on a complex solution of three tasks: perception of 

data from sensors, planning actions and decisions making (DM) in accordance with the actual 

plan and process’s history. The solution to this problem is the main challenge of the IM. 

Spatio-temporal datasets from a lot of heterogeneous sensors, non-deterministic, dynamic, 

and partially observable characteristics of environment impose additional restrictions on the 

DM technology. Fuzzy logic systems (FLS) are not used in such conditions due to the large 

dimension of the problem. The two-stage Computing with Words (CWW) approach 

overcomes the dimensionality problem by using abstraction engine at the first stage, which 

maps the meaning of data from a lot of sensors to the meaning of a few words. In this article 

the CWW technology is extended by a Short-Term Memory (STM) and Long-Term Memory 

(LTM) models. The STM stores a time sequence of data in the form of an ordered sequence 

of events. The LTM stores an action plan in the form an ordered sequence of plan stages. 

Both are formalized in the form of a flat vector field each element of which is represented on 

word fuzzy characteristics. The STM model is supported by the footprint blur algorithm, and 

LTM model is supported by dynamic planning algorithm. An example of the use of STM and 

LTM data in the FLS when decisions making by IM, is given.  
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1. Introduction 

Decision-making (DM) and reacting to inputs are the main tasks of the Internet of Things (IoT). 
DM by Intelligent Machine (IM) and smart machine is a major challenge that IoT developers are 

focusing [1-4]. Two factors are considered when making control decisions in these applications. 

Firstly, knowledge about the process's full history and, secondly, an action plan to achieve the goal. 

Due to the complexity of formalizing process's full history in the form of a temporal sequence of input 
data and previously adopted controls, Artificial Intelligence (AI) and IoT use the Markov model and 

Bayesian Markov Decision Processes [5,6]. However, with such a simplification, IM cannot always 

find a solution that determines its rational behavior. Examples can be given where IM cannot find a 
control decision without knowing the process's history. The IM approaches a crossroad, and its 

sensory system detects a yellow traffic light. Without information about what signal was before, it is 

impossible to make the right decision (to slow down or continue to move at the same speed). Another 
example of an IM that serves an automated warehouse. The order in which the containers were 

previously loaded in IM determines the subsequent logistics of container delivery. For example, IM 

decides at position F to continue moving either to position H or to position G (Figure 1). The decision 

depends on the prehistory: where (from position A or B) and by what plan (via position D or E) IM 
arrived at position F. To decide, the IM must store a sequence of data from sensors, namely, a 
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sequence of data describing situations at different stages of the plan. In addition, if the original plan 
involved moving the IM to position G, loading the container there and moving to position I, and the 

obstacles disrupted this plan, then replanning is required. Such obstacles could be blockage of the 

passage from position F to position G, lack of containers for loading at position G, full loading of IM 

with containers at position F, so that IM cannot be loaded anymore. When replanning, IM should take 
into account the completed part of the plan, the environment current state and the remaining fragment 

of the plan for execution. The above example shows that IM should be able to comprehensively solve 

the following tasks: 1) perception of data from sensors about the environment and the state of the IM; 
2) processing of data on IM process's full history; 3) planning, using the accumulated experience, 

monitoring the implementation of the plan; 4) DM in accordance with the current plan, based on data 

about the process's history and current state of the environment. The tasks listed are interrelated, they 
share knowledge and data, and must be solved in an integrated manner in real time. 

The purpose of this work is to choose models that can be comprehensively used to solve the listed 

tasks, and, on their basis, to propose a control method for IM, which will ensure the execution of the 

action plan in conditions of non-determinism. 
 

 
Figure 1: Containers loading and delivery action plan of IM 

 

The central task from the above list is the direct task of making decisions. The other three tasks 
prepare the data for control DM. When justifying the choice of a DM model, it is necessary consider 

the requirements due to the IM domain specifics. The IM domain refers to non-deterministic (limited 

or unlimited non-determinism), dynamic and partially observable. In addition, such factors as IM 
autonomy, the real time mode, and the need to use heterogeneous data from many different sensors 

impose additional restrictions on the DM technology [7, 8]. The basic conceptual model for such 

domain is Rules Based Systems. Most development platforms use the Rules Engine (RE) to 
implement the functionality of an IoT application [9, 10]. In REs, AI methods and models are used to 

find solutions, which take into account the specified features of the IoT domain to varying degrees. 

However, due to the large dimension of the problem, the well-known REs does not use the Fuzzy 

Logic System (FLS), which have proven themselves well in solving real-time DM problems in non-
deterministic conditions [7, 8, 11]. In order to create conditions for the use of FLS in RE, in [12, 13], 

a two-step Smart RE (SRE) technology is proposed, which allows one to reduce the dimension of the 

problem. In SRE, at the first data processing step, the Abstraction Engine (AE), by generalization and 
abstraction, receives a description of the input data from the sensors in the form of a small number of 

a high-level generalization words of natural language. Fuzzy characteristics of such words, which 

represent the meaning of a large-dimensional spatio-temporal segment of data from sensors, are then 

used as input FLS variables at the second step to make a decision. The FLS model, integrated in this 
way with the AE model and tested on DM problems in IM [12, 13], is the basis of the proposed 

method.  

The IM autonomy and the real-time mode impose the main restrictions on the choice of the 
planning model. Action planning should be carried out in close connection with the implementation of 

the plan by making control decisions that ensure the implementation of the plan stages. This is a 

premise for the integration of Automated Planning Engine (APE) with FLS. Classic planning 
considered in AI is mainly focused on creating algorithms for a deterministic, fully observable 

environment [6, 14, 15, 16, 17]. Most of them focus on the technique of finding a good plan under the 

assumption that the planner has complete knowledge of the current world state and the causal 

relationships that govern changes in this world [6, 14]. The implementation of these technologies for 
IM is difficult since these methods do not allow to achieve a sufficiently high performance and do not 

imply re-planning for a non-deterministic environment. If the performance problem is overcome using 

various techniques (plans hierarchy, reactive planning, rule-based planning [6, 16, 17, 18]), then the 



issues of replanning mechanism “from what has been achieved” remain open [6, 19]. Significant 
results on real-time scheduling for a non-deterministic environment have been obtained for mobile 

robots and autonomous mobile systems [20, 21]. The planning algorithms for these systems are aimed 

at the tasks of navigation and localization of mobile systems, take into account the domain 

peculiarities and cannot be implemented as an universal planning method, the description of the plan 
stages of which can be used in DM model. As an alternative to re-planning, mechanisms are 

considered in which it is proposed give up complicated planning in favor of sketchy planning using 

explanation-based reasoning approaches or machine learning [22]. Case-based reasoning approaches 
[6, 23] opens opportunities for quick re-planning (from what has been achieved) using ready-made 

fragments of the plan (precedents). When using Case-based reasoning, re-planning technology "from 

scratch" can be avoided if fragments of the completed plan (CPF) and fragments of the plan to be 
executed (EPF) have the same presentation model. The choice of a planning model is also influenced 

by the need to integrate the APE with the FLS. From all the above, it follows that in order to make 

decisions in IM by jointly solving the previously listed tasks, a model is required that will interface 

the inputs and outputs of the following components: FLS, automatic planning systems, AE and history 
data processing systems.  

The main hypothesis of this article is that the memory model can perform the function of 

conjugation of individual models that underlie DM in IM. Memory is seen not just as a data store, but 
as a component that performs data processing. Figure 2 shows the structure of the IM control system 

as a possible variant of the hypothesis implementation. 

 

 
Figure 2: Intelligent machine control center 
 

The first thing to decide when choosing a memory model is in what form to store the process's full 
history. For an IoT application, storing a spatio-temporal segment of the primary "raw" data from 

sensors directly is not realistic. In the IoT, special attention is paid to the issues of obtaining 

meaningful information from sensor data for DM [24, 25]. However, methods of preliminary 
processing of data from sensors, including data fusion, do not lead to a significant reduction the data, 

while maintaining their meaning. The issues of the meaning of data during memorization and retrieval 

from memory are considered in cognitive psychology [26-28]. Two models of short-term (STM) and 
long-term (LTM) memory have been studied. It is shown that the storage of a temporal sequence of 

significant data in STM is organized in the form of an ordered sequence of characters that reflect the 

meaning of the perceived data. There are still different views on the interaction between STM and 

LTM. This work is based on the conceptual model [29, 30], according to which LTM implements a 
data storage in the form of an ordered sequence, allows to create new structured representations from 

these data items, and transfers data from LTM to STM in the correct order. However, there is no 

information about the computer implementation of such a complex memory model for applications 
that process data from sensors in real time. Detached functions of the cognitive memory model have 

been implemented, for example, an artificial neural network model called long-short-term memory 



LSTM [31]. The memory models used in this work with the abbreviated names STM and LTM have 
nothing to do with the above model LSTM of a neural network. 

The aim of this work is to propose a memory model in which data storage and processing is 

carried out uniformly for both STM and LTM components. In STM, the process's history is stored and 

processed in the form of a sequence of events, and in LTM, the actual plan of operation is in the form 
of a sequence of stages. The task is to integrate the STM&LTM memory model with AE and FLS. 

Show the possibility of using FLS for control in IM, taking into account an action plan in a non-

deterministic situation, which is formed in real time based on data from a large number of sensors. 
Section 2 provides models of the individual components that support FLS decision making. 

Section 2.1 begins with review how AE maps the meaning of data from sensors to the meaning of a 

words and continues with a detailed outline of the STM model in section 2.2. The STM data storage 
model is introduced in the form of an events sequence footprint represented by a dynamic flat vector 

field. An algorithm for processing an event fingerprint is given. Section 2.3 introduces a model for 

storing an action plan in LTM in the form of a knowledge cube, the slice of which represents a 

separate plan, which is also formalized in the form of a flat vector field. Section 2.4 presents a 
dynamic planning algorithm in the form of operations on fuzzy characteristics of a vector field. 

Section III will present method of constructing FLS, namely linguistic variables and fuzzy rules, 

which use fuzzy characteristics of the situation, IM’s history, and action plan. Also, will present 
experiments and their discussion. 

2. Intelligent machine control center: the models 

The block diagram of the IM control center (IMCC) is shown in Figure 2. As already noted, the 

IM functionality is supported by FLS, or rather by a knowledge base containing fuzzy rules for 
making control reactions. AE, STM and LTM prepare the FLS input. AE perceives data from sensors 

and maps them into the meaning of high-level abstraction words. The meaning of a word is formally 

represented by the certainty factor (CF) and is a fuzzy characteristic (FC) of the word. CF values are 
input numeric variables FLS, STM and LTM. Words CFs are a description of the environment current 

state. The AE algorithm for calculating the word CF is given in detail in [12, 13]. The STM stores and 

processes data about the IM’s history, namely, the description of the events sequence that occurred 

earlier in the IM environment. FC of such temporal fragments of history are also input numerical 
variables of FLS. The LTM stores knowledge about all possible IM plans and processes the actual 

plan at the current time. The APE calculates the fuzzy characteristics of the individual stages of the 

plan and carries out dynamic planning (at the end of the current stage of the plan, it updates the EPF). 
The CFs of the individual plan stages are FLS input numerical variables, too. In addition to APE, 

LTM includes a Knowledge Cube (KC) about possible plans, as seen in Figure 2. Precedent plans in 

the KC are replenished, either by learning (accumulating their own IM experience), or by inputting 

expert knowledge. 

2.1. AE: Word meaning representation 

Below, a word meaning model in the form of a fuzzy CF is discussed in a concise form. The AE 

perception system receives information about the IM state and the environment using n sensors. The 
set of possible values of the ith sensor is divided into li information granules, so that the set of 

possible data from the sensors is L, Card(L) = l1 + l2 +…+ ln.. At the tth step of receiving data from 

the sensors, AE maps the meaning of "fresh" data (a subset of L) to the meaning of a subset of words 

W = {w1, w2, ..., wk}, where k is significantly less than Card(L). Thus, the dimension of the problem 
is significantly reduced by mapping the meaning of data from lot of sensors into the meaning of a few 

words. AE performs such a mapping based on the domain knowledge base using the Computing with 

Words (CWW) technology [32, 33]. In [12, 13], a model of the word meaning was introduced by 
word FC, which is represented by a special fuzzy L-R number. 

:{ | ( ), [ 1, 1]}Xx m x x   X  (1) 

with Gaussian L-R membership function 
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the parameters of which are the certainty (−1 ≤ α ≤ +1) and the time intervals t=tL+tR (0 ≤ t < ∞), 

where tL and tR are the time intervals since the last data acquisition from the sensor and the data change, 
respectively. 

Based on the FC (1), the CF as a fuzzy numerical characteristic −1 ≤ cf ≤ +1 of the word meaning 

is calculated. 

tcf h   (3) 
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Thus, at an arbitrary time t, the meaning of the spatio-temporal segment of data received from the 
IM sensors is mapped into meaning of the words.  of a set of AE vocabulary, that is 

{ (w ),   w }i icf  W  (5) 

where W is AE vocabulary, wi is ith word designation, cf(wi) is the meaning of the ith word. 

This word meaning model forms the basis of the STM and LTM models considered in this work. 

2.2. STM: Events history footprint 

STM stores the IM’s history as a time-ordered sequence of m + 1 latest events. An event is 

considered to be a change in the data of the set L. Since the meaning of data in AE is represented by 

the meaning of words wW , the event in STM is stored as a set of words {w0
i, w

−1
j, w

−2
p, ..., w

−m
s}, 

whose CF values have changed. The digits q = 0, −1, −2,…,−m indicate the ordinal number of the 

event in the sequence with respect to the event w0
i that occurred at the current moment in time. The 

event w−1
j happened earlier before the event w0

i, and so on. Events are not tied to a specific timeline. 

A dynamic discrete flat vector field is taken as a numerical model of STM (Figure 3). The x-axis in 

the right half-plane indicates the elements of the set of words W = {w1, w2, ..., wk}, and the elements 

of the set of events W = {w1, w2, ..., wk} are indicated in the left half-plane. Events are indicated in 
italics to distinguish them from the corresponding words. The negative semiaxis y in the left half-

plane shows the ordinal numbers of events q with respect to the event that has occurred at the current 

time. For an event that has occurred at the current moment of DM, q = 0. On the positive y-axis in the 
right half-plane, the ordinal numbers of the stages of the upcoming EPF are indicated. The z-axis 

shows the word CF cf. We consider a special discrete vector field in which a vector cf(wi, q) is 

associated with each point of the two-dimensional space (wi, q). A vector can only have two 
directions along the z-axis: positive and negative, as shown in Figure 3. 

 

 
Figure 3: An example of a state of a flat discrete vector field 

 



A dynamic vector field is considered, in which at the event occurrence moment the characteristics 
values of all previously occurred events are changed. Firstly, each event is shifted "deep into 

memory" (the parameter q of the event wq
i is replaced by q − 1, wq-1

i) and, secondly, the vector 

modulus is reduced by the coefficient of “forgetting” exp(−v), where 0 ≤ v ≤ 1 is the data aging rate. 

This operation simulates the results of studies of STM, obtained in cognitive psychology [23, 24], 
about the gradual "blur" of event footprint in the memory. Thus, the content of an STM at an arbitrary 

time represents an Events sequence Footprint (EF). 

Let us introduce a formal representation of the vector field before proceeding to the consideration 
of the STM characteristics updating algorithm when the event wi appears. Taking into account the 

above features, we represent the vector field by a matrix and denote 
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Since in the introduced vector field model only a limited set of vectors is used (directed only along 

the z-axis in the positive or negative direction), then in (5), instead of vectors, scalars are indicated in 

the form of signed numbers cf(wi, q). The vector field is processed using the Footprint Blur algorithm 
(FBA). Following is FBA of the STM characteristics updating. 

1. Initialization of the algorithm at the moments of time when an event occurs related to the CF 

change of any word wW  from the AE dictionary. A simple computational procedure for 

determining an event is proposed. 
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where (0 <e <1) is the sensitivity threshold for data changes. 

2. Removing the (m+1)th column of matrix (6) and multiplying the resulting matrix k m  by 

the forgetting coefficient 

exp( ) (:, 1)m    cf cf  (8) 

3. Horizontal concatenation of a column-vector cf  in which, apart from wp, all other elements 

are 0 and the resulting matrix cf  in (8) 
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[ , ] cf cf cf  (10) 

4. Calculating the confidence that EF corresponds to a given sequence of events, for example, 

the EPF. Figure 3 shows the state of EF at the time when the event F appeared. Formally, EF and 

action plan, например, PL are represented by matrices (6), in which PL EFm m , in the general 

case. Therefore, before performing the matching operation between EF and PL, it is aligned to the 

size of the matrix EFm , either by cutting off the last PL EFm m  events when PL EFm m , or by 

adding columns in EF (columns with numbers 1,  2,...,PL PL EFm m m  ) containing zeros. 

Preliminarily, the projections of the matrices (6) EF and PL are found: the first (vertical) and 

second (horizontal) projections of the vector fields (6). For this, a modified operation of matrix 

convolution was used [34]. 
1 1

1,

2 2

1, 2,...,

( ( ) ( ( , ) ( , )),  1,..., ),

( ( ) ( , )) (| ( , ) |),(  1,..., ).

EF p PL p
i k

i EF i EF i
q m

cf q MAX cf w q cf w q q m

cf w cf w qsig MAX cf w q i kn



  

     

   

cf

cf
 

 
(11) 

Certainty that EF corresponds to PL (Certainty Match the EF to PL) cfEF_PL is calculated as the 

weighted sum of the first projections (11). 
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5. The end of algorithm. 

The use of the cfEF_PL, cf1(q) and cf2(wi) values in the STM, LTM and FLS models will be 

discussed below. 

2.3. LTM: knowledge representation of the plan 

Knowledge about the plan is represented on the set of words w i W , each of which reveals the 

meaning of a certain situation by (w )icf . An Action Plan (AP) is a plan to achieve a target situation, 

for example **w W  from a starting situation, for example *w W . The AP is represented by an 

ordered sequence of words 

* **=(w ,w ,w ,...,w ,w )l g pPl , (13) 

in which for each pair of adjacent words there is knowledge of cause-and-effect relationships in the 

form of triplets 

* * **(w , ) w ,   (w , ) w ,   (w , ) w ,...,(w , ) w ,l l l g g g d p pu u u u    , (14) 

where , , ,...,j l g pu u u u  there are control actions that ensure the execution of the plan. 

Expressions (13), (14) represent the Q = Card (Pl) stage plan. A separate stage of the plan, for 

example, the third in (14) includes the word wg, which, on the one hand, is a description of the 

situation characterizing the successful completion of the previous second stage of the plan, and, on the 

other hand, is a condition necessary for the successful implementation of the action ug of this third 
stage plan. Let's call a word, for example, wg a descriptor of a plan stage. 

This paper proposes a unified data representation model for both STM and LTM. Therefore, just 

like the sequence of events in EF, we will represent the sequence of plan stages (13) as a set of words 
ordered by plan stages (index q). 

0 1 2

* ** * **(w ,w )=(w ,w ,w ,...,w ,...,w )q Q

l g pPL    
, (15) 

where the superscript, for example, q in the word designation w q

p  is an integer indicating that the 

word belongs to the qth stage of the plan. 

We will call a fragment of plan (15) any subsequence of adjacent stages for which the 
monotonicity of the numbering of q stages is preserved. This means that for a fragment 
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 must be met. In what follows, we will assume that in the fragment 

of the plan, as well as in the plan (15) for the initial stage, q = 0. 

The LTM stores knowledge of N different plans. 
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The set of all possible plans (16) is represented by a three-dimensional k Q N   KC, where Q is 

the maximum allowable length of the plan (the number of stages). Below is the ith slice KC, 
representing knowledge about the jth plan (16) in the form of a matrix. 

1 1 1 1 1

2 2 2 2 2

/ 0 1 ... ...

( ( ... ( ... (

( ( ... ( ... (

... ... ... ... ... ... ...

( ( ...

w w ,0) w ,1) w , ) w , )

w w ,0) w ,

(

1) w , ) w , )

w ,0) w ,1) w .., . )() w ,

j j j j

j j j j

j j j j

PL PL PL PL

PL PL PL PLj

k PL k PL k PL k PL k

r q Q

cf cf cf cf Q

cf cf cf cf Q

cf cf cf cf

q

w q Q

w

q

  






PL




 
 
 
 
 
 



. 

 
 

(17) 

 



In (17) (w , )
jPL icf q  there is CF in that the word wi is a descriptor of the qth stage of the plan PLj. 

When there is no data about the situation represented by the descriptor wi, or are outdated, then the 

meaning of the word is w , ) 0(
jPL i qcf  . If the situation represented by the wi descriptor indicates that 

the stage of the plan has not been completed or has been performed unsuccessfully, then the meaning 

of the word is there w , ) 1(
jPL i qcf   . Finally, when the wi describes the local target situation of the 

plan stage, then w , ) 1(
jPL i qcf   . 

2.4. LTM: dynamic planning engine 

The IMCC model under consideration is Goal-driven planning. The model is based on the 

following hypothesis. At time t AE, based on data from sensors, forms a meaning of the situation with 

the word w*. In LTM, the currently active target is represented by the word w**. These two activated 

words are actualized in the KC slice, which contains a * **(w ,w )PL  fragment of the plan (17). This is 

AP at time t. Thus, at time t in IMCC, the following are relevant: EF in STM, which stores data on 

previously executed plan stages (CPF as history of events), and AP in LTM, which stores stages of a 

plan that has not yet been completed (EPF). 
The DPE performs AP data processing. Just like EF, AP is represented by a discrete flat vector 

field. Along one axis are words, the meaning of which describes the conditions for the execution of 

the stages of the plan, and along the other axis are the numbers of the stages of the plan. First, we will 
consider the essence of the planning procedure using the example of the dynamics of a vector field 

(how the vector field changes after replanning when an event occurs due to the word w*). Let, for the 

considered example (Figure 1), after the execution of the stage of the plan represented by the word E 

(the appearance of the event E), the vector field corresponding to AP has the form (18). 
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(18) 

The first column (q = 0) of matrix (18) indicates the CF ( ,0) 0.9cf E   of the completion of the 

plan stage E, the value of which is calculated in AE. Based on its value and an externally set goal 

( , 3) 1cf I    , DPE calculates CFs for the intermediate stages of the plan ( , 1) 0.8cf F    and 

( , 2) 0.8cf G   .These AP characteristics are then used in the FLS's decision on the action required 

to carry out the next F stage of the plan. After the completion of this F stage, the AP given in (19) and 
graphically shown in Figure 3 will be created. 
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(19) 

The planning algorithm implemented by DPE "shifts" the plan stages in the vector field space in 

the direction of decreasing q (decreasing the ordinal numbers of the plan stages) and recalculating the 
fuzzy characteristics of the vector field considering the following factors: the state of the plan 

execution (the last completed stage), the presence in the KC of a fragment of the plan linking the 



current stage with the target. The priority is to continue the execution of the current AP: if it is 
possible to use it to achieve the goal, then new options for EPFs are not considered. 

Below is the DPE algorithm, which considers the listed factors. 

1. Calculation of СF, characterizing the attainability of the goal (wi**) from the current state of 

the plan execution (wi*) in accordance with AP. 
2

*,..., **
  * ( (w ) (w ))AP i i

i i i
cf MIN cf cf


  . (20) 

where 2 (w )AP icf  is the second projection (11) of the vector field AP,   (w )rcf  is СF of the word 

describing the conditions for the implementation of the ith stage of the plan. 

2. Correction of the AP when the condition  * 0cf   is satisfied. 

2.1.  Updating a fragment * **(w ,w )i iPL of the current plan PLh. 

2.2. Modeling the propagation of decaying activity from the word wi* to the target wi**. 

AP * AP
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(21) 

where AP ( )jcf  is the jth column-vector of the APcf  matrix (18), m is the number of columns in the 

APcf  matrix, 1

AP ( )cf j is the first projection (11) of the jth column of the APcf  matrix. 

2.3. Modeling the propagation of decaying activity from the target wi** to the word wi*. 
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(22) 

2.4. Calculation of CFs of the vector field elements by modeling the coherent interaction of two 

counter streams of propagation of decaying activities (21) and (22). 

AP AP
AP

2

 


cf cf
cf . 

(23) 

3. Replanning when the condition  * 0cf   is met. 

3.1. Finding a subset of KC’s slices that contain fragment * **(w ,w )i iPL . 

1,{ ,    ( ( ),  ( )) }n Nn if MIN cf n cf n e 
  Plan , (24) 

where 
2 2

* * ** ** ( ) (w ) (w );    ( ) (w ) (w )
n nPL i i PL i icf n cf cf cf n cf cf     .  

3.2. Finding a subset of plans Plan* from the set Plan in (24) for which it is possible to achieve 
the goal. 

2

*,..., **
* { ,    ( (w ) (w )) }

nPL l l n
l i i

n if MIN cf cf e 


   PlanPlan , (25) 

3.3. Finding the plan n* from the set Plan* in (25) for which EF coincides to the greatest extent 

with CPF of AP. 

*_ _( )
n nEF CSP EF CSP

n
cf MAX cf




Plan*
. (26) 

3.4. Execution of items 2.1-2.4 of this algorithm for the * **(w ,w )i iPL fragment of the plan PLn* 

belonging to the n* slice of the KC. 
4. End of the DPE algorithm. 

3. Method of using STM and LTM data in FLS 

The method of using AE, STM and LTM data in FLS for IM control is considered on the example 
of the transportation and loading / unloading of containers problem. A graphical representation of 

possible plans is shown in Error! Reference source not found..Error! Reference source not found. 

The STM and LTM models are integrated with both the AE and FLS models. This is done by using 

the values of CF words calculated in AE as input numerical variables STM and LTM, and the output 
variables STM (CF footprint) and LTM (CF actual plan) are used as input numerical variables FLS 



(Figure 2). In addition, the AE vocabulary includes a set of words that are used to describe events in 
the STM and plan stages in LTM. Let, for the example under consideration, the symbolic designation 

of words be their sign model and the stages descriptors of the plan. For example, in Figure 1, this is 

the following dictionary W = {A, B, C, D, E, F, G, H, I}. AE calculates the meaning of each of these 

words (cf value) based on the received data from the sensors. For example, the meaning of the word B 
can be formulated as follows: "IM is in position B in a state ready for dispatch, the container is 

loaded". AE calculates the numerical value of cf as the degree of correspondence of the received data 

from the sensors to the meaning of this word formulated above. If the data is complete (received from 
all sensors) and fully correspond to the meaning of the word, then the cf value will be close to +1. If 

the data from the sensors is complete, but they do not match the meaning of the word, for example, 

the container is not loaded, then cf will be close to −1. And, if there is no fresh data, then cf will be 
close to 0. 

Thus, the problem of matching FLS with AE, STM and LTM is overcome by unifying the 

representation of their input and output variables. The CF values generated in AE are input numeric 

variables for all three mechanisms FLS, STM and LTM. If now traditional for FLS method define 
linguistic variables (LV) on the CF universe −1 ≤ cf ≤ +1, then the logic of solving the problem will 

be based on the data of AE, STM and LTM. Below are five fuzzy rules that illustrate the different 

uses of this data. The rules recommend solutions in different situations when the execution of stage F 
of the plan has been completed (Error! Reference source not found.). An example is considered for 

two plans PL1 = {B0, C+1, E+2, F+3, G+4, I+5}, PL2 = {A0, C+1, D+2, F+3, H+4, I+5}, which are presented 

in the form (16). 

R1: IF event(F) and 
 CF_1 is HIGH and 
 CF_PL_1 is HIGH 
 THEN CF_ Continue is HIGH 
R2: IF event(F) and 
 CF_G_1 is LOW and 
 CF_H_1 is HIGH and 
 CF_PL_1 is HIGH 
 THEN CF_Move is H 
R3: IF event(F) and 
 CF_G_1 is LOW and 
 CF_H_1 is LOW 
 THEN CF_Move is NO 
R4: IF event(F) and 
 CF_F_0 is HIGH and 
 CF_G_1 is NO and 
 CF_H_1 is NO and 
 CF_I_2 is HIGH and 
 CF_PL_1 is HIGH 
 THEN CF_Move is G 
R5: IF event(F) and 
 CF_F_0 is HIGH and 
 CF_H_1 is HIGH and 
 CF_PL_2 is HIGH 

𝐓𝐇𝐄𝐍 𝐶𝐹_𝑀𝑜𝑣𝑒 is H (27) 
Rules (27) in the IF field have the term event(F). This means that the rule is processed by the FLS 

when the event occurred: the CF of the word F in the current step of AE data processing is cf(F) ˃ e, 
and in the previous step this condition was not met. If this event does not occur at the current step, 

then this rule is disabled from the FLS processing (in AI classical production systems this rule is 

struck out). This technique significantly reduces the number of rules to be processed and, as a result, 

significantly reduces the amount and time of calculations, which is critical for the IM. In rules (27) 
CF_xx_N these are the names of input LVs, for which the definition of three terms LOW, NO and 



HIGH with trapezoidal and triangular accessory functions is given on the CF universe, as shown in 
Table 1. 

 

Table 1 
Membership function parameters of linguistic variables CF_F, CF_PR1, CF_PR2 

Linguistic Variables  LOW NO HIGH 

CF_хх_N −1.0, −1.0, −0.75, −0.25 −0.75, −0.25, 0.25, 0.75 0.0, +0.4, +1.0, +1.0 

 
The output LV CF_Move is set by three singletons H, G, NO, the meaning of which is as follows: 

"go to stage H" "go to stage G" and "wait", respectively. 

LVs CF_PL1, CF_PL2 fuzzy estimate the correspondence of EF to the executed fragments of 
plans PL1 and PL2, respectively. The term HIGH has the meaning "EF corresponds to the plan." The 

terms NO and LOW have the meaning, respectively, "there is not enough data in EF about the events 

of interest" and "EF does not correspond to a plan". The input numerical variables of these LVs are 

cfEF_PL, which are calculated in STM by formula (12). In the rules, in contrast to the previously 
considered version (27), it is possible to use not the cfEF_PL characteristic for the whole plan fragment, 

but the fuzzy characteristics of individual STM data. For example, if in R1 the sequence in which the 

containers were loaded is not important, then it is possible to specify independently the certainty that 
IM was once loaded at positions B and E. To do this, it is sufficient to use independently of one 

another two LVs CF_Load_in_B and CF_Load_in_E. 

In a similar way, rules (27) use LTM data. These are LV CF_1, CF_F_0, CF_G_1, CF_H_1, 

CF_I_2, the last character in the name of which indicates the sequence number of the stage of the 
current plan. These LVs are also defined by three terms as shown in Table 1. These LVs are fuzzy 

characteristics of AP. For example, at the time of completion of the execution of stage F of the plan 

PL1, the current plan, according to (15) and Figure 2, will have the form PL(F,I)={F+0, G+1, I+2}. 
From the list of its fuzzy characteristics (19), rules (27) used cfAP(F,0), cfAP(G,1), cfAP(I,2) and the first 

projection cf1
AP(1) according to (11). 

Rules (27) represent knowledge about control in various situations when stage F is completed. 
Rule R1 for a normal situation, when stage F of plan PL1 is completed and there are no obstacles, 

recommends continuing the same actions (CF_ Continue is HIGH) when performing the next stage. It 

should be emphasized that both conditions (CF_1 is HIGH and CF_PL_1 is HIGH) of rules (27) are 

formed by the DPE algorithm when calculating СF, which characterizes the attainability of the goal 
from the current state of plan execution (20). Another use case for data from STM and LTM is given 

in rule R2, which generalizes a situation that, for some reason, does not meet the necessary conditions 

for the next stage of the plan (CF_G_1 is LOW). This rule is based on the results of the DPE algorithm, 
which replaned and generated a new actual plan based on PL2. The new AP has the form 

PL(F,I)={F+0, H+1, I+2}. Therefore, rule R2 checks the possibility of achieving the goal according to 

the modified plan, when the next stage is not G, but H (CF_H_1 is HIGH) and an action (CF_Move is 
H) is recommended to perform this stage. Rule R3 does not recommend continuing the execution of 

the stages of either plan PL1 or plan PL2, but recommends to suspend actions (CF_Move is NO) when 

the conditions for any of the stages (CF_G_1 is LOW and CF_H_1 is LOW) are not met. Rule R4 

illustrates another option where a risky solution is recommended. There is no complete commitment 

to achieving a goal. In the absence of "fresh" data, AE calculated the meaning of the situation in the 

form (CF_F_0 is HIGH and CF_G_1 is NO and CF_H_1 is NO). But at the same time, the final goal 
remains relevant (CF_I_2 is HIGH) and it is possible to complete the next stage I after the 
nearest target stages G or H. The rule recommends to perform the stage (CF_Move is G) about 
which there is no reliable information, when plan PL1 is relevant CF_PL_1 is HIGH. 

In conclusion, we will discuss several numerical examples of using STM and LTM for FLS-based 

DM. The IM movement according to plan PL1 and its service at stages B, E was simulated. Numerical 

simulation results are given for three cases, when IM did the stages C, E and F of the plan. The AE, 
STM and LTM data used to make decisions at stages are shown in Table II in the format <cf(wi,0); 

(cf(wi,−1), cf(wi,−2), cf(wi,−3), cf(wi,−4)); cf2(wi)> for each event wi for three stages (stage C, stage 

E, stage F). The initial STM and LTM data cf(wi, 0) are coming from AE. 



In the first example, the values cf(wi, 0) = 0.9 are used for all events wi and all positions. The 
influence of the initial data fuzziness on DM is considered in the second and third examples. The 

following values of STM parameters were used in the simulation: m=4, v=0.1, e=0.75. Calculations 

of cfEF_PLi were performed according to (12) for m* = 3. Table II, the Stage C column indicates the 

data that was generated when IM has completed stage B and is ready to perform stage C. The first 
digit in each line in italics is the value of cf(wi, 0), which were calculated by AE based on data from 

the sensors. At this point, EF contains data (four numbers in parentheses in each row of Table II) that 

previously there was only one event associated with loading IM at stage B cf(B, −1) = 0.8. 

 
Table 2 
Modeling Results of the IM movement according to plan PL1 

w/PL Stage C Stage E Stage F 

A 0; (0,0,0,0); 0 0; (0,0,0,0); 0 0; (0,0,0,0); 0 

B 0;(0.8,0,0,0);0.8 0; (0,0.7,0,0); 0.7 0; (0,0,0.6,0); 0.6 

C −0.9; (0,0,0,0);0 0; (−0.8,0,0,0); −0.8 0; (0, −0.7,0,0); −0.7 

D 0; (0,0,0,0); 0  0; (0,0,0,0); 0 0; (0,0,0,0); 0 

E 0; (0,0,0,0); 0  0.9; (0,0,0,0); 0 0; (0.8,0,0,0); 0.8 

F 0; (0,0,0,0); 0  0; (0,0,0,0); 0 0.9; (0,0,0,0); 0 

G 0; (0,0,0,0); 0  0; (0,0,0,0); 0 0; (0,0,0,0); 0 

H 0; (0,0,0,0); 0 0; (0,0,0,0); 0 0; (0,0,0,0); 0 

I 0; (0,0,0,0); 0 0; (0,0,0,0); 0 0; (0,0,0,0); 0 

PL1 cf1 = (0, 0, 0, 0) 
cfPL1

 = 0 
cf1 = (0, 0, 0, 0) 

cfPL1
 = 0 

cf1 =(0.8, 0.7, 0.6, 0) 
cfPL1

 = 0.7 
PL2 cf1 = (0, 0, 0, 0) 

cfPL2
 = 0 

cf1 = (0, 0, 0, 0) 
cfPL2

 = 0 
cf1 = (0, 0.7, 0, 0) 

cfPL2
 = 0.23 

 

Based on these data, the following were calculated: 
1. EF parameters (data of the Stage E column of Table II) according to the FBA 

2. The second projections of the vector field for all events cf2(wi) (the last digit in the Stage C 

column, highlighted in italics in each row of Table II) according to (11) 
3. The first projections cf1(q) of the vector field for all q for both plans PL1, PL2 (indicated in 

the lower part of Table II) according to (11) 

4. The CF that the EF corresponds to plans (indicated in the lower part of Table II) according to 

(12) 
The obtained data were used as the values of the FLS input numerical variables, namely, cf(F,0) = 

0, cfPL1 = 0, cfPL2 = 0. In this experiment, the value of the input numerical variable of the CF_G_1 

was cf(G,+1) = 0. The results of FLS fuzzy inference, on the base of five rules (27), gave cfMOVE_ = 0, 
which corresponds to CF_MOVE = NO (stay in place). A similar result was obtained for stage E 

cfMOVE_ = 0 (in Table II cfPL1 = 0, cfPL2 = 0 and cf(G,+1) = 0). For stage F the following values are 

calculated cfPL1 = 0.7, cfPL2 = 0.23 and cf(G,+1) = 0.85 on the basis of which the FLS received a 
decision cfMOVE_ = 0.96, which corresponds to CF_MOVE = G (start stage G). Analysis of data for 

stage F shows that the solution recommended by IM is rational for the simulated situation. 

In the second example, the study of the information incompleteness influence on DM at the same 

stage F as before was carried out. At the same time, a situation was simulated when data from sensors 
do not allow AE accurately to determine the stage descriptor. Two cases were considered. In the first 

case, the IM perception system with certainty cf(E) confirmed that this is descriptor of stage E and 

with certainty cf(D) that this is descriptor of stage D. In fact, it was a description of stage E. In the 
second case, a similar situation was simulated for stages A and B. The calculation results, like those 

considered earlier for the first example, are shown in Table 3. The upper part of the table shows the 

data for the first case, and the lower shaded part of the table shows the data and results for the second 

case. 
 

 



Table 3 
Certainty cfPL that EF matches the plan for different certainties of stage descriptor identification  

cf 1 2 3 4 5 6 7 8 9 

cf(E) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 
cf(D) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
cfPL1 0.7 0.67 0.63 0.6 0.57 0.53 0.5 0.47 0.43 
cfPL2 0.23 0.23 0.3 0.33 0.37 0.4 0.43 0.47 0.5 
cfMOVE 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 
cf(A) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
cf(B) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 
cfPL1 0.7 0.67 0.63 0.6 0.57 0.53 0.5 0.5 0.5 
cfPL2 0.23 0.23 0.23 0.27 0.3 0.33 0.37 0.4 0.43 

 

Based on the results shown in the table, the following conclusions can be drawn. First, the use of 
EF compensates for the influence of incomplete and fuzziness data on decision making confidence. 

The prehistory held by EF increases the certainty that EF matches the plan. As you can see from the 

Table 3, even with a low confidence in the identification of a actually completed stage E of the plan 

(cf(E) = 0.3) compared with a high confidence in the false identification of a non-completed stage 
cf(D) = 0.7, the correct plan is matched with the EF cfPL1 = 0.5, cfPL2 = 0.43, cfPL1 > cfPL2. This allows 

FLS to make the correct decision cfMOVE = 0.95, which still corresponds to CF_MOVE = G.  

The second conclusion is that the EF elements aging mechanism introduced into the STM model 
supports such a property of short-term memory as the dependence of confidence in decision making 

on the remoteness of an event in memory. From Table 3 shows that two events that occurred at 

different times have different effects on cfPL. It is enough to compare cfPL2 in one column of the table, 
for example, for cf(E) = cf(B) = 0.7 for event E, for which q = −1, cfPL2 = 0.3, and for event B, for 

which q = −3, cfPL2 = 0.23. 

In the future, it is planned to investigate the dependence of the certainty factor of the decision 

made in FLS on the STM and LTM parameters, in particular, memory depth q, aging rate v, data 
incompleteness cf(w), length of the plan Q and the dimension of the knowledge cube N. 

4. Conclusion 

The proposed method expands the possibilities of using FLS in the IM. The IM application 

requiring a complex solution of three tasks, the perception of data from sensors, planning of actions 
and DM in accordance with the actual plan and the process’s history can be implemented as FLS. This 

was made possible by moving away from a task based on data from many sensors to a task based on a 

few words. The AE matched the spatio-temporal sequence of data from sensors into the meaning of 
the words. This capability is supported by a three-stage processing data technology based on the 

integration of three models: generalization of data from sensors using AE, EF processing in STM, 

dynamic planning of the actions in LTM and FLS. Computer experiments using three-stage 

processing data technology in the IM DM showed:  
1. With a significant reduction in the problem dimension, the decisions made by FLS based on 

input data from AE and STM, which represent fuzzy characteristics of high-level generalization 

data, are rational for the simulated situation. 
2. The data aging rate parameter introduced into the STM model allows, at the level of FLS 

rules, firstly, to compensate for the influence of incompleteness and fuzziness of data from sensors 

on confidence in DM, and secondly, to take into account the dependence of confidence in DM on 
the distance of an event in memory. 

3. The introduced DPE, based on the LTM data model, performs dynamic replanning of the 

action plan stages, taking into account the state of the environment, which makes it possible to 

implement situational control of the IM at the level of the FLS rules. 
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