CEUR-WS.org/Vol-2870/paperld.pdf

Towards Russian Text Generation Problem Using
OpenAl’s GPT-2

Oleksii Shatalov, Nataliya Ryabova

National University of Radio Electronics, Nauky av., 14, Kharkiv, 61000, Ukraine

Abstract

This work is devoted to Natural Language Generation (NLG) problem. The modern
approaches in this area based on deep neural networks are considered. The most famous and
promising deep neural network architectures that are related to this problem are considered,
in particular, the most popular free software solutions for NLG based on Transformers
architecture with pre-trained deep neural network models GPT-2 and BERT. The main
problem is that the main part of already existing solutions is devoted to the English language.
But there are few models that are able to generate text in Russian. Moreover, the text they
generate often belongs to a general topic and not about a specific subject area. The object of
the study is the generation of a contextually coherent narrow-profile text in Russian. Within
the framework of the study, a model was trained for generating coherent articles of a given
subject area in Russian, as well as a software application for interacting with it.

Keywords 1
Natural Language Generation, Natural Language Processing, Transformers Architecture,
Deep Learning, Transfer Learning, GPT-2

1. Introduction

The current rate of growth of content is so great that organizations are beginning to fail to keep up
with their own set of speeds. Editors and copywriters do not have time to create new texts from
scratch, think over ideas for new publications so that they are original. Hiring a large staff of
additional staff can significantly increase the costs of the company, which will lead to lower profits.
The second option for solving the problem is to reduce or maintain the speed of content formation,
which will also give negative results in the future, since the company will be a loser in comparison
with competitors. One of the options for solving the problem is the use of the latest artificial
intelligence (Al), machine learning and deep learning technologies for such a task as well as others
related to Natural Language Processing (NLP) problems. Deep neural networks and their training has
become a real breakthrough in solving basic Al problems, including NLP [1, 2, 3, 4]. This area of Al
is rapidly developing, there are separate areas within deep learning, such as generative deep learning,
reinforcement learning, within which new modern models of deep neural networks are being
developed that can solve traditionally complex Al problems faster and, most importantly, more
efficiently [4]. The impressive results of deep neural networks are certainly achieved thanks to
modern information technologies, such as large-scale machine learning libraries TensorFlow,
PyTorch with API for Python language [5, 6, 7, 8, 9].

The main component of many neural language understanding and generating models is pretrained
word representation, proposed in [9, 10]. Word embeddings are the basis of deep learning for NLP.
Word embeddings (word2vec, GLoVe) are often pretrained on the text corpus from co-occurrence
statistics. But learning highquality representations in many cases is challenging task. Word
representations are applied in a context free manner. So, the solution of this problem is train

COLINS-2021: 5th International Conference on Computational Linguistics and Intelligent Systems, April 22-23, 2021, Kharkiv, Ukraine
EMAIL: oleksii.shatalov@nure.ua (O. Shatalov); nataliya.ryabova@nure.ua (N. Ryabova)
ORCID: 0000-0002-7267-6718 (O. Shatalov); 0000-0002-3608-6163 (N. Ryabova)

@ @ © 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

contextual representations on text corpus. In the paper [12] authors introduced a new type of deep
contextualized word representation, they used vectors from bidirectional LSTM (Long Short-Term
Memory recurrent networks). This language model authors called ELMo (Embeddings from
Language Models) representations. So we can see that deep neural networks models are the most up-
to-date and constantly evolving approach for solving many problems of NLP and NLG.

The rest of the paper is organized in the following way. The state of research and recent advances
in deep learning for natural language generation are reviewed in Section 2. In Section 3 general
description of the GPT model is given and test runs of the original model are described. Section 4 is
devoted to searching Russian language resources with a large database of articles on technological
topics, development of software script and formation of dataset. Section 5 contains detailed
description of the experiments, taking into account all technical details of the implementation.
Experiments include two stages: model learning and model training. The most interesting parts of
experiments include train the model to generate whole texts and to generate article titles. In Section
6 experimental results are analyzed. In Section 7 the integration of the models with web application
considered. The main characteristics of the proposed web application are described. Conclusions and
perspectives for future work are discussed in Section 8.

2. Related Works

The neural text generation problem is analized in many works, for example [4, 13]. Authors
describe the classic and recently proposed neural text generation models. The development of
Recurrent Neural Networks Language Models (RNNLMs) discussed in detail with three training
paradigms: supervised learning, reinforcement learning, adversarial training. In 2017, a new simple
neural network architecture was proposed, called transformer, based solely on the attention
mechanism, without recurrence, i.e. sequential calculations [14]. Transfer learning technology allows
you to retrain ready-made models. For Today, this technology is the most promising in deep learning
and is used in the most advanced neural models for the generation of natural language texts [15]. The
next step was to demonstrate that language models begin to learn NLP tasks without any explicit
supervision when trained on a new dataset of millions of webpages called WebText [16, 17]. Authors
are researchers from OpenAl and they demonstrate how work their largest model GPT-2 (Generative
Pre-Trained Transformer). This is a 1.5B parameter Transformer that achieves state of the art results
on 7 out of 8 tested language modeling datasets in a zero-shot setting but still underfits WebText.

Recently some pretrained high-capacity neural language models have become increasingly
important in natural language processing and generation. There are such deep neural networks as
ELMo [12], BERT [18, 19, 20], GPT-2,3 [15, 21, 22]. They are able to predict the next word in a
sequence or some masked word anywhere in a given sequence. BERT (Bidirectional Encoder from
Transformers) is neural network from Google, which demonstrated the best results on a number of
NLP tasks (machine translation, text analysis, chat bots, answering questions, etc.). Google has
released pre-trained models of BERT, but they suffer from a lack of documentation. In fact, BERT
from Google is an improved GPT network from OpenAl (bidirectional instead of unidirectional), also
on the transformer architecture. BERT is the best in almost all popular NLP benchmarks. Unlike
BERT, another popular generative pretrained transformer GPT-2 is created for generating samples of
synthetic text with a completely logical narrative, if you give it any beginning [15]. So GPT-2 is
available for testing and experimenting with it. Therefore, many researchers and practitioners in Al,
NLP and deep learning are trying to solve their problems of generating texts using GPT-2. For
example, copywriters and editors will be more focused on editing texts, or writing them on ready-
made topics that the model will provide. For such tasks, the Transformers architecture is used, which
is able to perceive the context by processing the token chain at once. It should also be noted that many
trained models will be required in their subject areas, since at the moment there are no models that
could equally successfully generate coherent text in several non-related branches of human activity at
once. The multilingualism of the model requires a similar remark.

Thus, it was decided to train a model of a non-profit company OpenAl called GPT-2, namely, a
medium-sized model with 300 million parameters, generating texts in Russian about information
technologies, blockchain and artificial intelligence. To train the model, the Transfer learning will be

used, which allows additional training of ready-made models [21]. This technology will be easy to
apply to the chosen GPT-2 [22]. For such training with so many parameters, a fairly extensive dataset
in Russian is required. The preparation of the dataset will also be described in the article.

3. GPT model overview

The GPT model is designed to predict the next word in the text, forming, when repeating the
operation, a complete coherent text with meaning, context, logic of presentation and completeness of
thought. It was originally designed to answer user questions.

According to the developer, a non-profit company OpenAl, the product they offer can be used in the
future to help in speech recognition, articles and publications editing, keeping control of the storytelling
quality.

The creation of GPT (General Purpose Technology, and later Generative Pretrained Transformer)
models began with the announcement and release of GPT-1 in 2018. At that time, of course, it was a
breakthrough in the field of text generation and the use of Transfer learning technology, which was new at
that time. But, nevertheless, due to the fact that it was trained on a small amount of data, its work left much
to be desired. With the announcement of the first generation of GPT, the foundation was laid for continued
research in this area.

GPT-2, trained on more than 40 GB of data from 8 million web pages, impressed its own developers so
much that the company initially released only a beta version, citing the malicious use of their brainchild to
generate fake news, spam, and more. The release of GPT-2 took place in 2019, immediately after the
release, the work on GPT-3 has begun.

The 3rd generation GPT made a closed API for the same reason — the possibility of using it to harm.
We can also assume that the new model has a sufficiently large amount of data that does not allow it to be
disseminated in the way we are used to. Among other things, a fairly large amount of money was spent on
the creation of GPT-3, on the order of several million dollars. And this is one of the key factors that does
not allow teaching it as effectively even with the knowledge of the mathematical apparatus of the structure
of the model.

3.1. Test runs of the original model

When starting and initializing the model, there were several questions to be answered:

¢ What weights to use to work with the model

e What is the maximum length of the generated text

e What is the concept of "temperature” and how it affects the generation

e Consumed resources

To work with the model, the weights of the PyTorch library are used, as well as a special configuration
file and an encoder model for storing tokens. The maximum length of the generated text can be any,
however the model context window is 1024 tokens. "Temperature” is a parameter that is adjusted during
the generation of text by the model, it shows the degree of "madness” of the text, that is, how far the model
can deviate from the examples set during training. Average consumed resources were calculated in the
middle of Google Colaboratory after 100 launches of each of the original models. The results can be seen
in Table 1.

Table 1
Consumed resources
Number of parameters Occupied disk space, GB RAM, GB GPU memory, GB
GPT-2 124M 0.5 2.48 2.37
GPT-2 355M 1.42 3.46 4.14
GPT-2 774M 3.1 6.09 8.28
GPT-2 1558M 6.23 9.98 10.69

When the generation is started, an initial phrase is sent to the input, through which the context of
the generated text is set. The minimum size is 1 token, the maximum is 1023 tokens. Based on

observations, the larger the volume of the input phrase, the longer it takes to generate the text, it
should also be noted that the increase in time is not linear.

There were also several launches of all models with different input phrases of the "information
technology" subject area. In Figure 1 below, you can see an example of the generated text for the input
phrase "The future of machine learning".

The future of machine learning in machine learning is loocking bright.

Machine learning is a new field with many interesting new applications. The first is mac
hine learning for advanced tasks. The second is machine learning for problem solving.

Machine learning is one of the most popular and most advanced applications of machine le
arning. It is used to identify and solwve complex problems in a variety of contexts. It c
an also help to solve complex problems in a variety of situations.

Machine learning is wery important to the development of new technologies.

The future of machine learning is also shaping up to be fascinating. In the future, we m
ight see how machines can be used to solve puzzles, create data, and even manipulate dat
a in a real-time fashion.

This is a fascinating time for machine learning. In the past, there were many technologi
es that were designed to solve very real-world problems, but these were developed only
or humans. Mow, there are many tools and frameworks that can be used to solwve real-world
problems.

Machine learning is

Figure 1: An example of the generated text by the original model GPT-2 124M

The pre-trained model works reasonably well in English, generating grammatically correct texts while
maintaining context. The 1.5 billion parameter model is expected to have more coherent text than the 124
million parameter model, and is about the same as the 774 million parameter model. But to run a larger
model, more resources are needed, and they work longer.

An interesting feature is that the network itself was able to generate, albeit non-existent, but valid links.
Sometimes it can get stuck — repeating the same phrase.

In Russian, a network of any size works very poorly — this is due to the fact that they were taught
mainly in English. You can verify this by looking at Figure 2, the text " Bce, uro st Mory ckasaTts 00 3TOM
neticTBum, 370 TO, uro” Was fed to the model input.

There are several analogs — models, pre-trained on texts in Russian and capable of generating coherent
texts of general topics. But it often loops, it is not able to generate an adequate text on a specialized topic
because there were no corresponding texts in the training dataset.

Text generation is carried out in a style which is closed to the works of fiction of classical literature.

It is also worth noting that in some cases the model recognizes the text as lyrics and begins to
supplement the text with white verse.

There is a noticeable improvement in the use of words in context, and also there are no missing words
that do not exist in the explanatory dictionary.

At the same time, there is a noticeable improvement in the use of punctuation marks in comparison
with the previous experiment, words and the generation of meaningful text, as well as specific characters
(for example, "?"" And "1").

For further research, it was decided to take the so-called "average™" model of 355 million parameters.

©€ce, 4To A Mory ckazate of 3ToM OedCTBMM, 3TO To, YTO HE MOel CKaz2aTb, YTO A MOTY CKa
3aTe ob 3ToM AeACTEBMM, 2TO TO, YTO HE MOSR Ckazate ob 3

©®ce, 4TO A MOTy cKasaTe ob 3TOM OeWCTEMWM, 2TO TO, YTO B XOAA OeHCTEMH 4acTo.

Kak BOpOTH B XOOA LEACTEMW 03 KOHTDOR HaWW NOAeZHEM ¢GTG M COBETCK

€€ce, 4To A Mory ckazate of 3Tom OeWcCTBMWM, 3TO To, 4TC A MOrY CKazaTe of 3ToM OelcTeM
M, 3TOo TO, 4TO A MOTy CKazaTe 0b 3Tom OedCTBMW, 3TO TO, M

#®ce, 4TO A Mory ckaszaTe ob 3TOM OeCTEMW, 3TO TO, 4TO W BCEMAE HE NPUMEPOE [ANT BaM M
acTepuK.

K¥NUTE OT 3TH 4YTC NPUHLNC HE NPpULNC BEpCHA OeRCTEM

pce, HTO A MOy CKazaTe ob 3Tom OeWACTEMM, 3TO TO, H4TO Bhl KOMNEK Ha ESCTH, KOTOPHA To
CTaTeAx of CKa2aTe Ha BECTH, KOTOPHA TO CTaTeAx of CkazaTs

Figure 2: An example of generating text in Russian by the original model

4. Formation of a dataset

As we understood from the text above, for the model for correct work it’s required to train it on a
sufficiently large amount of text. Thus, the primary task before training the model was the search for
Russian-language resources with a large database of articles on technological topics. After the
research, a small list of them was formed with an approximate number of articles on the portal. The
list can be found in Tables 2, 3 and 4.

Table 2
List of portals for receiving thematic texts "Technologies"
Source name Approximate number of publications
Populyarnaya Mekhanika 44000
Hightech 10000
T) 5900
Rusbase 3000
Techliga 1000
Table 3
List of portals for receiving thematic texts "Machine learning"
Source name Approximate number of publications
Habr 8700
3D News 800
ITC 500
Robotics 300
Korrespondent 200
1z 200

VC 200

Table 4
List of portals for receiving thematic texts "Cryptocurrencies"

Source name Approximate number of publications
ForkLog 22000
ProBlockchain 21000
RBK 20000
bits.media 1600
VC 1200
Habr 900

Due to the number of articles and the approximate amount of text in them, it was decided to form a
dataset based on articles from the "Populyarnaya Mekhanika" and "ForkLog" portals.

For further work, a software script was written that unloaded a monthly archive of portals and
saved it as HTML pages. For a higher speed of the program, this problem was solved by parallel
programming. It allowed to increase the speed of page retrieval by 8 times.

After the pages have been swapped out, they should be processed. We tried several options for
processing the dataset. We got the heading under the <h1> tag and all remaining text from each document,
except for unnecessary related information, such as embedded Twitter posts, time of article creation,
author, tags, etc. Then we implemented:

e Distribution of all articles in different text files

e Distribution of all articles in 1 text file

o Distribution of all articles in different text files with their separation with special service

tokens

o Distribution of all articles in 1 text file with their separation with special service tokens

o Distribution of all articles in different text files with separation of articles and article titles

with special service tokens

o Distribution of all articles in 1 text file with separation of articles and article titles by special

service tokens

As a result, the formation of 1 text file with the separation of articles and article titles with special
service tokens is a processing option that has shown the greatest efficiency both in comparison with the
training time and in further practical applicability. The separation of the title and the article was done for a
reason: it is planned to train a separate model only for generating titles. An example of the appearance of
the text can be seen in Figure 3. Inserting tokens is necessary both for separating the constituent parts of
the article, and for the model to understand the boundaries of finding one context. Also, in the future, it is
the service tokens that will allow us to separate the logically complete parts of the generated text from each
other.

After processing and downloading pages from portals, it was already possible to accurately form
representations by the number of articles in the dataset. The data is in Table 5.

Table 5
Data on the volume of the dataset
Dataset (source name) Number of articles
Populyarnaya Mekhanika 51772

ForkLog 22080

<|strtfrt|><|strifttl| »BEBC ClA xo4eT ycTaHoBWTe Goeswle nasepsl Ha Lockheed AC-138<|ndfttl
| >

FNaea NOAPasAeNeHHA CWA CNeUManeHoro HazHa4sHWA BBC CWA redepan-nedTeHanT Bpagnu XeldTong
ZaABWN, YTO COHOW W2 Zaga4 0DOpoHHOM npomewneHHocTW CUA QomsHO CTaTk OCHaWeHwe BoeBwMW N
asepamv Kawgod netawuweid apTtbatapen Lockheed AC-136 k 2828 rogy.

Nazep mowHocTeW B 128 KMNoBaTT gonmeH BecWThb He bonee 2,3 ToHHe, DyAeT WMCNONb30BaTbLCA Ka
K € OOOpOHWUTENBHEMW, TaK W C HACTYNATENbHEMW UEAAMW M CTAHET CaMbiM MOWHLIM NaSEepHbIM OpYHW
eM, CTOAWMM Ha BOOpY#eHWW CUA.

Erc nepeod Uenbw BYOeT ZAUWTE HENOBOPOTAMBRIX W KDYNHEIX NeTawuwx GaTapel oT pakeT Tuna «s3
EMIA-BOSAY X . Takke OyOyWese NasepHOS ODYWWE OOMWHO QOKYCWMDOBATHCA ONA NODEXEHWA Uensl vy
e Ha zemne. MogobHam Mywka MOXET BSphEaTe GOENPMNAackl Bpara W NOS¥MraTe TOMAWMES, Daspe3aT
b MaWWHL, pafapsl W PAKETHLE YCTAHOBKM, PaCcCeKanR WX NazepHbiM yHoM.

B oTNW4Me OT ApYroro THNa BOOPYXEHWMH MOWHOCTE Nasepa MOKHO YEENWYMTE WM YMEHbWWTE B 33E
WCHMOCTH OT CMTyauWW, AaBaf camoneTy Donewe eBwfopa mpu NopaseHWd ULened .

OpHUM W3 KaHgMAaTOE ONA BHINOAHEHMA 3Torc ofOpoOHHOTrC 2aKaza ABAAETCA KOMMaHuA General Ato
mics, 4ed nazep WMEET MOWHOCTE B 75 KWNOBATT W BECHWT 2,3 TOHHH, NO3ITOMY WHXEHEDaM Za Che
OyHuMe NATE NeT NPUOASTCA MOHATL, KAK CreHepupoBaTh W COXpPaHWTE ewe 45 kunoBaTT MOWHOCTH,
NpW 3TOM HE YBEMWYWE BEC YCTaHoBKW.<|ndfri|»

<|strtfrt|><|strifttl| »Pobor cTouT nepeem B odvepegu 3a iPhone 65

iPhone 65 w iPhone 65 Plus noAEwnMch B Npofawxe CercfHA, HO O4epefu Henawuux npuobpecTH H
OBblil TenedoH CTaNW MOABAATBLCA 3a Hefenw Ao cofelTMA. OOHa NHEUTEnbHMUA MPoAaYKUWM Apple ws
ABCTpanMKM pelwWna MOAOWTW C BbIQYMKOW K BOMpOCY, HE CTana, No NpUMepy MHOTHMX, HOYEEaTb B N
anaTke nMepen MarasMHOM, a oTnpaewna emecTo celA poboTa.
YCTpOWCTEBO, ZaHABWLSE OOHO W3 MEPEHX MECT B o4epenW 33 HoeeM iPhone — 3To iPad, Ha xoTopo
M B pEanEHOM BpPeMeHM OeMOHCTPWPOEANOCE AMUO CaMoi NpeanpHUMHMEON MOKYMATENsHMUB Jcu Ken
nW. MnadweT BbN YKPENIeH Ha BepUMHE WeCTa, a TOT B CEOH OYEpedb KPEenWiCA K QMCTaHUMOHHO
YNpaBnAEMoOMy Konecy. HaxofACk gomMa wiv Ha paboTe, JlocM Morna EMAeTe TO, YTO BMaen pobo
T, DONTaTe € APYTUMM NKOEMH B OYEpend W KOHTPONWPOBSTh ABMMEHWA CBOero poboTa.
PoboT nNpocToAn B oHepegu OBa OHA, W ONSpefMn ero ToNbKe NpeanpuHumMatents fusgcn Xapmep, K
OTOpLIM XM B ManaTke nepeg mara3vdom 17 gHeld go Toro, kak Hoesle iPhone mocTymunu B npoga
#y. CerogHa yTpom Mocw Kennu nonyywna SaBeTHu cMmapTdoH, No NyTH CT3E MECTHOW SHAMEHWTOC
Thil.
Ha doTo NWHack Xapmep BMecTo © pofioTom Macu Kennu<|ndfrt|:>

Figure 3: An example of the appearance of a dataset for the whole text of an article

5. Experiments to explore model training

After a series of experiments, which were described above, studies were carried out on various devices
on the basis of which the training took place.

5.1. Choosing the main device for computing during training

Test training of models was carried out on 3 computing devices:

e CPU
e GPU
e TPU

On average, the learning rate on a GPU is 2 times higher than the learning rate on the CPU, and the
same rate of learning on the TPU is higher than that on the GPU. Also, the Google Colab environment

offers TPUv2-8 for use, which means a possible division of training into 8 threads, which, in theory, will
increase model training by 16 times compared to a GPU. Table 6 shows the elapsed training time for 1
epoch on different devices, based on measurements made during the experiments.

Table 6
Time spent on 1 training epoch
Computing devices Time, s
CPU 65.1
GPU 31.6
TPU 2.3

Thus, after several test runs on different devices and receiving data on the elapsed time, it was decided
to configure the server with a connection to Google Colud TPUv2-8.

5.2. Model training

As mentioned above, we decided to train 2 models: one only for generating text titles, and the
second for generating whole texts, including the title. First, a study was carried out according to the
second model.

5.2.1. Train the model to generate whole texts

In total, about 300 experiments were carried out with models of this type. We changed the markup
of the texts, the learning rate, tried a different number of articles from one source or another.
Ultimately, about 80% of the models suffered from "looping": a part of the text (most often it was a
phrase or a sentence) was repeated several times in the text, making it impossible to supplement the
content. A clear example of this can be seen in Figure 4.

leueHTpanM=o0EaHHEE BUpkM 0DeCneyMESHNT NPOSPaYHOCTE A3HHLX B NyGnW4Hsx ceTAx, cbecnequean
B230NacHOCTE AaHHBX W NPO3PaYHOCTE TPAH33KUWH.

DeueHTpanMzoEaHHEEe Bupwu oDecneyMBaHNT NPO3IPAYHOCTh A3HHEX B NyEBAM4HbX CETAX WM Npo3pa4Hoc
Tb TPaHSaKLMI .

lJeueHTpanuzoEaHHee Oupxu oDecneYMESKT NPOSPaYHOCTE A3HHEX E NyGnW4HbX CETAX WM Npo3pasHoc
Tb TpaHzakuwi.

leueHTpanM2oBaHHee Bupwu obecneyMBaNT NPOIPAYHOCTh A3HHEX B NyE&AM4HLX CETAX WM Npo3padHoc
Tb TpaH3axumi.

IeueHTpanuzoEaHHee Oupxu oDecneYMESKNT NPOSPaYHOCTE A3HHLEX E NyGnW4HbX CETAX WM Npo3pasHoc
Tb TpaHzakumi.

IeueHTpanMaoBaHHee Bupxu obecneyMBalT NPO3PaYHOCTL JaHHLEXK B NyEGAM4HbX CEeTAX WM Npo3padHoc
Tb TpaH3axumi.

Figure 4: An example of model "looping"

This loop is caused for several reasons:

e Model overfitting

e A small value of the "temperature" parameter, which is responsible for the probability
threshold for predicting the next word (accordingly, if the temperature is too high, then everything
that is generated will be incoherent text), is set during text generation

o Asmall "window" for choosing the most probable words, also set during text generation
During the tests, the most optimal values of the parameters above were formed:

e The number of epochs at which the generated text is human-readable is 1000
e The value of the "temperature” parameter was set to 0.8, since at lower values the model
began to "loop”, and at higher values — to generate incoherent text

e The value of the "window" for taking the most probable subsequent words by the model was

set to 40

Also, during training, it was customary to save and test the models every 100 epochs with a small step
decrease at small epoch values. Experiments on them showed that the model has not yet learned how to
normally generate text for exactly the topic that was laid down in the dataset, and it began to make
progress in the latter after the 800th era of training.

Due to the fact that the volume of the generated text was quite small, and the chosen subject area is
assistance to editors and copywriters, it was decided to filter the dataset by the number of words. 3000 was
taken as the extreme value. Thus, the number of articles in the dataset was reduced to 31686. The results of
testing the model confirmed our guess: the articles became longer and the coherence of the text inside
them increased. An example can be seen in Figure 5.

Hoebin kpunTob6ank Santandercoin Foundation sanyckaer
KPUNTOBa/MIOTHbIN MHAEKC ANA YacTHbIX TPeljepoB

B Poccum BaokuyeiH GyaeT peryMpoBaTeCA B COOTBETCTEMN C dejepanbHbIM 3akoHoM. HoBbINA
WHAEKC NpefHasHayeH AnA NPoBeAeHUA MCCNeA0BaHWA W NPeAnoXeHWA MHEECTOPaM W1
MHEECTOPaM. OH NO3BONNT MHESCTOPaM NoAyunTe Gonee NnoapobHyo MHPOPMALWMID O PEIHKAX, Ha
KOTOPBIX OHW MOTYT OTKPBIBATE MW 3aKPBIBaTh MO3KMLMKA M HA OCHOBaHWMW KOTOROW DyayT
EbIGMPATLECA HaMOONEE YAAUHBIE MHBECTMLWOHHBIE DELLEHWA,

Poccwiickve MHBECTOPEI CMOTYT NPUODPECTH MHASKCH! B Pa3MUHBIX CEPEMCaX KPUNToOMp,
KOTOpPBIE NPEAOCTABAAKT MHGOPMALWID O TORTOBLIX CTPaTENMAX B PA3NMUHBIX CEMMEHTEX PhiHKA.
VMnaekcel ByayT GOPMUPOBATLCA HA OCHOBE TekyLlel PEIHOUHOW CTOMMOCTY MOHET W MHAEKCE
WHAEKCOB, OCHOBaHHLIX Ha NPOUSHTaX NpejnokeHna ModeT. Mnaeke coctasut 100% ana
KPMNTOBANHOTHBIX akTMEOB, 50% AnA GymaxkHbIX akTMeoB, 50% Ana duaTtHeix v 10% 4na UMDPOoBLIX

dKTMBOE.

B COOTBETCTEMM C 33KOHOM O LEHHBIX 63.-'Marax e Poccnm mHAeKCsl He MOTYT COZ48E8TeCA Ha OCHOEBE
TEK}’LLI,E‘.'H pI:IHDLIHDﬁ CTOMMOCTA MOHET K MHAEKCA MHASKCOE, OCHOBAHHbBIX Ha NMPOLUEHTaX
NPesnoXeHMA MOHET. MHaekcsl MOTYT ObITh CO34dHbl TONbKO Ha OCHOBE TEK}’LLI,EH f3bIHCILIHOI71
CTOMMOCTH MOHET M MHAEKCa MHASKCOE, OCHOBaHHbBIX Ha NPOUEHTaX NPEJN0MXEHWA MOHET. naekcel
MOTYT BriTh CO30aHbl TONBKO Ha OCHOBE TEK'_-I.-'LLI,EIF prHC-'-IHDIFi CTOWMMOCTHM MOHET W MHAEKC 3
WMHAEKCOE, OCHOBAHHLIX Ha NMPoUeHTaxX NPE4IOXEHNA MOHET.

Figure 5: An example of text generation by a trained model

Also, during the application of Transfer Learning technology, we achieved improved results by
"unfreezing" as many layers of the model as possible, and then gradually decreasing this number.

5.2.2. Train the model to generate article titles

During the work, we decided to move by more generalization of the task: generating the titles of an
article on a given topic is a much narrower task than generating the entire text of an article. Thus, here we
used the developments obtained when training the model in the previous paragraph.

At first, a number of experiments were carried out to retrain the original Russian-language model with
titles from the datasets presented above, but after that an increase in the efficiency of the model was
noticed if the ready-made model was retrained for generating articles. Thus, it was already guaranteed that
the headings would be of a given subject, just this additional training regulated the length of the generated
text in the future.

Taking into account all the comments from the previous section, a dataset of titles was created. An
example of an excerpt from this dataset can be found in Figure 6.

@oTopenopTax C OOHOW M3 KPYMHEeHWMX MalHWHr -depm B KuTae

HTo Takoe GMTKOHH?

Kak OTKpETE BMTKOHH kowengk?

Latium - nmony4eHue BecnnaTHsx GWTKORHOE

BTC China eeena Toproenw Litecoin ¢ Hyn=eol KOMWCCMER

EMTKOAH MMpaMuga MaTpWYHOrC TuNa

Latium - deHWKc waw Tpyn?

CoinAcademy - nepeas OHNAWH WKONa KPUNTOBANKT

06na4Helid MalHWHT Ha npuMepe CEX.io

CemuHap no GWTKORH B WHOWM nobwn pekopod MOCEW3SMOCTH

EWTKOWH - 3TO JeHeruW? HugepnaHos pewawT cygoeby BTC

JapaboTok GuTxciiHoE =2 obweHwe Ha gopyme Letstalkbitcoln - wmHCTpyKuMA
Apple Pay - NOBAWAST NWM HOBHIA MNSTEXHEIA WHCTPYMEHT Ha DMTHOMH?
PayPal fGyoeT npuHuMaTe GWTKOMH 4epez Coinbase

Dogecoin - cofaka He 2apwTa. DOGE NpofonxaeT HapaWMBaTe UEHY
CnuAHKMe mMalHMHra Dogecoin c Litecoin — eTopoe gexanue DOGE

Figure 6: An example of the appearance of a dataset for generating headers

And although service tokens are clearly invisible here, at the encoding stage, the line feed character
turns into a service token, according to which the titles are separated both during training and at the post-
processing stage during generation.

6. Experimental results

To test the learning outcomes, 2 networks were connected (the output of the model for generating titles
was the input for the model for generating articles) and launched for iterative generation of 500 instances.
In total, the process took about 2.5 days. Each final model weighed 1.5 GB and took some time at startup
to initialize.

Nevertheless, the results of the generation were thematic and easy to understand by a person, and 10%
of all articles did not require almost any editing at all. Thus, the task of training directly similar deep
learning models has been successfully completed. Examples of generated text are in Figure 7.

BrioKueiH U VICKyCC'I'BeIIHbIFI WHTe//IeKT
TTPMUMHEI 334€PXKKV NPUHATAA PeLIeHKi

Kak yxe rosopunace, paspabotka BioKueiH-pelIennii CBAZaHA C MHOXECTEOM PUCKOE. Ecin cucTema paboTaeT HeNpaBWBHO 1 M3-3a 3TOTO BOSHUKAKOT NpoGaemsl, e OyAeT CIOXHO BOCCTAHOBNTL
M3HaUaneHOE GYHKUMOHMPOBaHUE. QOHAKO B Cyuae ¢ GUTKOMHOM Mbl MMEEM UeAbId PAL $aKTOPOE, KOTOPLIE 3HAUMTENEHO CHUXKAT BEPORTHOCTL owkBouHoro uibopa B Gyaywem.

CAHUM 13 TEKMX GaKTOPOE ABNASTCA 33AEPXKKA NPHUHATAR PEWEHN, 0BYCNOBASHHAA TEM GaKTOM, UTO BONBLIMHCTED PaspaBoTUMKOE W 3AMUHICTPATOPOE BUTKOMHA 0 NOCNEAHETO BPEMEHN He
3aAyMBIBaKMCh Ha/, TAKMMW BONPOCaMM.

Mouery 3To BaxHO? [lenc B TOM, UTO 38/1ep3Ka NPMHATVR PelueHuii CBA3aHa CO CKOPOCTLIO PearnpoBaHua cucTeMbl

YtoBbl 48Tk OTEET Ha 3TOT BONPOC, HEOBXOAMMO CONOCTABNTE AGHHLIE O PE3BUTMI CACTEMEI C AaHHBIMM W3 CYLLECTBYIOWIX BAOKUEHHOE. Kak TONBKO B 3TOH 08nacTh NOABNAKTCA HOBbIE PaspaldoTumky, nx
paboTa CTaHOBWTCA MPUOPUTETHOWM 3aaauei.

O cpasrenns, B CLUA Ha ceroHAWHMA deHs pa3paboTumki 1 aAMYHUCTPATOPEl BNOKUEHHA HACUMTLIBAKOT OKOMO 2, 5 MAIH uenosek. TakiM 0BpasomM, 3ajepkka NPUHATUA PelleHki y BUTKOMHE J0MKHa
COCTaBNATb OKOAO 5% exeroaHo

MonyyaeTcs, UTo Kax/blfi AeHb A0 NOABAEHVIS NePBbIX PelleHui UAK WX A0NONHEeHUA HeobXoAMMO NPOBOANTL C YUETOM TOTO, CKOMIBKQ N0 HaXOAWMTCA B TO MM MHOE BPEMA B CcTeMe: Kax/ble 20 MuHYT -
Ao 25 uenoeek, kaxasble 30 MuHYT - a0 30, kaxcable 50 MUHYT - Ao 70 yenosek.

Kax xe 370 paboTaer?
Mpexe 8cero HeoGX0ANMO CONOCTABUTL AaHHBIE O PA3BMTHVM CUCTEMBI C AAHHBIMY M3 CYLLECTBYHOWMX BAOKUEHOE, [INA 3TOrO, PasyMeeTcs, NOHaA0BATCA AONONHUTEIbHbIE JaHHBIE.

B nepeyio ouepeas, HeoHX0AMMO CONOCTaBMTL AaHHBIR 00 PasBUTUM CMCTEMBI C AaHHBIMM M3 CyLLECTBYrOLWMX GNOKYeiHOB. 3TO A0BO/LHO HENPOCTaA 3aaya, Tak Kak B HaCTOALLMA MOMEHT CyUleCTBYeT OueHb
orpaHuuenHoe uncno pabotarownx paspaboTumkos, Bee oy paboTaroT Haa pasnuHbIMK NPOEKTAMI, M HAATW NOAXOAALLETO NPOrPAMMKCTA A5 OAHOM 1 TOM Xe paspaboTki MOXEeT He Kaxabi.

MockonbKy BA0KUEH ABARETCA CUCTEMOMR C OTPaHUYEHHBIM BPEMEHEM XPEaHEHWA, ANA OBecreueHms BbICOKON CTenerHn KOHGMASHUNANBHOCTI HEGBXOAMMO MCNIOAB30BATE NPOBEPEHHBIE METOAbI:
MCMOAL30BATE 33WKPPOEAHHEIE GaMaLI M NCNONB30EATE OTKPLITHIE KUK,

AR CPABHEHWA, NP NOMOLLM TEXHONOTMW BNOKUSHH CErOAHA MCNONB3YHOTCA TOALKO B HECKONBKMX CTPaHaX MUpa. Ho AaXKe CAW Bkl XOTWTE MOMYUMTL AOCTYT K TAKIM AaHHbIM, KOTOPbIE XPaHATCA B
HECKONLKUAX CTPAHAX, MX HEOBXOANMO HaATH B OTKPBITOM AOCTYNE.

EC/M roBopuTe of NCNoAbIyeMOM anropuTMe BuiBopa 3agaun, To Hawbonee PacnpPOCTPaHEHHLIM ABNASTCA BLIBOR U3 BOALLWOrO UNCAA AOCTYMHEIX BEPUAHTOE. B 3TOM CIyUae CMCTEMa NOCTOAHHO YUMTbIBaET
MHEHWSA MHOXECTEa yUaCTHMKOB, KOTOPbLIE B UTOTe ONpeaensioT HanBonee BePOATHEI BapHaHT PeLieHs N roNocyoT,

Figure 7: An example of generating a full-size article by a system of 2 models

Also, do not ignore the ability of the model system to generate special characters. Figure 8 shows
the ability to generate enumeration lists, and the model is capable of generating links.

Y Tether ectb waHc pornats Ethereum no Kanutanuzayun

B Tether, nosxany#i, ofjHa 13 CaMblX KPYTbIX A€UEHTPaNM30BaHHBIX KPUNTOBANOT, OIHAKO MO BEPCHM aHannTuueckoro pecypca CainDesk Market Report, 3a nocnerie 4ga roga o6bemsl Topros
KpunToBankoTaMn cHusavce Bonee yem Ha 10%. MprurHOR TOMY OTCYTCTBME YCTORUMBOTO TPEHAA Ha POCT, @ Taloke 3HaunTenbHoe NageHne obbema Topros B nepuog ¢ 22 mapta no 10 anpens.

B uenom & pespane peiHok Ethereum npoaeMOHCTPMPOBaN yeepeHHbIl POCT, 0AHAKO B HAaCTORLLMIA MOMEHT OH 3HAUMTE/IbHO NOTePAN PhIHOUHYI 400 B 3kocucTeme Tether. 310 MoxHo cBA3aTe C
NPOACAXAIOWMMCA NaAeHNeM UeHsl Ethereum n 3ameaneHrem POCTa Kypca BUTKOMHE,

B pamKkax NepErUHBIX NPeAnoxeHni Ha Gupxe Ethereum BbINM CO3AaHEI CNELMaNbHEIE MHCTRYMEHTL], KOTOPEIE 0BECNeUMIM YCTORUNBOE ABKMKEHNE LEHE! K LENW POCTE, OAHAKO B HACTOALUMA MOMEHT
CUTYaLMA MOXKET M3MEHUTLCA B XYLIYIO CTOPOHY, 1 3T0 B NEPBYHO Ouepe/lb CBA3aHO C 3aMeiAeHreM pasBuTiA WHbpacTpykTypsl Tether u Apyrimi BREWHMMI hakTopamu:

* KOHKypeHLUWA Ha peiHke Ethereum sHauuTeNbHO COKPATNACh, OAHAKO B HACTOALLWIA MOMEHT y Ethereum ecTe Bce WakHckl 60T B TON-10 Haubonee KaNUTaNU3MPOBaHHLIX KPUNTOBANIOT;

® 3HauMMbIM ypoBHeM nogaepxkn ana Ethereum pacnonaraet Meagexwid peiHOK UMGPOBOTo 30710Ta. OH HaXOAMTCA M0A YTRO30M M MOXET 3HaUMTENbHO CHU3WTL LieHy akTUBa A0 YPoBHA » 100%= - ueHa %
T ronogoro BBI;

¢ B HACTOALMIA MOMEHT KPUNTOEANKITEI TOPTYHOTCA NO UeHe 40 % OT rogoeoro BBILL

Takum oBpazem, no Muennio CoinDesk Market Report, Tekylwee Asvxerue Lerbl Ethereum npeactaenaeT cobolt NonbITKy pocTa 40 % rOACELIX, OAHAKO NOCAE JOCTHXEHNA LEAW STOT MOKASETENb MOXKET
HECKO/BKO CHWU3WTLEA B 06nacTh » 10%: - yposeHs % rogosoro BBM;

* HecMmoTpsa Ha pocT B GeBpane pocTa, PbiHOK NO-NPeXHeMY HaXOAWTCA NOJ YrPO30/ CHUXEHNA CTOMMOCTV aKTBa. 3To MoXeT DbiTb CBA3aHO C 3aMeNeHneM pa3BUTUS NHGPaCTPYKTYPbl U POCTOM
MHO ALK

B Uenom peiHOK Ethereum za NocAeAHUe ABa rO4a NPOAEMOHCTPUPOBAN YEEPEHHLIA POCT, OAHAKO B HACTOALUMIA MOMEHT €0 KapTMHE HECKOABKO YXYALIMAACE. 3TO MOXKET BbiTk CEAZAHO C 3aMeANEHMEM
PasBUTUA MHOPACTPYKTYPBI M POCTOM MHGAALMM

Figure 8: Demonstration of the ability of the model system to generate special characters

7. Integration of models with web application

For ease of use, it was decided to develop a web application that would be able to generate such articles
based on the user's input text, as well as an open REST API of the application to be able to use it through
other applications. In Figure 9, you can see the use-case diagram. The application is capable of:

e Generate an article via Ul without entered text

e Generate an article via Ul with the entered text (taken into account by the system as the title

of the article)

e Generate titles via REST API

o Generate article by title via REST API

e Generate an article without the entered text via REST API

The application can run on any Linux-based machine, all environment parameters can be configured by
installing the specified required libraries for operation. Also, the code contains the internal logic of post-
processing of the text after generating the content. The visual interface of the application can be seen in
Figure 10.

Web-Application
--- ==include==

Ul article generation

7- =<Includes> --1-

i

/ :
REST API article T =<Include== ‘1|
generation 1

User
- <<|ncludes» ----

REST AP title genemtion } - ---

Figure 9: Use-case diagram of a web application

The application is a test one, and therefore it is very easy to overload the server: the generation of the
text will continue, but due to the resources consumed by another generation process, the speed of both will
be reduced.

GPT-2
Text:

Enter title

Temperature
08
Top k

40

Generate

Figure 10: Ul of web application

By default, the number of tokens for generating full-size articles is 500 tokens, and for titles it is 100.

8. Conclusions and Future Work

Experiments were carried out with the selection of pre-trained models. They ended with the selection
of a Russian-language model pre- trained on classical literature. Initial experiments were done at Google
Colab.

Next, a dataset was prepared: web pages were downloaded from the selected portals about IT topics
and then processed, as indicated in the article. Thus, the volume of text sufficient for training the model on
a given topic was provided.

Further training was deployed on Google Cloud TPU. Experiments were carried out to train models on
various datasets (changes in tags, number of articles, volume of text within an article), and some
generation problems were solved, for example, looping. Also, a web service has been developed for
interacting with the model.

9. References

[1] 1. Goodfellow, Y. Bengio, A. Courville, Deep Learning (Adaptive Computation and Machine
Learning Series), The MIT Press, 2016.

[2] Y. Goldberg, Neural Networks Methods for Natural Language Processing, Morgan&Claypool
Publishing, 2017.

[3] C. Aggarval, Neural Networks and Deep Learning, Springer International Publishing AG, 2018.

[4] D. Foster, Generative Deep Learning. Teaching Machines to Paint, Write, Compose and Play,
O’Reilly Media, Inc., USA, 2019.

[5] B. Bengfort, R. Bilbro, T. Ojeda, Applied Text Analysis with Python. Enabling Language-aware
Data Products with Machine Learning, O’Reilly Media, Inc., USA, 2018.

[6] L. Hobson, H. Cole, H. Hannes, Natural Language Processing in Action. Understanding,
analyzing, and generating text with Python, Manning Publications Co, 2019.

[7] T. Ganegedara, Natural Language Processing with TensorFlow. Teach language to machines
using Python’s deep learning library, Packt Publishing Ltd, UK, 2018.

[8] A. Bansal,Advanced Natural Language Processing with TensorFlow 2: Build effective real-world
NLP applications using NER, RNNs, seg2seq models, Transformers, and more, Packt
Publishing Ltd, Birmingham, UK, 2021.

[9] D. Rao, B. McMahan, Natural Language Processing with PyTorch. Build Intelligent Language
Applications Using Deep Learning, O’Reilly Media, Inc., USA, 2019.

[10] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed representations of words and
phrases and their compositionality, in: NIPS, 2013.

[11] J. Pennington, R. Socher, C. Manning, Glove: Global vectors for word representation, in:
EMNLP, 2014.

[12] M. Peters, M. Neumann, M. lyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer, Deep
Contextualized word representations, arXiv preprint arXiv: 1802.05365 v2 [cs.CL] 22 Mar 2018.

[13] S. Lu, Y. Zhu, W. Zhang, J. Wang, Y. Yu, Neural Text Generation : Past, Present and Beyond,
arXiv preprint arXiv: 1803.07133 v1 [cs.CL] 15 Mar 2018.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, I. Polosukhin.
Attention Is All You Need, in: Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA, pages 6000-6010.

[15] D. Rothman, Transformers for Natural Language Processing: Build innovative deep neural
network architectures for NLP with Python, PyTorch. BERT, RoBERTa, T5, GPT-2, architecture
of GPT-3, and much more, Packt Publishing Ltd, Birmingham, UK, 2021.

[16] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, Improving language understanding with
unsupervised learning. Technical report, OpenAl, 2018.

[17] A. Radford, J. Wy, R. Child, D. Luan, D. Amodei, I. Sutkever. Language Models are
Unsupervised Multitask Learners, Computer Science, 2019.

[18] J. Devlin, M. Chang, K. Lee, K. Toutanova. BERT: Pre-training of Deep Biderectional
Transformers for Language Understanding, arXiv preprint arXiv: 1810.04805 v1 [cs.CL] 11 Oct
2018.

[19] S. Ravichandiran, Getting Started with Google BERT, Packt Publishing Ltd., Birmingham-
Mumbai, 2021.

[20] J. Cage, Python Natural Language Processing (NLP) Exercises: From Basics to BERT, Amazon
Kindle Edition, 2020.

[21] S. Golovanov, R Kurbanov, S. Nikolenko, K. Truskovskyi, A. Tselousov, T. Wolf, Large Scale
Transfer Learning for Narural Language Generation, in: Proceedings of the 57" Annual Meeting
of the Association for Computational Linguistics, Florence, Italy, july 28 — August 2, 2019, pp.
6053 — 6058.

[22] P. Budzianowski, I. Vulic, Hello, It’s GPT-2 — How Can | Help You? Towards the Use of
Pretrained Language Models for Task-Oriented Dialogue Systems, arXiv preprint arXiv:
1907.05774v2 [cs.CL] 4 Aug 2019.

	1. Introduction
	2. Related Works
	3. GPT model overview
	3.1. Test runs of the original model

	4. Formation of a dataset
	5. Experiments to explore model training
	5.1. Choosing the main device for computing during training
	5.2. Model training
	5.2.1. Train the model to generate whole texts
	5.2.2. Train the model to generate article titles

	6. Experimental results
	7. Integration of models with web application
	8. Conclusions and Future Work
	9. References

