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Abstract  
This work is devoted to Natural Language Generation (NLG) problem. The modern 

approaches in this area based on deep neural networks are considered. The most famous and 

promising deep neural network architectures that are related to this problem are considered, 

in particular, the most popular free software solutions for NLG based on Transformers 

architecture with pre-trained deep neural network models GPT-2 and BERT. The main 

problem is that the main part of already existing solutions is devoted to the English language. 

But there are few models that are able to generate text in Russian. Moreover, the text they 

generate often belongs to a general topic and not about a specific subject area. The object of 

the study is the generation of a contextually coherent narrow-profile text in Russian. Within 

the framework of the study, a model was trained for generating coherent articles of a given 

subject area in Russian, as well as a software application for interacting with it. 
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1. Introduction 

The current rate of growth of content is so great that organizations are beginning to fail to keep up 

with their own set of speeds. Editors and copywriters do not have time to create new texts from 

scratch, think over ideas for new publications so that they are original. Hiring a large staff of 
additional staff can significantly increase the costs of the company, which will lead to lower profits. 

The second option for solving the problem is to reduce or maintain the speed of content formation, 

which will also give negative results in the future, since the company will be a loser in comparison 
with competitors. One of the options for solving the problem is the use of the latest artificial 

intelligence (AI), machine learning and deep learning technologies for such a task as well as others 

related to Natural  Language Processing (NLP) problems. Deep neural networks and their training has 
become a real breakthrough in solving basic AI problems, including NLP  [1, 2, 3, 4]. This area of AI 

is rapidly developing, there are separate areas within deep learning, such as generative deep learning, 

reinforcement learning, within which new modern models of deep neural networks are being 

developed that can solve traditionally complex AI problems faster and, most importantly, more 
efficiently [4]. The impressive results of deep neural networks are certainly achieved thanks to 

modern information technologies, such as large-scale machine learning libraries TensorFlow, 

PyTorch with API for Python language [5, 6, 7, 8, 9]. 
 The main component of many neural language understanding and generating models is pretrained 

word representation, proposed in [9, 10]. Word embeddings are the basis of deep learning for NLP. 

Word embeddings (word2vec, GLoVe) are often pretrained on the text corpus from co-occurrence 

statistics. But learning highquality representations in many cases  is challenging task. Word 
representations are applied in a context free manner. So, the solution of this problem is train 
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contextual representations on text corpus. In the paper [12] authors introduced a new type of deep 
contextualized word representation, they used vectors from bidirectional LSTM (Long Short-Term 

Memory recurrent networks). This language model authors called ELMo (Embeddings from 

Language Models) representations. So we can see that deep neural networks models are the most up-

to-date and constantly evolving approach for solving many problems of NLP and NLG.  
The rest of the paper is organized in the following way.  The state of research and  recent advances 

in deep learning  for natural language generation are reviewed in Section 2. In Section 3 general 

description of the GPT model is given and test runs of the original model are described. Section 4 is 
devoted to  searching Russian language resources with a large  database of articles on technological 

topics, development  of software script and formation of dataset. Section 5 contains detailed 

description of the experiments, taking into account all technical details of the implementation. 
Experiments include two stages: model learning and model training.  The most interesting parts of 

experiments include  train the model to generate whole texts  and to generate article titles. In Section 

6 experimental results are analyzed. In Section 7 the integration of the models with web application 

considered. The main characteristics of the proposed web application are described. Conclusions and 
perspectives for future work are discussed in Section 8. 

2. Related Works 

The neural  text generation problem is analized in many works, for example [4, 13]. Authors 

describe the classic and recently proposed neural text generation models. The development of 
Recurrent Neural Networks Language Models (RNNLMs) discussed in detail with three training 

paradigms: supervised learning, reinforcement learning, adversarial training. In 2017, a new simple 

neural network architecture was proposed, called transformer, based solely on the attention 
mechanism, without recurrence, i.e. sequential calculations [14]. Transfer learning technology allows 

you to retrain ready-made models. For Today, this technology is the most promising in deep learning 

and is used in the most advanced neural models for the generation of natural language texts [15]. The 
next step was to demonstrate that language models begin to learn NLP tasks without any explicit 

supervision when trained on a new dataset of millions of webpages called WebText [16, 17]. Authors 

are researchers from OpenAI and they demonstrate how work their largest model GPT-2 (Generative 

Pre-Trained Transformer).  This is a 1.5B parameter Transformer that achieves state of the art results 
on 7 out of 8 tested language modeling datasets in a zero-shot setting but still underfits WebText.  

Recently some pretrained high-capacity neural language models have become increasingly 

important in  natural language processing and generation. There are such deep neural networks as 
ELMo [12], BERT [18, 19, 20], GPT-2,3 [15, 21, 22].  They are able to predict the next word in a 

sequence or some masked word anywhere in a given sequence. BERT (Bidirectional Encoder from 

Transformers) is neural network from Google, which demonstrated the best results on a number of 

NLP tasks (machine translation, text analysis, chat bots, answering questions, etc.). Google has 
released pre-trained models of BERT, but they suffer from a lack of documentation. In fact, BERT 

from Google is an improved GPT network from OpenAI (bidirectional instead of unidirectional), also 

on the transformer architecture. BERT is the best in almost all popular NLP benchmarks. Unlike 
BERT, another popular  generative pretrained transformer  GPT-2 is created for generating samples of 

synthetic text with a completely logical narrative, if you give it any beginning [15]. So GPT-2 is 

available for testing and experimenting with it. Therefore, many researchers and practitioners in  AI, 
NLP and deep learning are trying to solve their problems of generating texts using  GPT-2. For 

example,  copywriters and editors will be more focused on editing texts, or writing them on ready-

made topics that the model will provide. For such tasks, the Transformers architecture is used, which 

is able to perceive the context by processing the token chain at once. It should also be noted that many 
trained models will be required in their subject areas, since at the moment there are no models that 

could equally successfully generate coherent text in several non-related branches of human activity at 

once. The multilingualism of the model requires a similar remark. 
Thus, it was decided to train a model of a non-profit company OpenAI called GPT-2, namely, a 

medium-sized model with 300 million parameters, generating texts in Russian about information 

technologies, blockchain and artificial intelligence. To train the model, the Transfer learning will be 



used, which allows additional training of ready-made models [21]. This technology will be easy to 
apply to the chosen GPT-2 [22]. For such training with so many parameters, a fairly extensive dataset 

in Russian is required. The preparation of the dataset will also be described in the article. 

3. GPT model overview 

The GPT model is designed to predict the next word in the text, forming, when repeating the 

operation, a complete coherent text with meaning, context, logic of presentation and completeness of 

thought. It was originally designed to answer user questions. 

According to the developer, a non-profit company OpenAI, the product they offer can be used in the 

future to help in speech recognition, articles and publications editing, keeping control of the storytelling 

quality. 

The creation of GPT (General Purpose Technology, and later Generative Pretrained Transformer) 

models began with the announcement and release of GPT-1 in 2018. At that time, of course, it was a 

breakthrough in the field of text generation and the use of Transfer learning technology, which was new at 

that time. But, nevertheless, due to the fact that it was trained on a small amount of data, its work left much 

to be desired. With the announcement of the first generation of GPT, the foundation was laid for continued 

research in this area. 

GPT-2, trained on more than 40 GB of data from 8 million web pages, impressed its own developers so 

much that the company initially released only a beta version, citing the malicious use of their brainchild to 

generate fake news, spam, and more. The release of GPT-2 took place in 2019, immediately after the 

release, the work on GPT-3 has begun. 

The 3rd generation GPT made a closed API for the same reason – the possibility of using it to harm. 

We can also assume that the new model has a sufficiently large amount of data that does not allow it to be 

disseminated in the way we are used to. Among other things, a fairly large amount of money was spent on 

the creation of GPT-3, on the order of several million dollars. And this is one of the key factors that does 

not allow teaching it as effectively even with the knowledge of the mathematical apparatus of the structure 

of the model. 

3.1. Test runs of the original model 

When starting and initializing the model, there were several questions to be answered: 

 What weights to use to work with the model 

 What is the maximum length of the generated text 

 What is the concept of "temperature" and how it affects the generation 

 Consumed resources 
To work with the model, the weights of the PyTorch library are used, as well as a special configuration 

file and an encoder model for storing tokens. The maximum length of the generated text can be any, 

however the model context window is 1024 tokens. "Temperature" is a parameter that is adjusted during 

the generation of text by the model, it shows the degree of "madness" of the text, that is, how far the model 

can deviate from the examples set during training. Average consumed resources were calculated in the 

middle of Google Colaboratory after 100 launches of each of the original models. The results can be seen 

in Table 1. 

 

Table 1 
Consumed resources 

Number of parameters Occupied disk space, GB RAM, GB GPU memory, GB 

GPT-2 124M 0.5 2.48 2.37 
GPT-2 355M 1.42 3.46 4.14 
GPT-2 774M 3.1 6.09 8.28 

GPT-2 1558M 6.23 9.98 10.69 

 
When the generation is started, an initial phrase is sent to the input, through which the context of 

the generated text is set. The minimum size is 1 token, the maximum is 1023 tokens. Based on 



observations, the larger the volume of the input phrase, the longer it takes to generate the text, it 
should also be noted that the increase in time is not linear. 

There were also several launches of all models with different input phrases of the "information 

technology" subject area. In Figure 1 below, you can see an example of the generated text for the input 

phrase "The future of machine learning". 

 

 
Figure 1: An example of the generated text by the original model GPT-2 124М 

 
The pre-trained model works reasonably well in English, generating grammatically correct texts while 

maintaining context. The 1.5 billion parameter model is expected to have more coherent text than the 124 

million parameter model, and is about the same as the 774 million parameter model. But to run a larger 

model, more resources are needed, and they work longer. 

An interesting feature is that the network itself was able to generate, albeit non-existent, but valid links. 

Sometimes it can get stuck – repeating the same phrase. 

In Russian, a network of any size works very poorly – this is due to the fact that they were taught 

mainly in English. You can verify this by looking at Figure 2, the text " Все, что я могу сказать об этом 

действии, это то, что" was fed to the model input. 

There are several analogs – models, pre-trained on texts in Russian and capable of generating coherent 

texts of general topics. But it often loops, it is not able to generate an adequate text on a specialized topic 

because there were no corresponding texts in the training dataset. 

Text generation is carried out in a style which is closed to the works of fiction of classical literature. 

It is also worth noting that in some cases the model recognizes the text as lyrics and begins to 

supplement the text with white verse. 

There is a noticeable improvement in the use of words in context, and also there are no missing words 

that do not exist in the explanatory dictionary. 

At the same time, there is a noticeable improvement in the use of punctuation marks in comparison 

with the previous experiment, words and the generation of meaningful text, as well as specific characters 

(for example, "?" And "!"). 

For further research, it was decided to take the so-called "average" model of 355 million parameters. 



 
Figure 2: An example of generating text in Russian by the original model 

4. Formation of a dataset 

As we understood from the text above, for the model for correct work it’s required to train it on a 
sufficiently large amount of text. Thus, the primary task before training the model was the search for 

Russian-language resources with a large database of articles on technological topics. After the 

research, a small list of them was formed with an approximate number of articles on the portal. The 

list can be found in Tables 2, 3 and 4. 

 
Table 2 
List of portals for receiving thematic texts "Technologies" 

Source name Approximate number of publications 

Populyarnaya Mekhanika 44000 
Hightech 10000 

TJ 5900 
Rusbase 3000 
Techliga 1000 

 

Table 3 
List of portals for receiving thematic texts "Machine learning" 

Source name Approximate number of publications 

Habr 8700 
3D News 800 

ITC 500 
Robotics 300 

Korrespondent 200 
IZ 200 
VC 200 

 

 



Table 4 
List of portals for receiving thematic texts "Cryptocurrencies" 

Source name Approximate number of publications 

ForkLog 22000 
ProBlockchain 21000 

RBK 20000 
bits.media 1600 

VC 1200 
Habr 900 

 

Due to the number of articles and the approximate amount of text in them, it was decided to form a 

dataset based on articles from the "Populyarnaya Mekhanika" and "ForkLog" portals. 
For further work, a software script was written that unloaded a monthly archive of portals and 

saved it as HTML pages. For a higher speed of the program, this problem was solved by parallel 

programming. It allowed to increase the speed of page retrieval by 8 times. 
After the pages have been swapped out, they should be processed. We tried several options for 

processing the dataset. We got the heading under the <h1> tag and all remaining text from each document, 

except for unnecessary related information, such as embedded Twitter posts, time of article creation, 

author, tags, etc. Then we implemented: 

 Distribution of all articles in different text files 

 Distribution of all articles in 1 text file 

 Distribution of all articles in different text files with their separation with special service 

tokens 

 Distribution of all articles in 1 text file with their separation with special service tokens 

 Distribution of all articles in different text files with separation of articles and article titles 
with special service tokens 

 Distribution of all articles in 1 text file with separation of articles and article titles by special 

service tokens 
As a result, the formation of 1 text file with the separation of articles and article titles with special 

service tokens is a processing option that has shown the greatest efficiency both in comparison with the 

training time and in further practical applicability. The separation of the title and the article was done for a 

reason: it is planned to train a separate model only for generating titles. An example of the appearance of 

the text can be seen in Figure 3. Inserting tokens is necessary both for separating the constituent parts of 

the article, and for the model to understand the boundaries of finding one context. Also, in the future, it is 

the service tokens that will allow us to separate the logically complete parts of the generated text from each 

other.  

After processing and downloading pages from portals, it was already possible to accurately form 

representations by the number of articles in the dataset. The data is in Table 5. 

 

Table 5 
Data on the volume of the dataset 

Dataset (source name) Number of articles 

Populyarnaya Mekhanika 51772 
ForkLog 22080 

 



 
Figure 3: An example of the appearance of a dataset for the whole text of an article 

5. Experiments to explore model training 

After a series of experiments, which were described above, studies were carried out on various devices 

on the basis of which the training took place. 

5.1. Choosing the main device for computing during training 

Test training of models was carried out on 3 computing devices: 

 CPU 

 GPU 

 TPU 
On average, the learning rate on a GPU is 2 times higher than the learning rate on the CPU, and the 

same rate of learning on the TPU is higher than that on the GPU. Also, the Google Colab environment 



offers TPUv2-8 for use, which means a possible division of training into 8 threads, which, in theory, will 

increase model training by 16 times compared to a GPU. Table 6 shows the elapsed training time for 1 

epoch on different devices, based on measurements made during the experiments. 

 

Table 6 
Time spent on 1 training epoch 

Computing devices Time, s 

CPU 65.1 
GPU 31.6 
TPU 2.3 

 

Thus, after several test runs on different devices and receiving data on the elapsed time, it was decided 

to configure the server with a connection to Google Colud TPUv2-8. 

5.2. Model training 

As mentioned above, we decided to train 2 models: one only for generating text titles, and the 

second for generating whole texts, including the title. First, a study was carried out according to the 

second model. 

5.2.1. Train the model to generate whole texts 

In total, about 300 experiments were carried out with models of this type. We changed the markup 

of the texts, the learning rate, tried a different number of articles from one source or another. 

Ultimately, about 80% of the models suffered from "looping": a part of the text (most often it was a 

phrase or a sentence) was repeated several times in the text, making it impossible to supplement the 
content. A clear example of this can be seen in Figure 4. 

 

 
Figure 4: An example of model "looping" 

 
This loop is caused for several reasons: 

 Model overfitting 

 A small value of the "temperature" parameter, which is responsible for the probability 

threshold for predicting the next word (accordingly, if the temperature is too high, then everything 

that is generated will be incoherent text), is set during text generation 

 A small "window" for choosing the most probable words, also set during text generation 
During the tests, the most optimal values of the parameters above were formed: 

 The number of epochs at which the generated text is human-readable is 1000 

 The value of the "temperature" parameter was set to 0.8, since at lower values the model 

began to "loop", and at higher values – to generate incoherent text 



 The value of the "window" for taking the most probable subsequent words by the model was 

set to 40 
Also, during training, it was customary to save and test the models every 100 epochs with a small step 

decrease at small epoch values. Experiments on them showed that the model has not yet learned how to 

normally generate text for exactly the topic that was laid down in the dataset, and it began to make 

progress in the latter after the 800th era of training. 

Due to the fact that the volume of the generated text was quite small, and the chosen subject area is 

assistance to editors and copywriters, it was decided to filter the dataset by the number of words. 3000 was 

taken as the extreme value. Thus, the number of articles in the dataset was reduced to 31686. The results of 

testing the model confirmed our guess: the articles became longer and the coherence of the text inside 

them increased. An example can be seen in Figure 5. 

 

 
Figure 5: An example of text generation by a trained model 

 

Also, during the application of Transfer Learning technology, we achieved improved results by 

"unfreezing" as many layers of the model as possible, and then gradually decreasing this number. 

5.2.2. Train the model to generate article titles 

During the work, we decided to move by more generalization of the task: generating the titles of an 

article on a given topic is a much narrower task than generating the entire text of an article. Thus, here we 

used the developments obtained when training the model in the previous paragraph. 

At first, a number of experiments were carried out to retrain the original Russian-language model with 

titles from the datasets presented above, but after that an increase in the efficiency of the model was 

noticed if the ready-made model was retrained for generating articles. Thus, it was already guaranteed that 

the headings would be of a given subject, just this additional training regulated the length of the generated 

text in the future. 

Taking into account all the comments from the previous section, a dataset of titles was created. An 
example of an excerpt from this dataset can be found in Figure 6. 



 
Figure 6: An example of the appearance of a dataset for generating headers 

 

And although service tokens are clearly invisible here, at the encoding stage, the line feed character 

turns into a service token, according to which the titles are separated both during training and at the post-

processing stage during generation. 

6. Experimental results 

To test the learning outcomes, 2 networks were connected (the output of the model for generating titles 

was the input for the model for generating articles) and launched for iterative generation of 500 instances. 

In total, the process took about 2.5 days. Each final model weighed 1.5 GB and took some time at startup 

to initialize. 

Nevertheless, the results of the generation were thematic and easy to understand by a person, and 10% 

of all articles did not require almost any editing at all. Thus, the task of training directly similar deep 

learning models has been successfully completed. Examples of generated text are in Figure 7. 

 

 
Figure 7: An example of generating a full-size article by a system of 2 models 

 



Also, do not ignore the ability of the model system to generate special characters. Figure 8 shows 
the ability to generate enumeration lists, and the model is capable of generating links. 

 

 
Figure 8: Demonstration of the ability of the model system to generate special characters 

7. Integration of models with web application 

For ease of use, it was decided to develop a web application that would be able to generate such articles 

based on the user's input text, as well as an open REST API of the application to be able to use it through 

other applications. In Figure 9, you can see the use-case diagram. The application is capable of: 

 Generate an article via UI without entered text 

 Generate an article via UI with the entered text (taken into account by the system as the title 
of the article) 

 Generate titles via REST API 

 Generate article by title via REST API 

 Generate an article without the entered text via REST API 
The application can run on any Linux-based machine, all environment parameters can be configured by 

installing the specified required libraries for operation. Also, the code contains the internal logic of post-

processing of the text after generating the content. The visual interface of the application can be seen in 

Figure 10. 

 

 
Figure 9: Use-case diagram of a web application 

 

The application is a test one, and therefore it is very easy to overload the server: the generation of the 

text will continue, but due to the resources consumed by another generation process, the speed of both will 

be reduced. 



 

 
Figure 10: UI of web application 

 

By default, the number of tokens for generating full-size articles is 500 tokens, and for titles it is 100. 

8. Conclusions and Future Work 

Experiments were carried out with the selection of pre-trained models. They ended with the selection 

of a Russian-language model pre- trained on classical literature. Initial experiments were done at Google 

Colab. 

Next, a dataset was prepared: web pages were downloaded from the selected portals about IT topics 

and then processed, as indicated in the article. Thus, the volume of text sufficient for training the model on 

a given topic was provided. 

Further training was deployed on Google Cloud TPU. Experiments were carried out to train models on 

various datasets (changes in tags, number of articles, volume of text within an article), and some 

generation problems were solved, for example, looping. Also, a web service has been developed for 

interacting with the model. 
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