
Development of Conjunctive Decomposition Tools

Igor Shubin

Kharkiv National University of Radio Electronics, Nauky Ave. 14, Kharkiv, 61166, Ukraine

Abstract
The development of conjunctive decomposition tools focused on building logical network

models is the main topic of this article. The possibility of using such tools for the

development of linguistic information processing systems determines the relevance of the

chosen topic. The relationship between operations in relational algebra and in the algebra of

finite predicates is de-scribed. With the help of relational statements about dependencies, the

algebraological apparatus of decomposition of predicates was further developed. The method

of binary decomposition of functional predicates is founded, which differs from the general

method of Cartesian decomposition in that the number of values of the auxiliary variable is

minimized.

Keywords1
Predicate Algebra, Logical Networks, Binary Decomposition, Cartesian Decomposition.

1. Introduction

Among the many formalisms applicable to one degree or another to the tasks of processing

informal information, the most appropriate is the use of predicate algebra, systems of equations which

are technically implemented in the form of a logical network. One of the advantages of this approach

is its direct applicability to all the following types of problems, which is provided by the declaratives

of the logical network as a method of solving systems of predicate equations. The notation of the

predicate equations itself becomes possible due to the algebra of predicates.

On the example of processing test information by artificial intelligence, we can consider the

general classification of tasks that arise in the process of working with primary informal information:

 analysis (for example, recognition - obtaining from informal information specific

parameters necessary for the application of some formalism);

 normalization - bringing information to some reference form, which is relevant in the

search for information;

 synthesis - the expression of the internal representation of information stored in

accordance with the formal requirements in a form adapted for human perception;

 mixed tasks.

Another advantage of logical networks is the wide parallelization of calculations, which, provided

the correct construction of the task model guarantees high efficiency.

In addition, the brain-like computer, based on the technology of logical networks, is close in

structure to the structure of the human brain, which gives reason to hope for the creation of

information technology-based systems based on the capabilities of human [1].

The study of categories quickly became an independent abstract discipline and is now an important

branch of pure mathematics. In addition, it influenced the conceptual foundations of mathematics and

the language of mathematical practice. It offers elegant and powerful tools for expressing connections

between major branches of mathematics and provides mathematicians with tools for mathematical

research that occupy more and more space in the arsenal of mathematics.

COLINS-2021: 5th International Conference on Computational Linguistics and Intelligent Systems, April 22–23, 2021, Kharkiv, Ukraine

EMAIL: igor.shubin@nure.ua (I. Shubin).
ORCID: 0000-0002-1073-023X (I. Shubin)

 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

However, to date, the theory of categories still does little to solve problems such as the description

of the mechanisms of human intelligence, such as the development of artificial intelligence, the

creation of parallel computers, intelligent radar systems, and so on.

Therefore, it is necessary to establish a connection between the theory of categories and modeling

of systems based on artificial intelligence using an intermediate field of knowledge - the algebra of

finite predicates, by which a predicate interpretation of the category can be built. Based on this

interpretation, elements of the theory of the modified category for the processes of modeling the

functions of artificial intelligence are developed.

2. Usage of Logical Networks

A distinctive feature of artificial intelligence tasks is that they are difficult to formalize, necessary

to enable the automation of their solutions. Thus, it is expedient to study the universal tool of informal

information processing – the human brain and to model some of its functions related to the tasks

based on modern technologies. The essence of the approach is that human intelligence is seen as logic

in action, as some material embodiment of the mechanism of logic. Works on logic algebraization

were performed.

Schematic implementation of formulas describing algebraic-logical structures leads to

characteristic engineering networks that have not been used before, and which are called logical

networks. When comparing these networks with the main types of neural structures, a deep similarity

in the structure of technical and biological structures is revealed. Based on this similarity, we can

determine the functions of different types of neural structures and describe in exact mathematical and

technical terms the principles of brain function.

The main thing in this method is the movement from top to bottom: from general system

considerations to algebraic-logical structures, and from them to logical networks, which are then

identified with biological neural structures.

Unlike the traditional information technology algorithmic approach, the declarative task model is

not an algorithm. The task model presented in a declarative form is usually a set of facts, knowledge

of facts and rules, according to which actions are taken on facts that allow to obtain new knowledge

based on old ones.

A logical network is a method for solving systems of predicate equations and has descriptive

capabilities of predicate algebra. The property of a logical network is the parallel execution of all

elementary logical operations – that is, the maximum possible at the logical level of parallel

calculations. This approach guarantees high efficiency in solving problems that are reduced to a

logical conclusion or to the solution of logical equations.

To formalize the tasks of processing informal information using logical networks, it is necessary to

explore the possibilities of rational application of the algebra of finite predicates. To this end, it is

necessary to model the most common tasks from different areas of the subject area. Examples include

areas such as: the task of modeling the recognition mechanisms of inconspicuous radar objects.

3. Mathematical Decomposition Tools

The mathematical tools developed for the decomposition of relations and predicates are designed

primarily to create logical networks, which, in turn, are the basis for building a parallel-action

computer. The mathematical results of the work can be used in automatic language processing

systems, computer-aided design systems for information systems. Logical networks can be effective

in creating specialized parallel-action devices designed to simulate complex computing systems, for

example, a system of complete adequate morphological analysis of natural language texts.

Mathematical model suitable for implementation in the form of a logical network should be

represented by a system of binary equations, i.e., each equation of such a system should have two

variables. This form of presentation is a logical network model. In this case, the system of binary

equations should be as compact as possible in order to save hardware resources when implementing

the model.

Converting a model into a compact binary form requires conjunctive decomposition of predicates.

In the area of the decomposition apparatus, a shortage of justified methods, that does not require

checking the equivalence of the obtained result to the original predicate, and at the same time rational

methods that allow obtaining a compact binary representation for a given formal model. When

developing models of logical networks for processing linguistic information, developers mostly used

their own intuitive methods, rather than strict, justified methods. The logical network models obtained

in this way need experimental verification of their adequacy to the described object.

Almost all available formal means of decomposition of predicates in these works do not consider

the relationship between variables. Taking these features into account in the structure of a predicate

allows one to decompose it in a more rational way. Meanwhile, the theory of relational databases

offers a means of decomposing relations in the form of statements about the dependencies between

attributes (in the section on normalizing relations). Given the deep connection between relations and

predicates, the means of decomposition of relations can be applied to solve the problem of

decomposition of predicates. As an analysis of the literature has shown that such tools are currently

not available in the apparatus of predicate algebra.

4. Analysis of Objectless Categories

The only difference between category theory and predicate algebra is that the former moves from

top to bottom, aims to learn higher logical mechanisms and therefore uses as starting points the

concept of a record level of commonality. The second, starting from the needs of informatization,

moves in the study of the same logic of thinking from the bottom up. If it were possible to give a

convincing interpretation of the concepts formed by the theory of categories and the methods

developed by it in terms of predicate algebra, i.e., concretizing, to bring them closer to

informatization, it would significantly enrich the tools of predicate algebra. It is the algebra of

predicates that we are going to use as such an intermediate field of knowledge.

A logical network copies a person's actions, but with the only difference that a person acts

sequentially and a network acts in parallel. The network works in cycles. In the first half-bar of the -

th bar, the network for each of its equations of the form (is the relation given by such

equation) finds:

1. according to the known knowledge of about the value of the variable x at the beginning

of i- th bar knowledge about the value of the variable at the end of the -th bar;

2. according to the known knowledge of about the value of the variable at the

beginning of the -th bar, knowledge of about the value of the variable at the end of the

-th bar.

Mathematically, these two operations are expressed by formulas:

where and are the variable areas of .

In the second half of each bar, the network finds the common part of all knowledge

 about the value of each of its objective variables parties, which come

through the branches of the network from all to the pole . This operation is expressed as follows:

The obtained knowledge is then used as the state of the pole at the initial moment of

the st cycle. The symbol denotes the number of branches approaching the pole x. Before the

beginning of the st bar, knowledge of the set is formed in each pole, which is always

included in the knowledge of the set , which was kept in the same pole at the beginning of the

-th bar. Thus, the only result of the logical network is the refinement of the knowledge contained in

all its poles in accordance with the original data.

With the introduction of the theory of categories, along with the usual concept of category, there

was a more general concept of objectless category.

Let be some set. Its elements, denoted by the symbols are called morphisms.

Suppose, moreover, that some, in the general case, partial operation is given, which acts with

. It is called the multiplication of the morphisms and . The morphism is called

the product of the morphisms and . Any morphism is called singular or identical if it

satisfies the following conditions:

 for any for which there is a product , the equality ;

 for any for which there is a product , the equality holds.

This definition tacitly allows the existence in the category of many units. It is the presence of

many units (and only this) that distinguishes a category from other known algebraic structures. The

singular morphisms and are named according to the right and left for the morphism ,

if and . For any morphism there are a single right and a single left

morphisms. This statement is called the law of identity. Thus, for each there is a single right

unit ef and a single left unit , such that .

Multiplication of morphisms is associative: for any for which there

are products: and . The set , which contains at least single morphisms, and on which

the operation of multiplication of morphisms with the above properties is called an object-free

classical category . Write . is the set of all morphisms of

category . If , then we say that the morphism is a -Morphism.

5. Tools Based on DCPA

Next, we will talk about the development of new predicate decomposition tools based on

statements about dependencies from the normalization of relational relations. At the beginning, an

exact definition of the decomposition procedure with respect to relational relations and predicates is

given; statements about dependencies that allow decomposition of relational relations are considered;

their generalizations are proposed. Based on the relations between relational algebra and predicate

algebra, dependency statements are transformed into new predicate decomposition tools.

A predicate in the basis of a disjunctive conjunctive predicate algebra (DCPA) is usually regarded

as an analytic notation of a relation. Therefore, a predicate decomposition is a decomposition of a

relation at the analytical level (simply manipulating formulas), when not the relations themselves are

processed, but the corresponding predicate formulas.

We clarify the concept of decomposition, as it is understood in relational databases. To do this, we

give the concept of the dependence of the compound, which is used in the theory of dependencies.

Let be a subset family of sets . If , then is called overlapping of

set . An overlapping is called a partition of a set if the sets are pairwise disjoint.

Let be some relation, and the family of sets forms the covering of the set .

The relationship satisfies the connection dependencies if

 (1)
Expression (1) is the so-called algebraic restriction of integrity.

Other types of dependencies that are used in the theory of dependencies – functional and multi-

valued dependencies – are special cases of the connection dependency. Therefore, any dependence

made in allows us to represent in the form of a natural connection of their projections

(1). In the theory of relational databases, it is usually this procedure that is called decomposition of .

Based on the expression (1), decomposition itself is carried out by designing the initial relation for

different groups of its attributes. This suggests that the projection operator is the decomposition

operator, while the composition (reassembly) operator is a natural join.

However, splitting a relation can be carried out in different ways: along with projection, for

example, sampling can be used as a decomposition operator. Then the composition operator will no

longer be a natural join, but a join operation. When in database theory we are talking about the

decomposition of relations, then almost always we mean a decomposition of the form (1). Other types

are practically not used. Nevertheless, for accuracy, the decomposition of relations in the form (1) will

sometimes be called projection-connective decomposition.

5.1. Predicate Decomposition

A predicate decomposition of is the derivation of some predicates based on a

predicate with the possibility of its reverse recovery from these predicates, which is called the

predicate compositionof . An important particular case of decomposition is the so-called binary

predicate decomposition of , characterized in that each of the predicates resulting from

the decomposition of the predicate has exactly two significant arguments. If the conjunction serves

as the composition (restoration) operator, then decomposition is called conjunctive.

The predicate analogues of relational projection operations are existence quantifiers. Then the

predicate analogue of the projection-connective decomposition will be the quantifier-conjunctive form

of decomposition.

Let be a spanning tree with a finite set of variable names ,

 Let be some predicate from , and the family of sets

 form a covering of the set . We say that a predicate satisfies conjunction

dependences if

 (2)

where , .

Representation of the predicate in the form of (2) will be called a quantifier-conjunctive

decomposition.

Some methods for decomposing predicates boil down to replacing the original predicate with

some auxiliary predicate , which is built based on the original predicate by introducing one or

more auxiliary variables . The idea of these methods is that the auxiliary predicate is

constructed in advance so that it satisfies some required quantifier-conjunctive dependence. Then,

using the existential quantifiers, the predicate is decomposed directly. This predicate is related to

the original predicate by equality

 (3)

Although in fact a quantifier-conjunctive decomposition of the auxiliary predicate is performed,

the original predicate is restored using equality (3). Therefore, they say that the predicate is

decomposed.

Thus, the predicate decomposition can be performed either without the help of auxiliary variables,

or with the help of them. In the first case, decomposition is called equivalent, in the second –

nonequivalent. So, the decomposition of the mentioned predicate is equivalent, and the

decomposition of the original is nonequivalent. Quantifier conjunctive decomposition is

equivalent.

5.2. Functional Dependence

Let us consider the concepts of dependencies and some statements regarding them. The latter

allow for a given relationship to resolve the question of the admissibility of a projection-connective

decomposition. Consider special cases: functional and multi-valued dependencies.

Let a relation be given and , be arbitrary subsets of the set . It is said that

depends functionally on if for any two functional data from equality

follows the equality . If depends functionally on , it is written and said that

the relation satisfies the functional dependence or that the functional dependence is

fulfilled in the relation

It follows directly from the definition that if the dependence is satisfied in , then it is

executed in any of its projections containing many attributes .

If is an arbitrary relation, then the set of pairs such that in is denoted

by . It is called the structure of the functional dependencies of the relationship .

Let be an arbitrary relation . It is proved that the structure of functional dependencies has

the following properties (is a subset of a set).

If , then (4)

If and , then (5)

For a deductive system defined by rules (4) - (5), the problem of derivability or logical sequence is

algorithmically solvable, which means that the analysis of the structures of functional dependencies

can be carried out automatically. There are algorithms that allow for a given set of functional

dependencies to find the set of all dependencies that logically follow from the set according

to the rules (4) - (5). In addition, there is an algorithm to determine whether some functional

dependence is a consequence of many dependencies or not. To analyze relationships with

functional dependencies, all these algorithms are based on the apparatus of Boolean functions.

5.3. Multi-valued Dependence

Statement 1. Haag's theorem. Let be some relation from , and the family of sets

 forms a partition of the set . If in , then

 (6)

In other words, Haag's theorem says that functional dependence in relation

implies connection dependence for it.

Let us consider the concept of multi-valued dependence. Let a relation be given and let

 and be arbitrary subsets of the set . It is said that ambiguously determines if

, where . If defines ambiguously, it is written

 and said that the relation satisfies the ambiguous dependence or that the

ambiguous dependence is fulfilled in the relation .

The above definition shows that a multi-valued dependence is a special case of a connection

dependence and is also determined through an algebraic integrity constraint.

If is an arbitrary relation, then the set of pairs such that in is denoted

by . It is called the structure of multi-valued relationship dependencies .

Let be an arbitrary relation. It is proved that the structure of multivalued dependencies

has the following properties (, , , - subsets of a set).

If , then (7)

If and , then (8)

If and , then (9)

If , then (10)

Property (10) suggests that multi-valued dependencies always form connected pairs; therefore, the

notation is used to relate to and the dependence . As for

functional dependencies, for the deductive system defined by rules (7) - (10), the derivability problem

is algorithmically solvable, therefore, the analysis of the structures of multi-valued dependencies can

also be carried out automatically using Boolean functions.

Statement 2. Let be an arbitrary relation, and and be arbitrary subsets of

the set . The relation satisfies the dependence if and only if

 (11)

for every and every .

Equality (11) shows, that for every from set does not depend on

. It means that multivalued dependency in defines the displaying of

 from to Boolean that can be related as multivalued

function from in .

This statement in less formal form is chosen as a definition to multivalued dependency by Date.

Except for the notation, this definition is as follows.

Let there be some relation , and , and the sets

 do not intersect in pairs. multivalued depends on if and only if the set of values

corresponding to a given pair (value and value) of the ratio depends only on but does not

depend on .

At the same time, Date cites the definition of multivalued dependence adopted in this paper as

Feigin's theorem, which is formulated in terms of “if and only if”.

Statement 3. Let be an arbitrary relation, and and be arbitrary subsets of the set

, . The relation satisfies the dependence if and only if

 (12)

for every .

Note that the natural combination of two relations that have no common attributes can be viewed

as an extended version of the Cartesian product. Equality (12) expresses just such a case. In fact,

Statement 3 expresses another way that multivalued dependency can be defined.

According to Statement 3, the presence of a multivalued relationship in a relation

 means that its attributes and are mutually independent: the set of values of each of

them depends only on the value of the attribute . In other words, multivalued dependencies

 appear when, for a meaningful group of characteristics , the set of values of

characteristics from groups and must occur in any combinations with a fixed value of the -

component.

Each functional dependence is a multivalued dependence, i.e. if at , then at .

Therefore . Thus, multivalued dependencies are a generalization of functional

dependencies.

However, there is a significant difference between functional and multivalued dependencies.

According to (10) dependences and always form connected pairs,

which is denoted as , where . Property (10) has no analogue for

functional dependencies, therefore, in the general case, they do not form connected pairs.

The following statement generalizes Statement 2, and this time uses the notion of connection

dependency.

Statement 4. Let be some relation from , and the family of sets forms

a partition of the set . The relation satisfies the connection

dependence if and only if

 (13)

for each .

Statement 5. Generalization of Feigin's theorem. Let be some relation from , and the

family of sets forms a partition of the set . A relation satisfies the

connection dependency if and only if it simultaneously satisfies

multivalued dependencies .

According to Statement 3, the multivalued dependence performed in relation to with

expresses the mutual independence of attributes and in relation to

considering that the set of values of each of them is determined by the value of the attribute . In the

same way, Statement 3 allows us to consider the dependence performed in

, : it expresses the mutual independence of attributes , from

each other, given that the set of values of each of them is determined by the value of the attribute .

According to Haag's theorem, functional dependence acts as a sufficient condition for

decomposition of a given relation into two of its projections. Statements 2 and 3 can be considered as

criteria for the presence of a certain multivalued dependence in a given relation. Statement 4 is a

criterion for the presence of a connection dependence of a certain type, and Statement 5 establishes

the equivalence of such a dependence to a group of multivalued dependencies with the same

determinant. Due to this, Statement 4 can be viewed as a generalization of Statement 3 to the case of a

group of multivalued dependencies.

6. Defining Predicate Dependencies

The functional dependence of the argument on the arguments in the predicate is expressed by

the following formula:

 (14)

Any functional dependence of one group of predicate variables on another group can

be specified either by several formulas of the form (14), or by one such formula in which, after

implication, there will be a conjunction of several equality predicates. If and are subsets of

predicate variables and functionally depends on , then we the predicate

satisfies the functional dependence .

The multi-valued dependence for predicates can be expressed in terms of the conjunction

dependence. We say that a predicate satisfies a multi-valued dependence if it

satisfies the dependency of the conjunction , where . In this case the

dependence will also be fulfilled, which together can be denoted as .

As with relational relationships, dependency structures can also be defined for predicates. Let be

, . Then the set of pairs such that in , is denoted by

and will be called the structure of the functional dependences of the predicate. Similarly, the set of

pairs such that in, is denoted by and will be called the structure of multivalued dependencies of the

predicate.

Apparently, sets and will have the same properties as dependency structures for

relationships. But to verify this assumption, additional research is required, which is beyond the scope

of this paper.

Connection dependency properties are derived from the properties of a natural join operation. An

analogue of the natural connection of relations is the conjunction of predicates, which, like the natural

connection, is idempotent, commutative, and associative. Two other properties of the natural

compound are easily extended to the conjunction operation. If we show the fulfillment of the latter for

the conjunction, then it can be argued that the dependencies of the conjunction have the same

properties as the dependencies of the connection.

7. Cartesian Decomposition

The only justified binary predicate decomposition method that guarantees the correctness of the

result is the Cartesian decomposition, which allows decomposition of any finite predicates, not just

functional ones. Although the disadvantages of this method were discussed earlier, we will consider

the Cartesian decomposition as a starting point for finding a more rational method in the sense of

saving hardware resources.

To perform the Cartesian decomposition of a predicate , it is necessary to explicitly

represent its region of truth. As such, you can use the PDNF (Principal Disjunctive Normal Form) for

predicate . Let be the region of truth of the predicate , . Then

(15
)

where is the number of tuples of the relation (which will of course be due to the finiteness of

the predicate).

According to the Cartesian decomposition method, an auxiliary variable is introduced with values

 that are interpreted as unique names of relationship tuples.

Cartesian decomposition is performed by constructing an auxiliary predicate

and subsequent binary decomposition using existential quantifiers.

As noted above, the disadvantage of this decomposition is that the variable takes as many

values within the predicate and its projections as the number of tuples contains the region of truth

of the predicate . We assume that this is the maximum number of values of the auxiliary variable

that is required for binary decomposition of the predicate, since such a quantity is always sufficient. In

real language models, this number is usually large. It was previously explained that this complicates

the circuitry implementation of such models on a microcircuit. In addition, during Cartesian

decomposition, no structural features of the predicate are considered in order to reduce the number of

values of the auxiliary variable.

The task is to use a binary function (and other dependencies if they exist in the predicate) to

perform binary decomposition either directly using existence quantifiersor with the preliminary

introduction of one auxiliary variable with a minimum number of values.

The principle of the proposed method of binary decomposition consists in the methods of

constructing auxiliary predicates, based on which with the help of existential quantifiers (by

eliminating variables) many binary predicates are formed. The latter are the result of binary

decomposition of the original predicate. The construction of auxiliary predicates can be performed in

different ways, or it may not be necessary at all. From the point of view of the structure of the initial

functional predicate, three different situations are possible that determine the sequence of actions to

achieve binary decomposition at a minimum price.

When binary decomposition of a functional predicate is necessary, firstly, it is necessary

to check whether the arguments of the described function are independent

of each other. Mutual independence of variables in a predicate means that the

dependency is fulfilled. To strictly check the predicate for a

dependency , it is necessary to perform a disjunctive expansion of the

predicate by variables . After that, the form of this decomposition will allow us to establish

exactly whether the dependence in the predicate is fulfilled or not.

If the predicate satisfies the dependencies , then binary

decomposition is quite simple. There are two possible situations.

The first situation occurs when a group of variables consists of one variable – . Then an

auxiliary variable is not required: binary decomposition is performed using existence

quantifiers directly based on a given conjunction dependence, which can be represented as

..., . This is the simplest case. A slightly more complicated case is

when a group consists of two or more variables; then the second situation takes place.

In the second situation, it is necessary to replace the group of variables with one auxiliary

variable , and then make the transition to two auxiliary predicates – and , which

are the result of intermediate decomposition of the predicate . The binary decomposition of

predicates and is carried out using existence quantifiers based on conjunction

dependencies ..., and ...,

respectively, which, as will be shown below, are performed by virtue of the construction of these

predicates.

When does not satisfy the dependency , then the most difficult

situation of the three possibly takes place. Here, the transition to auxiliary predicates and

 also follows, followed by binary decomposition of the latter. However, the method of

generating these auxiliary predicates in this case is much more complicated.

The last and most difficult situation from the point of view of binary decomposition of a functional

predicate occurs when the dependence is not satisfied. In this case,

an auxiliary variable is also required. It will be introduced after the system of special subsets of the set

 is formed. The values of the auxiliary variable in this case will act as the names of these subsets.

With this approach, on the one hand, dependencies will be built in auxiliary predicates that will allow

their binary decomposition to be performed. On the other hand, the minimum required number of the

indicated subsets will be formed, which will minimize the number of values of the auxiliary variable.

As with Cartesian decomposition, the advantage of this algorithm for executing the binary

decomposition of functional predicates is the ability to process the formula or relation not in whole

but in parts: for each complete inverse image, its minimum parallelepiped coverage is selected

separately.

All available methods of nonequivalent decomposition, i.e., decompositions involving auxiliary

variables oriented to static predicates or relations. The described method is no exception. Meanwhile,

relationships in databases are dynamic objects that are constantly updated. Therefore, nonequivalent

decomposition methods are not suitable for use in databases. However, they are good at describing

natural language grammar, which (in comparison with industrial or commercial databases) can be

considered a static object.

8. Inflection Model

On the way to creating a logical network that simulates a significant part of the natural language,

there are several goals that can be described as follows. The first goal is to present the entire model of

inflection by the logical network, and not just the individual parts of speech. The next goal is to

provide a logical model of a word; this model should accurately express the entire morphology of the

language, so the size of such a network seems quite impressive. The main goal is to provide the

logical network with a general model of semantic-syntactic processing of phrases, which should cover

most of the language.

In order to consistently move towards achieving your goals, you need to start with a model of

inflection. So, to date, models of logical networks for the inflectional processing of some nominal

parts of the speech of the language are already available: a model of inflections (end declension

mechanism) of full non-possessive adjectives, a model of inflections of nouns of substantive

declension. Other parts of speech, from existing models of inflectional processing, are not yet

presented in the form of a logical network.

All formulas are presented in the basis of the disjunctive conjunctive predicate algebra (DCPA);

therefore, the size or length of the formula is determined by the number of predicates of recognition of

the subject contained in it. The binary predicate formulas obtained by decomposing and

are written in compact form, which we will call the disjunctive-bracket form. It is in this form that the

DCPA binary formulas form the basis of the circuitry implementation. The amount of hardware

resources for the implementation of a model presented in the DCPA language is proportional to the

number of recognition predicates in it. Therefore, the number of recognition predicates in the

formulas of a certain model makes it possible to approximately estimate the amount of hardware

resources that will be spent on its implementation.

Predicates serve as a means of describing finite discrete relations; therefore, one can also evaluate

the result of decomposition by the size of relations corresponding to the obtained formulas. The size

of a finite relationship is determined, like the size of any finite set, by the number of its elements. The

dimension of relations (the number of attributes) can be ignored, since only binary relations are to be

compared. Therefore, it is proposed for each method to calculate the total number of binary tuples in

the obtained relations and, thereby, compare these methods with each other.

Such a calculation will be carried out by calculating the constituent units in the formulas, since the

number of these constituents in the PDNF predicate coincides with the number of tuples of the

corresponding relation. To move from the disjunctive-bracket form of a formula to its PDNF, you just

need to open all the brackets in this formula. Therefore, to determine the number of constituents in the

PDNF of a certain formula, it is necessary to calculate how many terms will be contained in the

formula after the brackets are opened.

Based on the obtained binary formulas, one can calculate the length of each of them and the

number of tuples in the corresponding relation. Cartesian decomposition of predicates and

 was not carried out, but the above parameters can be accurately calculated by determining the

number of tuples in the relations corresponding to these predicates.

Cartesian decomposition is a rather trivial way to decompose, so the structure of the resulting

binary predicates is very simple. Each such predicate is everywhere defined, surjective, and contains

an auxiliary variable that uniquely determines the value of another variable. The length of the formula

of such a predicate in the minimum disjunctive-bracket form is determined as the sum of the areas of

variation of its variables.

9. Conclusion

The main types of dependencies of attributes in relational relations are considered: functional,

multivalued and connection dependencies. Considered assertions about dependencies that allow

decomposition of relational relations.

The decomposition of the model of inflectional processing of regular verb word forms was

performed using the method of binary decomposition of functional predicates developed in this work.

As a result, a logical network was built for this model.

The analysis of the hardware implementation of the constructed logical network showed that such

a network, implemented on a modern inexpensive programmable logic integrated circuit, works three

orders of magnitude faster than a computer program that simulates the same logical network on a

modern personal computer of average power.

10. References

[1] S. Solonska, V. Zhyrnov, Adaptive semantic analysis of radar data using fuzzy transform, in:

T. Radivilova., D. Ageyev, N. Kryvinska (Eds.) Data-Centric Business and Applications. Lecture

Notes on Data Engineering and Communications Technologies, vol. 48, Springer, Cham, 2020,

pp. 157–179. doi: 10.1007/978-3-030-43070-2_9.

[2] S.Solonskaya, V. Zhirnov, Intelligent analysis of radar data based on fuzzy transforms //

Telecommunications and Radio Engineering (English translation of Elektrosvyaz and

Radiotekhnika) 77 (15) (2018) 1321–1329.

[3] A.Ivanilov, Yu.Shabanov-Kushnarenko, Relational algebras and algebras of predicates, Eastern

European Journal of Advanced Technologies 4(2) (2007) 43–48.

[4] I.Shubin, V.Skovorodnikova, A.Kozyriev, Mining Methods for Adaptation Metricsin E-

Learning, in: Proceedings of the 3rd International Conference Computational Linguistics and

Intelligent Systems CoLInS 2019,NTU “KhPI”, Kharkiv, (2019) 288–300.

[5] T.Imielinski, W. Jr. Lipski, The Relational Model of Data and Cylindric Algebras, J. of Comp.

and Syst. Sci. 28 (1984) 80–102.

[6] V.Chikina, Z.Dudar, S.Shabanov-Kushnarenko, The modeling of some intelligence functions,

Radio electronics and computer science,3(2003) 166–172.

[7] B.I. Plotkin, Universal algebra, algebraic logic and databases,Mir,Moscow, 1990.

[8] M.F. Bondarenko, Z.V. Dudar, N.T. Protsay, V.V. Cherkashyn, V.A. Chykyna, Y.P. Shabanov-

Kushnarenko, Algebra of predicates and predicate operations, Radio electronics and informatics

1(2004) 5–22.

[9] G. Chetverikov, O. Puzik, I. Vechirska, Multiple-valued structures of intellectual systems, in:

Proceedings of Computer Sciences and Information Technologies. (2016) 204–207.

