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Abstract 
The development of conjunctive decomposition tools focused on building logical network 

models is the main topic of this article. The possibility of using such tools for the 

development of linguistic information processing systems determines the relevance of the 

chosen topic. The relationship between operations in relational algebra and in the algebra of 

finite predicates is de-scribed. With the help of relational statements about dependencies, the 

algebraological apparatus of decomposition of predicates was further developed. The method 

of binary decomposition of functional predicates is founded, which differs from the general 

method of Cartesian decomposition in that the number of values of the auxiliary variable is 

minimized. 
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1. Introduction 

Among the many formalisms applicable to one degree or another to the tasks of processing 

informal information, the most appropriate is the use of predicate algebra, systems of equations which 

are technically implemented in the form of a logical network. One of the advantages of this approach 

is its direct applicability to all the following types of problems, which is provided by the declaratives 

of the logical network as a method of solving systems of predicate equations. The notation of the 

predicate equations itself becomes possible due to the algebra of predicates. 

On the example of processing test information by artificial intelligence, we can consider the 

general classification of tasks that arise in the process of working with primary informal information: 

 analysis (for example, recognition - obtaining from informal information specific 

parameters necessary for the application of some formalism); 

 normalization - bringing information to some reference form, which is relevant in the 

search for information; 

 synthesis - the expression of the internal representation of information stored in 

accordance with the formal requirements in a form adapted for human perception; 

 mixed tasks. 

Another advantage of logical networks is the wide parallelization of calculations, which, provided 

the correct construction of the task model guarantees high efficiency. 

In addition, the brain-like computer, based on the technology of logical networks, is close in 

structure to the structure of the human brain, which gives reason to hope for the creation of 

information technology-based systems based on the capabilities of human [1]. 

The study of categories quickly became an independent abstract discipline and is now an important 

branch of pure mathematics. In addition, it influenced the conceptual foundations of mathematics and 

the language of mathematical practice. It offers elegant and powerful tools for expressing connections 

between major branches of mathematics and provides mathematicians with tools for mathematical 

research that occupy more and more space in the arsenal of mathematics. 
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However, to date, the theory of categories still does little to solve problems such as the description 

of the mechanisms of human intelligence, such as the development of artificial intelligence, the 

creation of parallel computers, intelligent radar systems, and so on. 

Therefore, it is necessary to establish a connection between the theory of categories and modeling 

of systems based on artificial intelligence using an intermediate field of knowledge - the algebra of 

finite predicates, by which a predicate interpretation of the category can be built. Based on this 

interpretation, elements of the theory of the modified category for the processes of modeling the 

functions of artificial intelligence are developed. 

2. Usage of Logical Networks 

A distinctive feature of artificial intelligence tasks is that they are difficult to formalize, necessary 

to enable the automation of their solutions. Thus, it is expedient to study the universal tool of informal 

information processing – the human brain and to model some of its functions related to the tasks 

based on modern technologies. The essence of the approach is that human intelligence is seen as logic 

in action, as some material embodiment of the mechanism of logic. Works on logic algebraization 

were performed. 

Schematic implementation of formulas describing algebraic-logical structures leads to 

characteristic engineering networks that have not been used before, and which are called logical 

networks. When comparing these networks with the main types of neural structures, a deep similarity 

in the structure of technical and biological structures is revealed. Based on this similarity, we can 

determine the functions of different types of neural structures and describe in exact mathematical and 

technical terms the principles of brain function. 

The main thing in this method is the movement from top to bottom: from general system 

considerations to algebraic-logical structures, and from them to logical networks, which are then 

identified with biological neural structures. 

Unlike the traditional information technology algorithmic approach, the declarative task model is 

not an algorithm. The task model presented in a declarative form is usually a set of facts, knowledge 

of facts and rules, according to which actions are taken on facts that allow to obtain new knowledge 

based on old ones. 

A logical network is a method for solving systems of predicate equations and has descriptive 

capabilities of predicate algebra. The property of a logical network is the parallel execution of all 

elementary logical operations – that is, the maximum possible at the logical level of parallel 

calculations. This approach guarantees high efficiency in solving problems that are reduced to a 

logical conclusion or to the solution of logical equations. 

To formalize the tasks of processing informal information using logical networks, it is necessary to 

explore the possibilities of rational application of the algebra of finite predicates. To this end, it is 

necessary to model the most common tasks from different areas of the subject area. Examples include 

areas such as: the task of modeling the recognition mechanisms of inconspicuous radar objects. 

3. Mathematical Decomposition Tools 

The mathematical tools developed for the decomposition of relations and predicates are designed 

primarily to create logical networks, which, in turn, are the basis for building a parallel-action 

computer. The mathematical results of the work can be used in automatic language processing 

systems, computer-aided design systems for information systems. Logical networks can be effective 

in creating specialized parallel-action devices designed to simulate complex computing systems, for 

example, a system of complete adequate morphological analysis of natural language texts. 

Mathematical model suitable for implementation in the form of a logical network should be 

represented by a system of binary equations, i.e., each equation of such a system should have two 

variables. This form of presentation is a logical network model. In this case, the system of binary 

equations should be as compact as possible in order to save hardware resources when implementing 

the model. 

Converting a model into a compact binary form requires conjunctive decomposition of predicates. 

In the area of the decomposition apparatus, a shortage of justified methods, that does not require 

checking the equivalence of the obtained result to the original predicate, and at the same time rational 



methods that allow obtaining a compact binary representation for a given formal model. When 

developing models of logical networks for processing linguistic information, developers mostly used 

their own intuitive methods, rather than strict, justified methods. The logical network models obtained 

in this way need experimental verification of their adequacy to the described object. 

Almost all available formal means of decomposition of predicates in these works do not consider 

the relationship between variables. Taking these features into account in the structure of a predicate 

allows one to decompose it in a more rational way. Meanwhile, the theory of relational databases 

offers a means of decomposing relations in the form of statements about the dependencies between 

attributes (in the section on normalizing relations). Given the deep connection between relations and 

predicates, the means of decomposition of relations can be applied to solve the problem of 

decomposition of predicates. As an analysis of the literature has shown that such tools are currently 

not available in the apparatus of predicate algebra. 

4. Analysis of Objectless Categories 

The only difference between category theory and predicate algebra is that the former moves from 

top to bottom, aims to learn higher logical mechanisms and therefore uses as starting points the 

concept of a record level of commonality. The second, starting from the needs of informatization, 

moves in the study of the same logic of thinking from the bottom up. If it were possible to give a 

convincing interpretation of the concepts formed by the theory of categories and the methods 

developed by it in terms of predicate algebra, i.e., concretizing, to bring them closer to 

informatization, it would significantly enrich the tools of predicate algebra. It is the algebra of 

predicates that we are going to use as such an intermediate field of knowledge. 

A logical network copies a person's actions, but with the only difference that a person acts 

sequentially and a network acts in parallel. The network works in cycles. In the first half-bar of the -

th bar, the network for each of its equations of the form  (  is the relation given by such 

equation) finds:  

1. according to the known knowledge of  about the value of the variable x at the beginning 

of i- th bar knowledge  about the value of the variable at the end of the -th bar;  

2. according to the known knowledge of  about the value of the variable  at the 

beginning of the -th bar, knowledge of  about the value of the variable  at the end of the 

-th bar. 

Mathematically, these two operations are expressed by formulas: 

 

 
where  and  are the variable areas of . 

In the second half of each bar, the network finds the common part  of all knowledge 

 about the value of each of its objective variables  parties, which come 

through the branches of the network from all to the pole . This operation is expressed as follows: 

 
The obtained knowledge  is then used as the state of the pole  at the initial moment of 

the st cycle. The symbol  denotes the number of branches approaching the pole x. Before the 

beginning of the st bar, knowledge of the set  is formed in each pole, which is always 

included in the knowledge of the set , which was kept in the same pole at the beginning of the 

-th bar. Thus, the only result of the logical network is the refinement of the knowledge contained in 

all its poles in accordance with the original data. 

With the introduction of the theory of categories, along with the usual concept of category, there 

was a more general concept of objectless category. 

Let  be some set. Its elements, denoted by the symbols  are called morphisms. 

Suppose, moreover, that some, in the general case, partial operation  is given, which acts with 

. It is called the multiplication of the morphisms  and . The morphism  is called 

the product of the morphisms  and . Any morphism  is called singular or identical if it 

satisfies the following conditions: 



 for any  for which there is a product , the equality ; 

 for any  for which there is a product , the equality  holds. 

This definition tacitly allows the existence in the category of many units. It is the presence of 

many units (and only this) that distinguishes a category from other known algebraic structures. The 

singular morphisms  and  are named according to the right and left for the morphism , 

if  and . For any morphism  there are a single right and a single left 

morphisms. This statement is called the law of identity. Thus, for each  there is a single right 

unit ef and a single left unit , such that . 

Multiplication of morphisms is associative:  for any  for which there 

are products:  and . The set , which contains at least single morphisms, and on which 

the operation of multiplication of morphisms with the above properties is called an object-free 

classical category . Write .  is the set of all morphisms of 

category . If , then we say that the morphism  is a -Morphism. 

5. Tools Based on DCPA 

Next, we will talk about the development of new predicate decomposition tools based on 

statements about dependencies from the normalization of relational relations. At the beginning, an 

exact definition of the decomposition procedure with respect to relational relations and predicates is 

given; statements about dependencies that allow decomposition of relational relations are considered; 

their generalizations are proposed. Based on the relations between relational algebra and predicate 

algebra, dependency statements are transformed into new predicate decomposition tools. 

A predicate in the basis of a disjunctive conjunctive predicate algebra (DCPA) is usually regarded 

as an analytic notation of a relation. Therefore, a predicate decomposition is a decomposition of a 

relation at the analytical level (simply manipulating formulas), when not the relations themselves are 

processed, but the corresponding predicate formulas. 

We clarify the concept of decomposition, as it is understood in relational databases. To do this, we 

give the concept of the dependence of the compound, which is used in the theory of dependencies. 

Let  be a subset family of sets . If  , then  is called overlapping of 

set . An overlapping  is called a partition of a set  if the sets  are pairwise disjoint. 

Let  be some relation, and the family of sets  forms the covering of the set . 

The relationship  satisfies the connection  dependencies if 

 (1) 
Expression (1) is the so-called algebraic restriction of integrity. 

Other types of dependencies that are used in the theory of dependencies – functional and multi-

valued dependencies – are special cases of the connection dependency. Therefore, any dependence 

made  in allows us to represent  in the form of a natural connection of their projections 

(1). In the theory of relational databases, it is usually this procedure that is called decomposition of . 

Based on the expression (1), decomposition itself is carried out by designing the initial relation for 

different groups of its attributes. This suggests that the projection operator is the decomposition 

operator, while the composition (reassembly) operator is a natural join. 

However, splitting a relation can be carried out in different ways: along with projection, for 

example, sampling can be used as a decomposition operator. Then the composition operator will no 

longer be a natural join, but a join operation. When in database theory we are talking about the 

decomposition of relations, then almost always we mean a decomposition of the form (1). Other types 

are practically not used. Nevertheless, for accuracy, the decomposition of relations in the form (1) will 

sometimes be called projection-connective decomposition.



 

5.1. Predicate Decomposition 

A predicate decomposition of  is the derivation of some predicates  based on a 

predicate  with the possibility of its reverse recovery from these predicates, which is called the 

predicate compositionof . An important particular case of decomposition is the so-called binary 

predicate decomposition of , characterized in that each of the predicates  resulting from 

the decomposition of the predicate  has exactly two significant arguments. If the conjunction serves 

as the composition (restoration) operator, then decomposition is called conjunctive. 

The predicate analogues of relational projection operations are existence quantifiers. Then the 

predicate analogue of the projection-connective decomposition will be the quantifier-conjunctive form 

of decomposition. 

Let  be a spanning tree with a finite set of variable names , 

 Let  be some predicate from , and the family of sets 

 form a covering of the set . We say that a predicate satisfies conjunction 

dependences  if 

 (2) 

where , . 

Representation of the predicate  in the form of (2) will be called a quantifier-conjunctive 

decomposition. 

Some methods for decomposing predicates boil down to replacing the original predicate  with 

some auxiliary predicate , which is built based on the original predicate  by introducing one or 

more auxiliary variables . The idea of these methods is that the auxiliary predicate  is 

constructed in advance so that it satisfies some required quantifier-conjunctive dependence. Then, 

using the existential quantifiers, the predicate  is decomposed directly. This predicate is related to 

the original predicate  by equality 

 (3) 

Although in fact a quantifier-conjunctive decomposition of the auxiliary predicate  is performed, 

the original predicate  is restored using equality (3). Therefore, they say that the predicate is 

decomposed. 

Thus, the predicate decomposition can be performed either without the help of auxiliary variables, 

or with the help of them. In the first case, decomposition is called equivalent, in the second – 

nonequivalent. So, the decomposition of the mentioned predicate  is equivalent, and the 

decomposition of the original  is nonequivalent. Quantifier conjunctive decomposition is 

equivalent. 

5.2. Functional Dependence 

Let us consider the concepts of dependencies and some statements regarding them. The latter 

allow for a given relationship to resolve the question of the admissibility of a projection-connective 

decomposition. Consider special cases: functional and multi-valued dependencies.  

Let a relation  be given and ,  be arbitrary subsets of the set . It is said that 

depends functionally on  if for any two functional data  from equality  

follows the equality . If  depends functionally on , it is written  and said that 

the relation  satisfies the functional dependence  or that the functional dependence  is 

fulfilled in the relation  

It follows directly from the definition that if the dependence  is satisfied in , then it is 

executed in any of its projections containing many attributes . 



If  is an arbitrary relation, then the set of pairs  such that  in  is denoted 

by . It is called the structure of the functional dependencies of the relationship . 

Let be an arbitrary relation . It is proved that the structure of functional dependencies  has 

the following properties (  is a subset of a set ). 

If , then  (4) 

If  and , then  (5) 

For a deductive system defined by rules (4) - (5), the problem of derivability or logical sequence is 

algorithmically solvable, which means that the analysis of the structures of functional dependencies 

can be carried out automatically. There are algorithms that allow for a given set of functional 

dependencies  to find the set of all dependencies  that logically follow from the set according 

to the rules (4) - (5). In addition, there is an algorithm to determine whether some functional 

dependence  is a consequence of many dependencies  or not. To analyze relationships with 

functional dependencies, all these algorithms are based on the apparatus of Boolean functions. 

5.3. Multi-valued Dependence 

Statement 1. Haag's theorem. Let  be some relation from , and the family of sets 

 forms a partition of the set . If  in , then 

 (6) 

In other words, Haag's theorem says that functional dependence  in relation  

implies connection dependence for it. 

Let us consider the concept of multi-valued dependence. Let a relation  be given and let 

 and  be arbitrary subsets of the set . It is said that  ambiguously determines  if 

, where . If  defines  ambiguously, it is written 

 and said that the relation  satisfies the ambiguous dependence  or that the 

ambiguous dependence  is fulfilled in the relation . 

The above definition shows that a multi-valued dependence is a special case of a connection 

dependence and is also determined through an algebraic integrity constraint. 

If  is an arbitrary relation, then the set of pairs  such that  in  is denoted 

by . It is called the structure of multi-valued relationship dependencies . 

Let  be an arbitrary relation. It is proved that the structure of multivalued dependencies  

has the following properties ( , , ,  - subsets of a set ). 

If , then  (7) 

If  and , then  (8) 

If  and , then  (9) 

If , then  (10) 

Property (10) suggests that multi-valued dependencies always form connected pairs; therefore, the 

notation is used  to relate  to  and the dependence . As for 

functional dependencies, for the deductive system defined by rules (7) - (10), the derivability problem 

is algorithmically solvable, therefore, the analysis of the structures of multi-valued dependencies can 

also be carried out automatically using Boolean functions. 

Statement 2. Let  be an arbitrary relation, and  and  be arbitrary subsets  of 

the set . The relation  satisfies the dependence  if and only if 

 (11) 

for every  and every . 

Equality (11) shows, that for every  from  set  does not depend on 

. It means that multivalued dependency  in  defines the displaying of 



 from  to Boolean  that can be related as multivalued 

function from  in . 

This statement in less formal form is chosen as a definition to multivalued dependency by Date. 

Except for the notation, this definition is as follows. 

Let there be some relation ,  and , and the sets 

 do not intersect in pairs.  multivalued depends on  if and only if the set of values  

corresponding to a given pair (value  and value ) of the ratio  depends only on  but does not 

depend on . 

At the same time, Date cites the definition of multivalued dependence adopted in this paper as 

Feigin's theorem, which is formulated in terms of “if and only if”. 

Statement 3. Let  be an arbitrary relation, and  and  be arbitrary subsets of the set 

, . The relation  satisfies the dependence  if and only if 

 (12) 

for every . 

Note that the natural combination of two relations that have no common attributes can be viewed 

as an extended version of the Cartesian product. Equality (12) expresses just such a case. In fact, 

Statement 3 expresses another way that multivalued dependency can be defined. 

According to Statement 3, the presence of a multivalued relationship  in a relation 

 means that its attributes  and  are mutually independent: the set of values of each of 

them depends only on the value of the attribute . In other words, multivalued dependencies 

 appear when, for a meaningful group of characteristics , the set of values of 

characteristics from groups  and  must occur in any combinations with a fixed value of the -

component. 

Each functional dependence is a multivalued dependence, i.e. if  at , then  at . 

Therefore . Thus, multivalued dependencies are a generalization of functional 

dependencies. 

However, there is a significant difference between functional and multivalued dependencies. 

According to (10) dependences  and  always form connected pairs, 

which is denoted as , where . Property (10) has no analogue for 

functional dependencies, therefore, in the general case, they do not form connected pairs. 

The following statement generalizes Statement 2, and this time uses the notion of connection 

dependency. 

Statement 4. Let  be some relation from , and the family of sets  forms 

a partition of the set . The relation  satisfies the connection  

dependence if and only if 

 (13) 

for each . 

Statement 5. Generalization of Feigin's theorem. Let  be some relation from , and the 

family of sets  forms a partition of the set . A relation  satisfies the 

connection dependency  if and only if it simultaneously satisfies 

multivalued dependencies . 

According to Statement 3, the multivalued dependence  performed in relation to  with 

expresses the mutual independence of attributes  and  in relation to  

considering that the set of values of each of them is determined by the value of the attribute . In the 

same way, Statement 3 allows us to consider the dependence  performed in 

, : it expresses the mutual independence of attributes , from 

each other, given that the set of values of each of them is determined by the value of the attribute . 

According to Haag's theorem, functional dependence acts as a sufficient condition for 

decomposition of a given relation into two of its projections. Statements 2 and 3 can be considered as 

criteria for the presence of a certain multivalued dependence in a given relation. Statement 4 is a 

criterion for the presence of a connection dependence of a certain type, and Statement 5 establishes 



the equivalence of such a dependence to a group of multivalued dependencies with the same 

determinant. Due to this, Statement 4 can be viewed as a generalization of Statement 3 to the case of a 

group of multivalued dependencies. 

6. Defining Predicate Dependencies 

The functional dependence of the argument  on the arguments  in the predicate  is expressed by 

the following formula: 

 (14) 

Any functional dependence of one group of predicate variables  on another group can 

be specified either by several formulas of the form (14), or by one such formula in which, after 

implication, there will be a conjunction of several equality predicates. If  and  are subsets of 

predicate variables  and  functionally depends on , then we the predicate 

satisfies the functional dependence . 

The multi-valued dependence for predicates can be expressed in terms of the conjunction 

dependence. We say that a predicate satisfies a multi-valued dependence  if it 

satisfies the dependency of the conjunction , where . In this case the 

dependence  will also be fulfilled, which together can be denoted as . 

As with relational relationships, dependency structures can also be defined for predicates. Let be 

,  . Then the set of pairs  such that  in , is denoted by  

and will be called the structure of the functional dependences of the predicate. Similarly, the set of 

pairs such that in, is denoted by and will be called the structure of multivalued dependencies of the 

predicate. 

Apparently, sets  and  will have the same properties as dependency structures for 

relationships. But to verify this assumption, additional research is required, which is beyond the scope 

of this paper. 

Connection dependency properties are derived from the properties of a natural join operation. An 

analogue of the natural connection of relations is the conjunction of predicates, which, like the natural 

connection, is idempotent, commutative, and associative. Two other properties of the natural 

compound are easily extended to the conjunction operation. If we show the fulfillment of the latter for 

the conjunction, then it can be argued that the dependencies of the conjunction have the same 

properties as the dependencies of the connection. 

7. Cartesian Decomposition 

The only justified binary predicate decomposition method that guarantees the correctness of the 

result is the Cartesian decomposition, which allows decomposition of any finite predicates, not just 

functional ones. Although the disadvantages of this method were discussed earlier, we will consider 

the Cartesian decomposition as a starting point for finding a more rational method in the sense of 

saving hardware resources. 

To perform the Cartesian decomposition of a predicate , it is necessary to explicitly 

represent its region of truth. As such, you can use the PDNF (Principal Disjunctive Normal Form) for 

predicate . Let  be the region of truth of the predicate , . Then 

 

(15
) 

where  is the number of tuples of the relation  (which will of course be due to the finiteness of 

the predicate ). 

According to the Cartesian decomposition method, an auxiliary variable is introduced with values 

 that are interpreted as unique names of relationship tuples. 

Cartesian decomposition  is performed by constructing an auxiliary predicate  

and subsequent binary decomposition  using existential quantifiers. 



As noted above, the disadvantage of this decomposition is that the variable  takes as many 

values within the predicate  and its projections as the number of tuples contains the region of truth 

of the predicate . We assume that this is the maximum number of values of the auxiliary variable 

that is required for binary decomposition of the predicate, since such a quantity is always sufficient. In 

real language models, this number is usually large. It was previously explained that this complicates 

the circuitry implementation of such models on a microcircuit. In addition, during Cartesian 

decomposition, no structural features of the predicate are considered in order to reduce the number of 

values of the auxiliary variable. 

The task is to use a binary function (and other dependencies if they exist in the predicate) to 

perform binary decomposition either directly using existence quantifiersor with the preliminary 

introduction of one auxiliary variable with a minimum number of values. 

The principle of the proposed method of binary decomposition consists in the methods of 

constructing auxiliary predicates, based on which with the help of existential quantifiers (by 

eliminating variables) many binary predicates are formed. The latter are the result of binary 

decomposition of the original predicate. The construction of auxiliary predicates can be performed in 

different ways, or it may not be necessary at all. From the point of view of the structure of the initial 

functional predicate, three different situations are possible that determine the sequence of actions to 

achieve binary decomposition at a minimum price. 

When binary decomposition of a functional predicate  is necessary, firstly, it is necessary 

to check whether the arguments  of the described function  are independent 

of each other. Mutual independence of variables  in a predicate  means that the 

dependency  is fulfilled. To strictly check the predicate  for a 

dependency , it is necessary to perform a disjunctive expansion of the 

predicate  by variables . After that, the form of this decomposition will allow us to establish 

exactly whether the dependence  in the predicate  is fulfilled or not. 

If the predicate  satisfies the dependencies , then binary 

decomposition is quite simple. There are two possible situations. 

The first situation occurs when a group of variables  consists of one variable – . Then an 

auxiliary variable is not required: binary decomposition  is performed using existence 

quantifiers directly based on a given conjunction dependence, which can be represented as 

..., . This is the simplest case. A slightly more complicated case is 

when a group  consists of two or more variables; then the second situation takes place. 

In the second situation, it is necessary to replace the group  of variables with one auxiliary 

variable , and then make the transition to two auxiliary predicates –  and , which 

are the result of intermediate decomposition of the predicate . The binary decomposition of 

predicates  and  is carried out using existence quantifiers based on conjunction 

dependencies ...,  and ...,  

respectively, which, as will be shown below, are performed by virtue of the construction of these 

predicates. 

When  does not satisfy the dependency , then the most difficult 

situation of the three possibly takes place. Here, the transition to auxiliary predicates  and 

 also follows, followed by binary decomposition of the latter. However, the method of 

generating these auxiliary predicates in this case is much more complicated. 

The last and most difficult situation from the point of view of binary decomposition of a functional 

predicate  occurs when the dependence  is not satisfied. In this case, 



an auxiliary variable is also required. It will be introduced after the system of special subsets of the set 

 is formed. The values of the auxiliary variable in this case will act as the names of these subsets. 

With this approach, on the one hand, dependencies will be built in auxiliary predicates that will allow 

their binary decomposition to be performed. On the other hand, the minimum required number of the 

indicated subsets will be formed, which will minimize the number of values of the auxiliary variable. 

As with Cartesian decomposition, the advantage of this algorithm for executing the binary 

decomposition of functional predicates is the ability to process the formula or relation not in whole 

but in parts: for each complete inverse image, its minimum parallelepiped coverage is selected 

separately. 

All available methods of nonequivalent decomposition, i.e., decompositions involving auxiliary 

variables oriented to static predicates or relations. The described method is no exception. Meanwhile, 

relationships in databases are dynamic objects that are constantly updated. Therefore, nonequivalent 

decomposition methods are not suitable for use in databases. However, they are good at describing 

natural language grammar, which (in comparison with industrial or commercial databases) can be 

considered a static object. 

8. Inflection Model 

On the way to creating a logical network that simulates a significant part of the natural language, 

there are several goals that can be described as follows. The first goal is to present the entire model of 

inflection by the logical network, and not just the individual parts of speech. The next goal is to 

provide a logical model of a word; this model should accurately express the entire morphology of the 

language, so the size of such a network seems quite impressive. The main goal is to provide the 

logical network with a general model of semantic-syntactic processing of phrases, which should cover 

most of the language. 

In order to consistently move towards achieving your goals, you need to start with a model of 

inflection. So, to date, models of logical networks for the inflectional processing of some nominal 

parts of the speech of the language are already available: a model of inflections (end declension 

mechanism) of full non-possessive adjectives, a model of inflections of nouns of substantive 

declension. Other parts of speech, from existing models of inflectional processing, are not yet 

presented in the form of a logical network. 

All formulas are presented in the basis of the disjunctive conjunctive predicate algebra (DCPA); 

therefore, the size or length of the formula is determined by the number of predicates of recognition of 

the subject contained in it. The binary predicate formulas obtained by decomposing  and  

are written in compact form, which we will call the disjunctive-bracket form. It is in this form that the 

DCPA binary formulas form the basis of the circuitry implementation. The amount of hardware 

resources for the implementation of a model presented in the DCPA language is proportional to the 

number of recognition predicates in it. Therefore, the number of recognition predicates in the 

formulas of a certain model makes it possible to approximately estimate the amount of hardware 

resources that will be spent on its implementation. 

Predicates serve as a means of describing finite discrete relations; therefore, one can also evaluate 

the result of decomposition by the size of relations corresponding to the obtained formulas. The size 

of a finite relationship is determined, like the size of any finite set, by the number of its elements. The 

dimension of relations (the number of attributes) can be ignored, since only binary relations are to be 

compared. Therefore, it is proposed for each method to calculate the total number of binary tuples in 

the obtained relations and, thereby, compare these methods with each other. 

Such a calculation will be carried out by calculating the constituent units in the formulas, since the 

number of these constituents in the PDNF predicate coincides with the number of tuples of the 

corresponding relation. To move from the disjunctive-bracket form of a formula to its PDNF, you just 

need to open all the brackets in this formula. Therefore, to determine the number of constituents in the 

PDNF of a certain formula, it is necessary to calculate how many terms will be contained in the 

formula after the brackets are opened. 

Based on the obtained binary formulas, one can calculate the length of each of them and the 

number of tuples in the corresponding relation. Cartesian decomposition of predicates  and 

 was not carried out, but the above parameters can be accurately calculated by determining the 

number of tuples in the relations corresponding to these predicates. 



Cartesian decomposition is a rather trivial way to decompose, so the structure of the resulting 

binary predicates is very simple. Each such predicate is everywhere defined, surjective, and contains 

an auxiliary variable that uniquely determines the value of another variable. The length of the formula 

of such a predicate in the minimum disjunctive-bracket form is determined as the sum of the areas of 

variation of its variables. 

9. Conclusion 

The main types of dependencies of attributes in relational relations are considered: functional, 

multivalued and connection dependencies. Considered assertions about dependencies that allow 

decomposition of relational relations. 

The decomposition of the model of inflectional processing of regular verb word forms was 

performed using the method of binary decomposition of functional predicates developed in this work. 

As a result, a logical network was built for this model. 

The analysis of the hardware implementation of the constructed logical network showed that such 

a network, implemented on a modern inexpensive programmable logic integrated circuit, works three 

orders of magnitude faster than a computer program that simulates the same logical network on a 

modern personal computer of average power. 
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