
Metrics Applicable for Evaluating Software at The Design Stage 
 

Iryna Gruzdoa, Iryna Kyrychenkoa, Glib Tereshchenkoa and Nadiya Shanidzeb 

 
a Kharkiv National University of Radioelectronics, Nauky Ave. 14, Kharkiv, 61166, Ukraine  
b National Technical University "KhPI", Kyrpychova str. 2, Kharkiv, 61002, Ukraine  

 

  

Abstract  
The paper reviewed and analyzed the existing metrics used in the software evaluation process 

at the design stage. Discussed issues related to the selection and accounting of indicators 

affecting the evaluation of software at the design stage in the management of software 

development. The study of the metrics used to perform the evaluation of software at the 

design stage. Find conclusions about the use of the metrics examined in management 

practice. Proved the need to study the metrics described in the Rada standards governing the 

process of developing software.  

 

Keywords  1 
Software, software evaluatıon, metrıcs, software qualıty, project type, software development 

management, complexıty, accountıng  

1. Introduction 

At the present stage of development of information technologies, both throughout the world and in 

Ukraine, the tasks related to software evaluation throughout the life cycle acquire particular relevance, 

and in particular, special attention is given to software quality assessment at the design stage, since it 

doesn’t depend on only the quality, but also the risks of the project, as well as its cost. 

The quality of a software product consists of a set of features and characteristics of software that 

can satisfy the needs and requests of interested parties. 

It should be noted that the importance of each quality characteristic varies depending on the 

restrictions adopted in the project, depending on the decisions of the project manager or team in 

relation to the project and the team involved in the design and development of the project. The quality 

of software is influenced by human, material, hardware, time resources, as well as restrictions are 

adopted within a specific type of project. 

In view of the above, it can be concluded that a balance between a number of variable 

characteristics that affect the overall quality plays a significant role. Therefore, it is necessary to pay 

special attention to the accumulation of information and analysis of the interrelations of factors in the 

previously obtained results. 

Also noteworthy is the number of problems associated with the success of the project as a whole; 

in most cases, success depends on the evaluation of the software at the design stage from those 

methods and metrics that were initially chosen and which gave them the approximate assessment to 

the realities of the developed project itself [4, 11]. 

The classical software evaluation process consists of three stages: the establishment (definition) of 

quality requirements, the preparation for assessment, and the assessment procedure. This process can 

be applied both at any phase of the life cycle and during the development of individual software 

components in order to understand how the development takes place. 

                                                      
COLINS-2021: 5th International Conference on Computational Linguistics and Intelligent Systems, April 22–23, 2021, Kharkiv, Ukraine 
EMAIL: tigralwovna@gmail.com (I. Gruzdo); iryna.kyrychenko@nure.ua (I. Kyrychenko); hlib.tereshchenko@nure.ua (G. Tereshchenko); 

nashanidze@ukr.net (N. Shanidze) 

ORCID: 0000-0002-4399-2367 (I. Gruzdo); 0000-0002-7686-6439 (I. Kyrychenko); 0000-0001-8731-2135 (G. Tereshchenko); 0000-0002-
9613-186X (N. Shanidze) 

 
©️  2021 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 

mailto:nashanidze@ukr.net


A special place in the process of evaluating software quality is represented by software assessment 

methods at the design stage. The classification of methods according to Vendrov [2] is given below. 

 Algorithmic modeling. 

 Expert estimates. 

 Evaluation by analogy. 

 Parkinson's law. 

 Score to win the contract. 

When using these methods in practice, you should consider the strengths and weaknesses of each 

of them. It is necessary to determine the appropriateness of their use depending on which of the 

methodologies is used for software development - Waterfall, Scrum, Kanban, Rational Unified 

Process, etc. It is also necessary to take into account the features that are inherent in one or another 

methodology chosen for project management. 

Before proceeding to the selection or analysis of the project, it should be understood that although 

there are a number of methodologies, models and methods, they are in most cases divided into 

theoretical, practical, and biased in the process of classifications. 

Depending on the size of the programmer of the company, it depends on what criteria they choose 

to evaluate the software at the design stage. But it should be noted that in their practice they do not 

use expensive and unconfirmed methods of software evaluation, and in a number of cases they use 

accumulated historical data to compare the complexity of the project with the complexity of previous 

projects of a similar type, size, orientation and human composition. 

Therefore, by virtue of the above, this article will discuss the practical aspects that allow the 

evaluation of software at the design stage. Those metrics will be considered that allow to evaluate 

software not only for large firms but also for a group of people when working on a startup. 

The purpose of the article is to analyze the existing practical software evaluation solutions at the 

design stage, review the most commonly used metrics aimed at increasing the quality of the software, 

and also justify the choice of using the metrics discussed in management practice. 

As a result of solving the problem, the current state of the software evaluation problem will be 

reviewed at the design stage, as well as during the analysis, the most used metrics that have practical 

experience in development and are aimed at improving the quality of software throughout the life 

cycle will be considered. 

2. Research problem statement 

Currently, there are many metrics for evaluating software at the design stage, suitable for assessing 

the necessary resources that affect the quality of all software. In addition, classes of metrics are 

known that are aimed at increasing the quality of software and facilitating the software development 

process, therefore, having formulated a number of characteristic criteria, it is necessary to establish 

the suitability of each of the known software evaluation metrics to improve software quality at the 

design stage. 

The solution to this problem involves the implementation of the following sequence of steps: 

 Used metric classes that are aimed at increasing the quality of software. 

 Review and analysis of existing metrics used in the evaluation process of software at the 

design stage. 

 Analysis of the advantages and disadvantages, the provision of sound conclusions about the 

appropriateness of using the considered metrics in management practice. 

3. Software evaluation metrics at the design stage 

Independent software assessments at the design stage in most cases are performed by people who 

do not always take into account the relationship between software quality and the development team 

and resources that are on the project, which in turn leads to erroneous results and is impractical. 



Therefore, the most appropriate scheme is the one when the project manager, along with the 

architecture, the team lead, develops and tests [3]. In the process of analysis, perform several 

iterations in assessing the necessary resources affecting the quality of the entire software. 

For each project, it is customary to calculate and take into account the following indicators: 

 The number of people required to implement the software; 

 Total labor costs (in person-months, person-hours); 

 Program size (in thousands of source code lines); 

 Development cost; 

 Volume of documentation; 

 Errors that will be detected during the year of operation; 

 Development time. 

To measure the above indicators and quality criteria in various literary sources, metrics are used. 

The following metrics classes are used most often at the design stage for software evaluation: 

 Statistical; 

 Graphic; 

 Estimated; 

 Predictable; 

 Next, we will consider some of the most commonly used metrics. 

Halstead metrics [13, 14] are characteristics of programs, which are identified based on the static 

structure of the program in a specific programming language. It is based on counting the number of 

operators and operands used in the program. These metrics allow you to calculate  

 program length; 

 program size; 

 evaluation of its software implementation; 

 difficulty understanding software; 

 coding complexity; 

 level of language of expression; 

 informational content; 

 optimal modularity in software; 

 forecast of system resources; 

 prediction of the number of errors; 

 overall complexity; 

 connectivity; 

 hybrid. 

This metric is based on measurable program characteristics: the number of unique program 

statements (n1); the number of unique operands (n2); total number of operators (N1); total number of 

operands (N2). 

After highlighting the main characteristics of the software, you can calculate such indicators as: 

 alphabet (n) = n1+n2 ; 

 experimental program length (Ne) = N1+N2 ; 

 theoretical program length (Nт): = n1∙log2(n1) + n2∙log2(n2); 

 program size (V) =Ne∙log2(n); 

 potential volume (V*) = (N1*+N2*) ∙log2(n1* + n2*); 

 program level (L) =V* / V (from 0 till 1); 

 program complexity (S)=L-1; 

 expected program level (L^): =(2/n1)∙(n2/N2); 

 program intelligence (I)=L^ ∙ V; 

 programming work (Е)=V∙S ≡ V/L; 

 coding time (T) =E/St (St – Stroud number from 5 to 20); 

 expected coding time (T^) =n1∙N2 ∙ N∙log2(n) / (2∙St∙n2); 

 Programming language level (Lam): =(V*) ∙(V*)/V; 

 Mistakes level (В)=V / 3000. 



With the help of this metric, you can describe the potential volume of the program, the 

corresponding most compactly implementing the algorithm, you can calculate the programming time, 

the level of the program (structure and quality). It can also be used to assess the complexity of 

intermediate development products. 

Cyclomatic complexity of McCabe (McCabe's cyclomatic number) [8, 13] – characterizes the 

complexity of the testing program. This metric is based on the calculation of the cyclomatic number 

and the cyclomatic complexity of the software. The complexity of the program control flow is 

calculated on the basis of the control flow graph of the program. This graph is constructed as a 

directed graph, in which computational operators or expressions are represented as nodes, and the 

transfer of control between nodes is represented as arcs. 

To calculate the cyclomatic McCabe number Z(G), apply the formula 

𝑍(𝐺) =  𝑙 –  𝑣 +  2𝑝 , (1) 
where l is the number of arcs of a directed graph G;  

v is the number of vertices;  

p is the number of connected components of the graph. 

Moreover, the number of connected components of a graph is considered as the number of arcs 

that must be added to convert the graph into a strongly connected one. 

The advantages of this metric are in the simplicity of calculations and the ability to repeat the 

results, as well as visibility. It also allows not only to make an assessment of the complexity of the 

implementation of individual elements of a software project and adjust the overall indicators for 

assessing the duration and cost of the project, but also to assess the associated risks and make the 

necessary management decisions. The disadvantages include: insensitivity to the size of the program, 

insensitivity to changes in the structure of the program, no correlation with the structure of the 

program, no difference between the structures. 

Metric T. Jilba [12] allows you to determine the logical complexity of the program using the 

expressions IF_THEN_ELSE, for this purpose, the absolute complexity of the program (CL), 

characterized by the number of condition operators; cl is the relative complexity of the program, 

characterized by the saturation of the program with conditional operators, i.e. cl is defined as the ratio 

of CL to the total number of operators. 

Allows you to evaluate: 

 the number of operators L1oop cycle; 

 the number of conditional operators LIF; 

 the number of modules or subsystems L mod; 

 the ratio of the number of links between modules to the number of modules 

f = N4SV / L mod; 

 the ratio of the number of abnormal outputs from the set of operators to the total number of 

operator’s f * = N*SV / L. 

With the help of the Jilba metric, you can perform an analysis of cyclic constructions You can also 

analyze the relationship between the number of variables in the program and the number of calls to 

them with the complexity of the program itself. This metric also allows you to improve such quality 

indicators as: internal elasticity; openness (adaptability); tolerance to changes in the system; 

universality; convenience of transfer; comparability. 

The complexity of the program by the method of boundary values [12, 14]. This metric is based on 

the calculation of values using an oriented graph of a program with a single initial and only final 

vertices G = (V, E). In the graph under consideration, the number of arcs entering a vertex is called 

the negative degree of the vertex, and the number of arcs emanating from the vertex is called the 

positive degree of the vertex. The set of vertices of the graph consists of vertices with a positive 

degree <= 1 – receiving vertices and vertices with a positive degree >= 2 – selection vertices. 

The graph G is divided into the maximum number of subgraphs G 'that satisfy a number of 

conditions: the entrance to the subgraph is made only through the selection peak; each subgraph 

includes a vertex (called the lower boundary of the subgraph) that can be reached from any other 

vertex of the subgraph. 

Each receiving vertex has a corrected complexity equal to 1, except for the final vertex, the 

corrected complexity of which is 0. The corrected difficulties of all the vertices of the graph G are 



summed to form the absolute boundary complexity of the program. Further, the relative boundary 

complexity of the program is determined: 

𝑆0 =  1 – (𝑣 –  1)/ 𝑆𝑎 , (2) 
where S0 – relative boundary complexity of the program;  

Sa – absolute boundary complexity of the program;  

v – the total number of vertices of the program graph. 

This metric allows you to determine the boundary values of these functions, the complexity of the 

program and to plan actions in case of going beyond the permissible boundaries. 

Metrics of data flow complexity [12]. The main calculations are based on the data “module – 

global variable (p, r)”, where p is the module that has access to the global variable r. Depending on 

the presence in the software of the actual access to the variable r, two types of “module-global 

variable” pairs are formed: actual and possible. A possible reference to r with p shows that the region 

of existence of r includes p. 

The ratio of the number of actual references to possible is determined by the formula 

𝑅𝑢𝑝  =  𝐴𝑢𝑝/𝑃𝑢𝑝 , (3) 
where Aup value – how many times the Up modules actually accessed global variables, and Pup - how 

many times they could get access.  

This metric demonstrates the approximate probability of a link of an arbitrary module to an 

arbitrary global variable. In this case, the higher the probability, the higher the probability of an 

“unauthorized” change in any variable, which can significantly complicate the work associated with 

the modification of the program. 

Metrics of Pivovarsky [12] – aimed at assessing the complexity of the program differences not 

only between sequential and nested control structures, but also between structured and unstructured 

programs. The metric can be calculated by the formula 

𝑁(𝐺)  =  𝑛 ∗ (𝐺)  +  𝑆 𝑃𝑖 , (4) 
where n *(G) – is the modified cyclomatic complexity is taken into account in that the CASE operator 

with n-outputs is treated as one logical operator, and not as n - 1 operators. Pi is the nesting depth of 

the i - that predicate vertex. 

To calculate the depth of nesting of predicate vertices, the number of spheres of influence is 

required. It should be borne in mind that the depth of nesting increases due to the nesting not of the 

predicates themselves, but of the spheres of influence. This metric is well used in the case of 

transition from sequential to nested programs and further to unstructured ones. 

Metrics of the Chepin program complexity [12, 14]. The calculation of the metrics is based on an 

assessment of the informational strength of a single program module using the analysis of the nature 

of using variables from the input-output list. 

In the course of the analysis, the entire set of variables that make up the I / O list is divided into 

functional groups: P - input variables for calculations and for providing output. M - variables 

modified or created within the program. C - variables involved in the management of the program 

module (control variables). T – “parasitic” variables not used in the program. Such variables do not 

directly participate in the implementation of the information processing process for which the 

analyzed program is written, however they are stated in the program module. 

The initial expression for determining the Chepin metric is as follows: 

𝑄 =  𝑎1𝑃 + 𝑎2𝑀 +  𝑎3𝐶 + 𝑎4𝑇 , (5) 
where a1, a2, a3, a4 – weight coefficients. 

The weight coefficients are used to reflect the different effects on the complexity of the program of 

each functional group. 

The Chepin metric is based on an analysis of the source code of the programs, which provides a 

unified approach to the automation of the calculation and can be calculated using specially developed 

software. You can also get an estimate of reliability using weights. The main problem is to obtain 

these factors, which are calculated based on the experience of previous projects. With the rapid 

change of technology, methods and design tools, the experience of previous projects is inappropriate 

to use and as a result it will give incorrect estimates. 

MacClure metric [9, 12]. Allows you to assess the complexity of the software, using data on the 

number of possible ways to run the program, the number of control structures and variables. 



First, the complexity of the function C (i) is calculated by the control variable i: 

𝐶(𝑖)  =  (𝐷(𝑖)  ∗  𝐽(𝑖))/𝑛  , (6) 
where D (i) is a value that measures the scope of the variable i. J (i) is a measure of the complexity of 

the interaction of modules in terms of the variable i; 

n is the number of individual modules in the partitioning scheme. 

     Next, determine the value of the complexity of the functions M (P) for all modules 

𝑀(𝑃)  =  𝑓𝑝 ∗  𝑋(𝑃)  +  𝑔𝑝 ∗  𝑌(𝑃)  , (7) 
where fp and gp are the number of modules immediately preceding and immediately following the 

module P; 

X (P) is the difficulty of accessing the module P, Y (P) is the complexity of controlling the call from 

the module P of other modules. 

After that, the total complexity MP of the hierarchical scheme of program partitioning into 

modules is calculated according to all possible values of the P - program modules  

𝑀𝑃 =  𝑆𝑈𝑀𝑀(𝑀(𝑃)) .  (8) 
When calculating, it is necessary to take into account that in each module there is one entry point 

and one exit point, the module performs exactly one function, and the modules are called according to 

a hierarchical control system that defines the call relationship on multiple program modules. 

The MacClure metric is designed to manage the complexity of structured programs in the design 

process. In most cases, this metric is well applied to hierarchical schemes for dividing programs into 

modules; this allows you to choose a dividing scheme with less complexity long before writing a 

program. The metric demonstrates the dependence of the program's complexity on the number of 

possible execution paths, the number of control structures and the number of variables (on which the 

choice of the path depends). 

The Berlinger metric [13] is a measure of the complexity of information theory based on the 

frequency of program symbols in a program. The measure of complexity is calculated as 

𝐼(𝑅)  =  𝑚 (𝐹 ∗  (𝑅)  ∗  𝐹 − (𝑅))2 .  (9) 
The disadvantage of this metric is that a program containing many unique characters, but in small 

quantities, will have the same complexity as a program containing a small number of unique 

characters, but in large quantities. Another of the problems of applying this metric is to determine the 

values of the characteristics and determine the probability of each value 

The Cocolt metric [16] takes one metric as a basis, and also takes into account other metrics that 

should influence the final result. It is defined as follows: 

𝐻_𝑀 =  (𝑀 +  𝑅1  ∗  𝑀(𝑀1) + . . . + 𝑅𝑛  ∗  𝑀(𝑀𝑛)/(1 + 𝑅1 + . . . + 𝑅𝑛)  , (10) 
where M is the base metric;  

Mi are other interesting measures;  

Ri are correctly chosen coefficients;  

M (Mi) are functions. 

The functions M (Mi) and the coefficients Ri are calculated using regression analysis or task 

analysis for a specific program. 

The metric of Cocolt allows to receive the general numerical value for a set of metrics taking into 

account the weighed coefficients. It also allows in a numerical form to get the normalized 

characteristics of the groups of characteristics that reflect the quality of the program code. 

ABC-metric (Fitzpatrick) [6] inventory used to classify and prioritize resource allocation. This 

metric is based on the counting of assignments of variables (Assignment), explicit control transfers 

beyond the scope, i.e. function calls (Branch), and logical checks (Condition). 

It is determined based on three different indicators ABC =. The first indicator na (from the English 

Assignment) is highlighted under the lines of code that correspond to the assignment of variables to a 

certain value, for example, int number = 1. The indicator nb (from the English Branch) is responsible 

for the use of functions or procedures, that is, operands that work outside software visibility. The 

indicator nc (from the English Condition) counts the number of logical operands such as conditions 

and loops. The metric value is calculated as the square root of the sum of the squares of the values na, 

nb, and nc. 

 222

cba nnnF    . (11) 



The metric is easily calculated for different code fragments and is visual. The ABC metric can be 

used to estimate the size and complexity of the fragments of the analyzed application, as well as for 

automatic search. 

Myers interval metrics (Myers) [5] calculate the complexity of the program based on the strength 

of the individual modules of the program and the coupling between each pair of modules: 

















ji if,1

0  if,0

0 if,7.0)(15.0

D ij ij

ijijji

C

CCSS

  , (12) 

where Dij is the probability that module j will have to change when module i changes, if we consider 

modules i and j outside the context of the entire program (the relationship is considered symmetrical); 

Si and Sj are the strengths of these modules i and j; 

Cij is the coupling of modules i and j. 

This metric allows you to distinguish between different software complexity or functions, but it is 

very rarely used in Ukraine, and it has proven itself well in America. As applied to code analysis, the 

Myers metric does not have any noticeable advantages over simple cyclomatic complexity. 

Hanson Metric [12]. Allows you to estimate the complexity of a program or function using betting 

values - cyclomatic complexity and the number of operators (A, B), where A is the McCabe metric, B 

is the number of executable operators. This increases the sensitivity of the metrics to the structure of 

the program. 

Sometimes in practice, this metric is used to assess the complexity of analyzing a binary code in a 

situation where the analyst knows the approximate size of the entire software and the number of 

instructions in its component functions. 

The Schneidewind metric [10] is expressed in terms of the number of possible paths in the control 

flow graph. This metric is based on the approach that the later the errors occur, the more important 

they are for the process of predicting errors in the program. 

Assumptions are based on the fact that there are m testing intervals, and presumably fi errors are 

found on the i-th interval. 

This metric is appropriate to use in cases where data from all testing intervals are needed to predict 

the future state of the software. Or in the case when there was a certain change in the process of error 

detection, and only the data of the last m - (s-1) intervals makes sense to take into account in the 

forecasts for the future. It should be borne in mind that this metric does not take into account the 

complexity of the unfulfilled branches of the program. 

The Kafura metric (Henry & Kafura) [15] is based on the concept of information flows (also found 

under the name “Fan in / out complexity”). This metric allows the evaluation of local and global 

information flows, an assessment of the information complexity of the procedure and module. 

A local information flow from A to B exists if: module A calls module B (direct local flow); 

module B calls module A and A returns B the value used in B (indirect local flow); module C calls 

modules A, B and transfers the result of module A to B. 

The global information flow from A to B through the global data structure D exists if module A 

places information in D, and module B uses information from D. On the basis of these concepts, the 

quantity I is entered - the information complexity of the procedure: 

𝐼 =  𝑙𝑒𝑛𝑔𝑡ℎ ∗  (𝑓𝑎𝑛_𝑖𝑛 ∗  𝑓𝑎𝑛_𝑜𝑢𝑡)^2   , (13) 
where length is the complexity of the procedure text (measured using the Halstead, McCabe, LOC, 

etc. metrics);  

fan_in - the number of local streams inside the procedure plus the number of data structures from 

which the procedure takes information;  

fan_out is the number of local streams from the procedure plus the number of data structures that are 

updated by the procedure. 

You can define the informational complexity of a module as the sum of the informational 

complexities of its member procedures. Next, the informational complexity of the module is 

calculated relative to some data structure: 

𝐽 =  𝑊 ∗ 𝑅 +  𝑊 ∗ 𝑊𝑟𝑅𝑑 +  𝑊𝑟𝑅𝑑𝑥𝑅 +  𝑊𝑟𝑅𝑑 ∗  (𝑊𝑟𝑅𝑑 −  1)  , (14) 

where W is the number of procedures that only update the data structure;  



R – only read information from the data structure;  

WrRd – both read and update information in the data structure. 

Kafur metric allows you to take into account the complexity of the text. Allows you to determine 

the information complexity of the module given the number of elements and data structures from 

which the module takes information and which are updated by the module, respectively. 

The Oviedo metric [7]. In this case, the program is divided into linear non-intersecting segments – 

rays of operators that form a graph of the control flow of the program. The complexity metric of each 

ray is defined as the sum of the quantities of the determining occurrences for each variable used in the 

ray. 

There is also an interpretation of the Oviedo metric: C = aCF + bDF, where CF is the complexity 

of the control flow, taking into account only the number of arcs of the graph; DF – the complexity of 

the data stream, calculated as the sum of the complexity of the data streams of the basic blocks of the 

program, and the complexity of the data stream of a block is the number of variables that are used but 

not defined in the block; a, b – weights that can be taken equal to 1. 

The author of the metric assumes that it is easier to find the relationship between definitions and 

uses of a variable inside a ray than between rays, and that the number of different defining 

occurrences in each ray is more important than the total number of occurrences of the variable in each 

ray. The Oviedo measure can be considered as a transition from “pure” metrics to a combined data 

stream because it takes into account the flow of control and increases with the number of “inter-block 

links” when a variable is defined and used in different basic blocks of the program. 

As can be seen from the general analysis of metrics, not all of them allow an even and 

unambiguous assessment: labor-intensive; labor costs; total time to create a program; the number of 

people needed to work on the software; development period; cost and costs of the project stages; 

project risks; functional fitness; the complexity of the execution of the software; depth of the 

inheritance tree; software size; total number of objects; average labor productivity; scope of testing 

and cost of testing; popularity of the technologies used. Therefore, it is advisable to continue the study 

in order to find answers to questions related to software evaluation which should facilitate the 

software evaluation stage at the design stage. 

4. Analysis software evaluation metrics at the design stage 

Based on the foregoing, it is further advisable to perform a more complete analysis of software 

assessment metrics at the design stage. The result of the analysis is shown in Table 1, which shows 

the calculated criteria of the considered metrics and implicit criteria that allow you to select the 

necessary criteria for evaluating the quality of software within the metric. Table 2 shows the 

advantages and disadvantages of each considered metric used to evaluate software at the design stage. 

 

Table 1 
Explicit and implicit characteristics of metrics that allow software quality assessment 

№ Metrics Explicit Implicit 

1 Halstead 
Metrics 

- program length; 
- program volume 
- assessment of its 
implementation; 
- the difficulty of 
understanding it; 
- the complexity of coding; 
- level of language of 
expression; 
- informational content;- 
optimal modularity. 

- the time necessary for a person to perform 
the elementary difference of objects; 
- program level - characterizes the efficiency 
of the implementation of the algorithm 
relative to memory costs; 
- programming work; 
- determination of the number of modules in 
the program; 
- to predict probable errors in the program 
for necessary work; 
- average number of differences between 
possible programming errors; 
- assessment of intellectual efforts; 



- level of programming quality; 
- the complexity of understanding the 
program; 
- the complexity of coding software; 
- language level - this characteristic allows 
you to determine the mental costs of 
creating software; 
- required solutions when writing software. 

2 McCabe 
Cyclomatic 
Complexity 
(McCabe 
Cyclomatic 
Complexity) 

- the complexity of the 
program control flow; 
- graph of the control logic of 
the program; 
- cyclomatic complexity. 

- the complexity of the program; 
- logical complexity of the program; 
- criterion for covering all branches of the 
program; 
- the number of tests sufficient for testing; 
- assessment of the complexity; 
- the feasibility of individual software 
elements; 
- to predict probable errors in the program 
for necessary work; 
- the duration and cost of the project; 
- assess the associated risks; 
- determination of the most complex, high 
risks, on the basis of which take measures to 
eliminate risks by making adjustments. 

3 Metric  
T. Jilba 

- the number of loop 
operators; 
- the number of condition 
operators; 
- the number of modules or 
subsystems; 
- the ratio of the number of 
connections between 
modules to the number of 
modules; 
- the ratio of the number of 
abnormal exits from the set 
of operators to the total 
number of operators; 
- logical complexity of the 
program; 
- the absolute complexity of 
the program; 
- the relative complexity of 
the program. 

- assessment of the cost of software at the 
initial stages of design; 
- the complexity of development; 
- the complexity of understanding the 
program; 
- the difficulty of writing a program; 
- general software complexity; 
- assessment of the complexity; 
- software reliability; 
- the maximum level of nesting of 
conditional and cyclic operators; 
- to predict probable errors in the program 
for necessary work; 
- internal elasticity; 
- openness (adaptability); 
- tolerance to changes in the system; 
- universality; 
- ease of transfer; 
- comparability; 
- determination of the most complex, high 
risks, on the basis of which take measures to 
eliminate risks by making adjustments. 



4 The 
complexity 
of the  
 program  
according to 
the method 
of boundary 
values 
(boundary 
value) 

- relative marginal complexity 
of the program; 
- absolute boundary  
complexity of the program; 
- the boundary complexity of 
the program;  
- the total number of vertices 
of the program graph. 

- plan actions in case of exceeding 
permissible boundaries; 
- evaluate implemented functionality; 
- the complexity of the processes; 
- to predict probable errors in the program 
for necessary work;  
- openness (adaptability); 
- tolerance to changes in the system; 
- ease of transfer; 
- determination of the most complex, high 
risks, on the basis of which take measures to 
eliminate risks by making adjustments. 

5 Data Flow 
Complexity 
Metric 

- informational complexity of 
the module relative to some 
data structure; 
- analysis of static data flow 
(Static Data Flow Analysis); 
- Cross Reference Analysis; 
- analysis of information flow 
(Information Flow Analysis); 
- cohesion of the data 
structure; 
- complicate the work 
associated with the 
modification of the program. 

- perform analysis of data streams; 
- the duration of the program and the level 
of data nesting; 
- evaluate the integrity of software modules; 
- the complexity of understanding the 
program; 
- the difficulty of writing a program; 
- general software complexity; 
- determination of the complexity of the 
work associated with the modification of the 
program; 
- evaluate implemented functionality; 
- identification of hidden dependencies in 
the software and convert them into an 
explicit form, thereby simplifying the 
program logic. 

6 Pivovarsky 
Metrics 

- a modified cyclomatic 
measure of complexity; 
- general assessment of 
software complexity; 
- nesting depth. 

- the complexity of the program; 
- criterion for covering all branches of the 
program; 
- the number of tests sufficient for testing; 
- assessment of the complexity; 
- the feasibility of individual software 
elements; 
- to predict probable errors in the program 
for necessary work; 
- internal elasticity; 
- openness (adaptability); 
- tolerance to changes in the system; 
- universality; 
- ease of transfer; 
- comparability. 

7 Chepin's 
complexity 
metrics 

- a measure of the difficulty 
of understanding programs 
based on input and output 
data; 
- assessment of the 
information strength of a 
single software module; 

- the complexity of the program; 
- criterion for covering all branches of the 
program; 
- the number of tests sufficient for testing; 
- assessment of the complexity; 
- the feasibility of individual software 
elements; 



  - the complexity of the 
program of each functional 
group. 

- to predict probable errors in the program 
for necessary work; 
- tolerance to changes in the system; 
- ease of transfer; 
- reliability assessment. 

8 McClure 
Metric 

- the complexity of the 
interaction of the modules; 
- complexity of functions; 
- software complexity; 
- the number of possible ways 
to execute programs; 
- the number of control 
structures and variables. 

-the degree of standardization of interfaces 
(communication commonality); 
- functional completeness (completeness); 
- the feasibility of individual software 
elements; 
- to predict probable errors in the program 
for necessary work; 
- the uniformity of the used design rules and 
documentation (consistency); 
- error tolerance; 
- performance efficiency; 
- expandability (expandability); 
- independence from the hardware platform 
(hardware independence); 
- completeness of logging errors and other 
events (instrumentation); 
- modularity; 
- convenience of work (operability); 
- security (security); 
- simplicity of work (simplicity); 
- ease of learning (training). 

9 Burlinger 
Metric 

- the complexity of the 
program. 

- assessment of the possibility of software to 
transition from sequential to embedded 
programs; 
- assessment of the relationship of elements 
within the program; 
- predict hidden dependencies and convert 
them into an explicit form; 
- the number of tests sufficient for testing; 
- assessment of the complexity; 
- the feasibility of individual software 
elements; 
- to predict probable errors in the program 
for necessary work; 
- the ability to simplify the logic of the 
program. 

10 Bell Metric - program length; 
- program volume 
- assessment of its 
implementation; 
- the difficulty of 
understanding it; 
- the complexity of coding;  
- level of language of 

- classification of applications according to 
complexity of analysis; 
- assessment of labor costs; 
- determination of the number of tests 
sufficient for testing; 
- assessment of the logical complexity of the 
program; 
- identification of the most complex, high 



  expression; 
- informational content; 
- optimal modularity; 
- cyclomatic complexity. 

risks and take measures to eliminate risks by 
making adjustments; 
- the time necessary for a person to perform 
the elementary distinguishing of objects; - 
the effectiveness of the implementation of 
the algorithm relative to memory costs;  
- evaluation of programming work;  
- errors in the program; 
- the average number of elementary 
differences between possible programming 
errors; 
- assessment of intellectual efforts 
- level of programming quality; 
- the complexity of understanding the 
program; 
- the complexity of coding the program; 
- level of language of expression; 
informational content of the program (this 
characteristic allows you to determine the 
mental costs of creating the program); 
- assessment of intellectual efforts in 
software development. 

11 ABC Metric 
(Fitzpatrick) 
[6] 

- software size; 
- assessment of software 
complexity; 
- accumulation of technical 
debt of the application; 
- analysis of duplicate code 
fragments; 
- finding errors; 
- distribution of resources; 
- distribution of indirect costs. 

- assessment of the size and complexity of 
software fragments; 
- the complexity of development; 
- the complexity of understanding the 
program; 
- the difficulty of writing a program; 
- general software complexity; 
- to predict probable errors in the program 
for necessary work; 
- tolerance to changes in the system; 
- universality; 
- determination of the most complex, high 
risks, on the basis of which take measures to 
eliminate risks by making adjustments. 

12 Myers 
Interval 
Metric 
(Myers) 

- cyclomatic measure, 
- the number of individual 
conditions. 

- the complexity of the program; 
- logical complexity of the program; 
- the number of tests sufficient for testing by 
the criterion of coverage of all branches of 
the program; 
- the number of tests sufficient for testing; 
- assessment of the complexity; 
- the feasibility of individual software 
elements; 
- duration and cost of the project; 
- assess the associated risks; 
- determination of the most complex, high 
risks, on the basis of which take measures to 
eliminate risks by making adjustments. 



13 Hanson 
Metric 

- a pair (cyclomatic number, 
number of operators);  
- there are errors; 
- prediction of errors in the 
program; 
- testing intervals. 

- the complexity of the program; 
- the logical complexity of the program; 
- the number of tests sufficient for testing by 
the criterion of coverage of all branches of 
the program; 
- the number of tests sufficient for testing; 
- assessment of the complexity; 
- the feasibility of individual software 
elements; 
- assess the associated risks; 
- determination of the most complex, high 
risks, on the basis of which take measures to 
eliminate risks by making adjustments. 

14 Kafura 
Metric 
(Henry & 
Kafura) 

- informational complexity of 
the procedure; 
- the complexity of the text of 
the procedure; 
informational complexity of 
the module; 
- level of commenting on the 
program; 
- the overall complexity of the 
structure. 

- evaluate implemented functionality; 
- the complexity of the processes; 
- assessment of the relationship of elements 
within the program; 
- Predict hidden dependencies and convert 
them into an explicit form; 
- the number of tests sufficient for testing; 
- assessment of the complexity; 
- the feasibility of individual software 
elements; 
- to predict probable errors in the program 
for necessary work; 
- the ability to simplify the logic of the 
program. 

15 Oviedo 
Metric 

- complexity of the control 
flow; 
- the complexity of the data 
stream; 
- base blocks of the program; 
- weighting factors; 
- program complexity. 

- tests to achieve an acceptable level of code 
coverage; 
- assessment of the relationships between 
subtasks; 
- evaluate the integrity of software modules; 
- the complexity of understanding the 
program; 
- the difficulty of writing a program; 
- general software complexity; 
- determination of the complexity of the 
work associated with the modification of the 
program; 
- evaluate implemented functionality; 
- identification of hidden dependencies in 
the software and convert them into an 
explicit form, thereby simplifying the 
program logic; 
- determination of the most complex, high 
risks, on the basis of which take measures to 
eliminate risks by making adjustments. 

 

 



Table 2 
Advantages and disadvantages of software evaluation metrics at the design stage 

№ Metrics Advantages Disadvantages 

1 Halstead 
Metrics 

- Allows, in numerical form, to 
evaluate the potential volume of  
the program, corresponding to 
the most compactly implementing 
algorithms. 
- Allows you to calculate the 
approximate programming time, 
program level. 
- It can be used to assess the 
complexity of intermediate 
development elements. 
- You can evaluate the quality of the 
development process based on the 
degree of expansion of the text 
relative to the potential volume. 
- Allows you to determine the 
mental costs of creating a program 
and evaluate the necessary 
intellectual effort. 
- Evaluation does not depend on the 
language of software 
implementation. 
- There is no need to completely 
recount all indicators when 
translating a program from one 
language to another. 

- The need for the availability of 
the source code of the software. 
 - The characteristics of reliability, 
functionality is not taken into 
account. 
- There is a limitation that the 
length of a correctly compiled 
program should not deviate from 
the theoretical program length by 
more than 10%. 
- When determining the mental 
costs of creating a program, 
debugging work, which also 
requires intellectual costs, is not 
taken into account. 

2 McCabe 
Cyclomatic 
Complexity 
(McCabe 
Cyclomatic 
Complexity) 

- The simplicity of the calculations. 
- Opportunities for repeatability of 
results. 
- Visibility. 
- Allows you to evaluate the 
complexity of the implementation of 
individual software elements. 
- Ability to adjust the overall 
indicators for assessing the duration 
and cost of the project. 
- Allows you to assess the associated 
risks and make the necessary 
management decisions. 
- The indicator of cyclomatic 
complexity can be calculated for 
different structural units of software 
(module, method, etc.). 

- Insensitive to program size. 
- Lack of correlation with the 
structure of the program. 
- Lack of distinction between 
designs. 
- When calculating cyclomatic 
complexity, logical operators are 
not taken into account 
- Insensitivity to changes in 
program structure. 
- Representation of the same 
graphs may have predicates of 
completely different complexity 
- When calculating the logical 
complexity of software, the choice 
of data structures, algorithms, 
variables or comments is not taken 
into account. 
- It is intended only for evaluating 
programs developed in 
accordance with certain 



requirements for a programming 
style. 
- Not suitable for building a 
software complexity profile. 

3 Metric  
T. Jilba 

- Ability to perform analysis of cyclic 
structures. 
- You can analyze the relationship 
between the number of variables in 
the program and the number of calls 
to them with the complexity of the 
program itself. 
- Allows you to increase such quality 
indicators as: internal  
elasticity; openness (adaptability); 
tolerance to changes in the system; 
universality; ease of transfer; 
comparability. 
- Allows you to evaluate the relative 
complexity to build a profile of 
complexity. 
- Allows you to control the program 
development process from TK to trial 
operation. 

- The need for the availability of 
the source code of the software. 
- The characteristics of reliability, 
functionality is not taken into 
account. 
- Not suitable for building a 
software complexity profile. 

4 The complexity 
of the  
program 
according to the 
method of 
boundary 
values 
(boundary 
value) 

- It makes it possible to determine 
the boundary values of the 
complexity of the program. 
- Allows you to plan actions in case 
of exceeding the permissible limits 
of complexity. 
- Allows you to evaluate in different 
ways those implementing the same 
functionality. 

- Requires a certain degree of 
creativity and specialization in the 
task at hand. 
- Determining the boundaries for 
the task is a time-consuming 
process. 
- Lack of verification of the 
combination of input values. 

5 Data Flow 
Complexity 
Metric 

- Ability to perform data flow 
analysis. 
- It takes into account the duration 
of the program and the level of data 
nesting. 
- Allows you to evaluate the integrity 
of software modules. 
- It makes it possible to determine 
the complexity of the work 
associated with the modification of 
the program. 
- Allows you to identify hidden 
dependencies in the program and 
convert them into an explicit form, 
thereby simplifying the program 
logic. 

- Sometimes a metric 
demonstrates the approximate 
probability of an arbitrary module 
referencing an arbitrary global 
variable. 
- The subjectivity of some criteria 
for choosing routes. 
- The need for templates for 
control structures. 
- It must be taken into account 
that the higher the probability of 
linking an arbitrary module, the 
higher the likelihood of an 
“unauthorized" change in any 
variable, which in turn can 
significantly complicate the work 
associated with modifying a 
program. 



6 Pivovarsky 
Metrics 

- Allows you to evaluate software in 
the event of a transition from 
sequential to embedded programs. 
- There is a possibility of transition 
from embedded software to 
unstructured. 

- A reliable number of spheres of 
influence is necessary in order to 
calculate the nesting depth of  
predicate vertices. 
- It is necessary to monitor that 
the nesting depth increases due to 
the nesting of predicates 
themselves, but of spheres of 
influence. 

7 Chepin's 
complexity 
metrics 

- Provides a unified approach to 
calculation automation. 
- Facilitates the process of software 
automation. 
- Allow you to calculate reliability 
using weights. 

- Based on an analysis of the 
source code of programs. 
- Definition of weights, which are 
calculated based on the 
experience of previous projects. 
- It is inexpedient to use when 
rapidly changing technologies, 
methods and  
design tools (demonstrates 
incorrect estimates). 

8 McClure Metric - Allows you to manage the 
complexity of structured programs in 
the design process. 
- Allows you to evaluate hierarchical 
schemes based on the division of 
programs into modules, which in 
turn allows you to choose a partition 
scheme with less complexity long 
before writing a program. 

- It is necessary to take into 
account that in the calculations 
this metric is based on the fact 
that in each module there is one 
entry point and one exit point, the 
module performs exactly one 
function, and the modules are 
called in accordance with the 
hierarchical control system, which 
sets the call ratio on many 
program modules. That is, for 
complex elements, its use is not 
advisable. 
- Demonstrates the dependence of 
program complexity on the 
number of possible execution 
paths, the number of control 
structures and the number of 
variables (on which the choice of 
path depends). 
- Each metric affects the 
assessment of several quality 
factors. 
- The numerical expression of the 
calculated factor is distributed 
differently for different 
organizations, development 
teams, types of software, 
processes used, etc. 
- Designed for programs that are 
well structured and composed of 



hierarchical modules that define 
the functional specification and 
management structure. 

9 Burlinger Metric - Allows you to calculate the 
complexity of the program. 
- Allows you to evaluate software in 
the event of a transition from 
sequential to embedded programs. 
- Allows you to evaluate the 
relationship of elements within the 
program. 
- Allows you to identify hidden 
dependencies in the program and 
convert them into an explicit form, 
thereby simplifying the program 
logic. 

- The need for the availability of 
the source code of the software. 
- The need to consider that a 
program containing many unique 
characters, but in small numbers, 
will have the same complexity as a 
program containing a small 
number of unique characters, but 
in large numbers. 
- The choice of values of the 
characteristics and determination 
of the probability of each value is 
not unique, which in turn affects 
the indicators. 
- Depends on the probability of 
occurrence of the value. 

10 Bell Metric - Allows you to get the total 
numerical value for a set of  
- Empirical data on the relationship 
of the elementary measures used in 
previous projects should be taken 
into account. 
- The characteristics of reliability, 
functionality is not taken into 
account. 
- It is intended only for evaluating 
programs developed in accordance 
with certain requirements for a 
programming style. 
- It takes into account the experience 
of employees and their other 
qualities. 
- Insensitive to program size. 
- Dependence on the expert who 
makes the calculation. 

- The need for the availability of 
the source code of the software. 
- Empirical data on the 
relationship of the elementary 
measures used in previous 
projects should be taken into 
account. 
- The characteristics of reliability, 
functionality is not taken into 
account. 
- It is intended only for evaluating 
programs developed in 
accordance with certain 
requirements for a programming 
style. 
- It takes into account the 
experience of employees and their 
other qualities. 
- Insensitive to program size. 
- Dependence on the expert who 
makes the calculation. 
 

11 ABC Metric 
(Fitzpatrick) [6] 

- Allows classification and 
prioritization of resource allocation. 
- Possibilities for repeatability of 
results. 
- Visibility. 
- Allows you to calculate the 
assignment of variable values, i.e. 
explicit transfers of control out of 
scope. 

- May take a value of zero for 
some non-empty program units. 
- It does not depend on the 
selected period. 
- Sensitive to a small number of 
observations. 
- The data are very different from 
the results of other metrics when 
calculating. 



- Easy to calculate, can be calculated 
for different pieces of code. 
- It can be used to assess the size and 
complexity of fragments of the  
analyzed application, as well as for 
automatic search. 
- Allows you to take into account 
more cases of adding operators to 
the script text. 
- Approach management issues in 
terms of cost, quality and 
productivity of the actions 
performed, as well as assess the risks 
associated with them. 
 

- High complexity and significant 
costs for the implementation of 
ABC in the enterprise. 

12 Myers Interval 
Metric (Myers) 

- Allows you to distinguish between 
different software or functions in 
complexity. 
- The simplicity of the calculations. 
- Opportunities for repeatability of 
results. 
- Visibility. 
- Allows you to evaluate the 
complexity of the implementation of 
individual software elements. 
- Ability to adjust the overall 
indicators for assessing the duration 
and cost of the project. 
- Allows you to assess the associated 
risks and make the necessary 
management decisions. 

- With regard to code analysis, the 
Myers metric has no noticeable 
advantages over simple cyclomatic 
complexity. 
- Insensitive to program size. 
- Lack of correlation with the 
structure of the program. 
- Lack of distinction between 
designs. 
- When calculating cyclomatic 
complexity, logical operators are 
not taken into account. 
- Requires additional analysis of 
each predicate to determine the 
number of variables on which it 
depends. 

13 Hanson Metric - Allows you to evaluate the 
complexity of a program or function 
using a bet of values - cyclomatic 
complexity and the number of 
operators. 
- Allow you to perform a structured 
program. 
- Sensitivity to software structuring. 
- Allows you to evaluate the 
complexity of binary code analysis in 
a situation where the analyst knows 
the approximate size of the entire 
software and the number of 
instructions in its constituent 
functions. 

- Insensitive to program size. 
- Lack of correlation with the 
structure of the program. 
- Lack of distinction between 
designs. 
- When calculating cyclomatic 
complexity, logical. operators are 
not taken into account. 
- Insensitivity to changes in 
program structure. 
- It is intended only for evaluating 
programs developed in 
accordance with certain 
requirements for a programming 
style. 
Not suitable for building a 
software complexity profile 



14 Kafura Metric 
(Henry & 
Kafura) 

- Considers the complexity of the 
software text. 
- Allows you to determine the 
information complexity of the 
module given the number of 
elements and data structures from 
which the module takes information 
and which are updated by the 
module, respectively. 

- The need to introduce the 
concepts of local and global flows 
in software, on which the 
assessment of information 
complexity depends. 
- Based on an analysis of the 
source code of programs 
- Definition of weights, which are 
calculated based on the 
experience of previous projects. It 
is inappropriate to use with a rapid 
change in technology, methods 
and design tools (demonstrates 
incorrect estimates). 

15 Oviedo Metric - Allows you to consider the control 
flow in different base blocks of the 
program. 
- Allows you to assess the associated 
risks and make the necessary 
management decisions 
- Allows you to evaluate the 
relationship of elements within the 
program. 
- Allows you to identify hidden 
dependencies in the program and 
convert them into an explicit form, 
thereby simplifying the program 
logic. 

- The subjectivity of some criteria 
for choosing routes. 
- The need for templates for 
control structures. 
- Distortion of the control flow, 
which leads to an increase in the 
complexity of the vertices of the 
control flow graph, which does not 
allow to use the metric efficiently. 
- Control variables can also affect 
program control flow. 

 
Thus, the solution of the same problem by different authors can lead to significant variations in the 

values of the metrics; therefore, it is advisable to use several assessment metrics for their subsequent 

comparison. Since the metrics complement each other and answer different questions in the software 

evaluation process, this allows you to achieve the required quality, taking into account the required 

and necessary criteria. 

The results obtained will allow us to further develop a generalized classification model of metrics 

used to evaluate software, taking into account the type of software, selected project management 

functions based on a hierarchical quality model and highlighted advantages and disadvantages of 

software assessment metrics at different stages of software development. In turn, the introduction and 

use of such a classification of metrics will not only improve control over the software development 

process, but also more consciously carry out their selection and use at various stages of the LC 

software, thereby improving the quality of the final product and facilitate the process of choosing the 

necessary metrics. 

5. Conclusions 

In the course of this work: 

 the analysis of the current state of the problem of the applied software assessment metrics was 

performed at the design stage, which are currently used in development management; 

 the importance of performing a preliminary assessment of the software was determined before 

embarking on its implementation; 

 review of the most used software evaluation metrics at the design stage was made.  



As a conclusion throughout the work, it can be said that software evaluation at the design stage has 

a high practical application, since allows you to perform a software assessment before it starts, which 

in turn allows you to take into account most of the possible risks of the project and the development 

stages. In turn, this allows you to compare what costs are needed and what the future cost of the 

project. It should be noted that practically on all software development platforms there are tools for 

evaluating most of the reviewed software evaluation metrics at the design stage. 

During the analysis, it was found that not a single universal metric exists. Any controlled metric 

characteristics of the program should be controlled either depending on each other, or depending on 

the specific task. It should be noted that any metric is only an indicator that depends heavily on the 

language and programming style; therefore, no measure can be raised to an absolute and any decisions 

can be made based only on it. 

It should be remembered that there exist and apply in practice standards that support the metric 

assessment of the quality and reliability of software, including the regulatory documents of the IEEE 

982 series, ISO / IEC 9126, DSTU 28195, RUP. 

When evaluating software at the design stage, it is advisable to use several assessment metrics for 

their subsequent comparison to improve the quality. Since the metrics complement each other and 

answer different questions in the software evaluation process, this allows you to achieve the required 

quality with the necessary criteria. If the result is completely different results, it means that there is 

not enough information to obtain a more accurate assessment, or the wrong characteristics were 

selected within the framework of the designed software. In this case, it is necessary to use additional 

information, or choose more indicative criteria, after which it is necessary to repeat the assessment, 

and so on until the results of the various methods become close enough. 

The obtained results will allow to continue the work on the analysis of the used statistical metrics 

of software evaluation used in the development of software projects throughout the life cycle of 

software development. 

6. References 

[1] A. A. Platonov, V. I. Timofeev, Integrity Monitoring of Dynamic Objects of Computing Systems 

Using Metric Standards, volume 38, 2015, pp. 136–160. doi: 10.15622/sp.38.8. 

[2] P. E. Efimova, Ensuring the quality of management decisions when designing instrumentation on 

the basis of a comprehensive mathematical model of the process, Ph.D. thesis,  Rybinsk, 2011. 

[3] A. Wasif, Metrics in Software Test Planning and Test Design Processes, Ronneby, 2018. 

G. M. Muketha, Metrics and Models for Evaluating the Quality and Effectiveness of ERP 

Software, in: G. M. Muketha (Eds.), Advances in Systems Analysis, Software Engineering and 

High Performance Computing, 1st ed., 2019.  

[4] O. V. Kazarin, Reliability and security of software: a textbook for undergraduate and graduate 

studies, Publishing House Yurite, Moscow, 2019. ISBN 978-5-534-05142-1. URL: 

https://urait.ru/bcode/441287 (case date: 15.02.2021). 

[5] K. E. Serdyukov, Study of methods for assessing the complexity of program code when 

generating input test data, Proceedings of the Information technologies and nanotechnologies 

(ITNT-2020), volume 4. Data sciences, Publishing House Samara, 2020, pp. 662–671. 

[6] I. Ledovskikh, Code complexity metrics: Technical Report 2012-12, p. 22, 2012. URL: 

http://www.ispras.ru/preprints/docs/prep_25_2013.pdf . 

[7] K. Smelyakov, A. Datsenko, V. Skrypka, A. Akhundov, Efficiency of Image Reduction 

Algorithms with Small-Sized and Linear Details, in: Proceedings of the 2019 IEEE International 

Scientific-Practical Conference Problems of Infocommunications, Science and Technology, PIC 

S&T’2019, Kyiv Ukraine, 2019, pp. 745-750. 

[8] K. Smelyakov, O. Ponomarenko, A. Chupryna, D. Tovchyrechko, I. Ruban, Local Feature 

Detectors Performance Analysis on Digital Image, in: Proceedings of the 2019 IEEE 

International Scientific-Practical Conference Problems of Infocommunications, Science and 

Technology, PIC S&T ’2019, Kyiv Ukraine, 2019, pp. 644-648. 



[9] D. A. Mayevsky, E. Yu. Mayevskaya, A. A. Orekhova, A. Yu. Krivtsov, V. S. Kharchenko, 

Green software, in: Proceedings Workshop, National Aerospace University named after 

N.E. Zhukovsky "KHAI.", Kharkov, 2015.  

[10] M. Frappier, Software Metrics for Predicting Maintainability, 2014.  

[11] Models and metrics of software quality assessment, 2020. URL: http://www.met-

rix.narod.ru/page2.htm. 

[12] A. V. Averyanov, I. N. Koshel, V. V. Kuznetsov, Application of Halstead metrics for 

quantitative estimation of computer program characteristics, Journal of Instrument Engineering, 

volume 62, N 11, 2019, pp. 970-975 (in Russian). 

[13] N. Sharonova, O. Kanishcheva, Image and video tag aggregation, in: CEUR Workshop 

Proceedings, 2017, pp. 161-172. 

[14] Y. I. Hrytsiuk, O. T. Andrushchakevych, Means for determining software quality by metric 

analysis methods, Scientific Bulletin of  UNFU, 28(6), 2018, pp.159-171. 

doi:10.15421/40280631. 

[15] A.V. Tsarevsky, A priori estimation of information processing algorithms by topological metrics 

of complexity, Automation of control processes. 1, 2012, pp. 95–101. 

[16] S. K. Chernonozhkin, Measures of program complexity (review). System Informatics, 

Novosibirsk: Science, Issue 5: Architectural, formal and software models (2019) 188-227. URL: 

https://www.elibrary.ru/item.asp?id=26865926. 


	1. Introduction
	2. Research problem statement
	3. Software evaluation metrics at the design stage
	4. Analysis software evaluation metrics at the design stage
	5. Conclusions
	6. References

