CEUR-WS.org/Vol-2870/paper69.pdf

Metrics Applicable for Evaluating Software at The Design Stage

Iryna Gruzdo?, Iryna Kyrychenko?, Glib Tereshchenko? and Nadiya Shanidze®

@ Kharkiv National University of Radioelectronics, Nauky Ave. 14, Kharkiv, 61166, Ukraine
b National Technical University "KhPI", Kyrpychova str. 2, Kharkiv, 61002, Ukraine

Abstract

The paper reviewed and analyzed the existing metrics used in the software evaluation process
at the design stage. Discussed issues related to the selection and accounting of indicators
affecting the evaluation of software at the design stage in the management of software
development. The study of the metrics used to perform the evaluation of software at the
design stage. Find conclusions about the use of the metrics examined in management
practice. Proved the need to study the metrics described in the Rada standards governing the
process of developing software.

Keywords 1
Software, software evaluation, metrics, software quality, project type, software development
management, complexity, accounting

1. Introduction

At the present stage of development of information technologies, both throughout the world and in
Ukraine, the tasks related to software evaluation throughout the life cycle acquire particular relevance,
and in particular, special attention is given to software quality assessment at the design stage, since it
doesn’t depend on only the quality, but also the risks of the project, as well as its cost.

The quality of a software product consists of a set of features and characteristics of software that
can satisfy the needs and requests of interested parties.

It should be noted that the importance of each quality characteristic varies depending on the
restrictions adopted in the project, depending on the decisions of the project manager or team in
relation to the project and the team involved in the design and development of the project. The quality
of software is influenced by human, material, hardware, time resources, as well as restrictions are
adopted within a specific type of project.

In view of the above, it can be concluded that a balance between a number of variable
characteristics that affect the overall quality plays a significant role. Therefore, it is necessary to pay
special attention to the accumulation of information and analysis of the interrelations of factors in the
previously obtained results.

Also noteworthy is the number of problems associated with the success of the project as a whole;
in most cases, success depends on the evaluation of the software at the design stage from those
methods and metrics that were initially chosen and which gave them the approximate assessment to
the realities of the developed project itself [4, 11].

The classical software evaluation process consists of three stages: the establishment (definition) of
quality requirements, the preparation for assessment, and the assessment procedure. This process can
be applied both at any phase of the life cycle and during the development of individual software
components in order to understand how the development takes place.

COLINS-2021: 5th International Conference on Computational Linguistics and Intelligent Systems, April 22-23, 2021, Kharkiv, Ukraine
EMAIL: tigralwovna@gmail.com (l. Gruzdo); iryna.kyrychenko@nure.ua (l. Kyrychenko); hlib.tereshchenko@nure.ua (G. Tereshchenko);
nashanidze@ukr.net (N. Shanidze)

ORCID: 0000-0002-4399-2367 (l. Gruzdo); 0000-0002-7686-6439 (I. Kyrychenko); 0000-0001-8731-2135 (G. Tereshchenko); 0000-0002-

9613-186X (N. Shanidze)
© 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

mailto:nashanidze@ukr.net

A special place in the process of evaluating software quality is represented by software assessment
methods at the design stage. The classification of methods according to Vendrov [2] is given below.
Algorithmic modeling.

Expert estimates.
Evaluation by analogy.
Parkinson's law.

Score to win the contract.

When using these methods in practice, you should consider the strengths and weaknesses of each
of them. It is necessary to determine the appropriateness of their use depending on which of the
methodologies is used for software development - Waterfall, Scrum, Kanban, Rational Unified
Process, etc. It is also necessary to take into account the features that are inherent in one or another
methodology chosen for project management.

Before proceeding to the selection or analysis of the project, it should be understood that although
there are a number of methodologies, models and methods, they are in most cases divided into
theoretical, practical, and biased in the process of classifications.

Depending on the size of the programmer of the company, it depends on what criteria they choose
to evaluate the software at the design stage. But it should be noted that in their practice they do not
use expensive and unconfirmed methods of software evaluation, and in a number of cases they use
accumulated historical data to compare the complexity of the project with the complexity of previous
projects of a similar type, size, orientation and human composition.

Therefore, by virtue of the above, this article will discuss the practical aspects that allow the
evaluation of software at the design stage. Those metrics will be considered that allow to evaluate
software not only for large firms but also for a group of people when working on a startup.

The purpose of the article is to analyze the existing practical software evaluation solutions at the
design stage, review the most commonly used metrics aimed at increasing the quality of the software,
and also justify the choice of using the metrics discussed in management practice.

As a result of solving the problem, the current state of the software evaluation problem will be
reviewed at the design stage, as well as during the analysis, the most used metrics that have practical
experience in development and are aimed at improving the quality of software throughout the life
cycle will be considered.

2. Research problem statement

Currently, there are many metrics for evaluating software at the design stage, suitable for assessing
the necessary resources that affect the quality of all software. In addition, classes of metrics are
known that are aimed at increasing the quality of software and facilitating the software development
process, therefore, having formulated a number of characteristic criteria, it is necessary to establish
the suitability of each of the known software evaluation metrics to improve software quality at the
design stage.

The solution to this problem involves the implementation of the following sequence of steps:

e Used metric classes that are aimed at increasing the quality of software.

e Review and analysis of existing metrics used in the evaluation process of software at the

design stage.

e Analysis of the advantages and disadvantages, the provision of sound conclusions about the

appropriateness of using the considered metrics in management practice.

3. Software evaluation metrics at the design stage

Independent software assessments at the design stage in most cases are performed by people who
do not always take into account the relationship between software quality and the development team
and resources that are on the project, which in turn leads to erroneous results and is impractical.

Therefore, the most appropriate scheme is the one when the project manager, along with the
architecture, the team lead, develops and tests [3]. In the process of analysis, perform several
iterations in assessing the necessary resources affecting the quality of the entire software.

For each project, it is customary to calculate and take into account the following indicators:

The number of people required to implement the software;
Total labor costs (in person-months, person-hours);
Program size (in thousands of source code lines);
Development cost;

VVolume of documentation;

Errors that will be detected during the year of operation;
Development time.

To measure the above indicators and quality criteria in various literary sources, metrics are used.
The following metrics classes are used most often at the design stage for software evaluation:

Statistical;

Graphic;

Estimated;

Predictable;

Next, we will consider some of the most commonly used metrics.

Halstead metrics [13, 14] are characteristics of programs, which are identified based on the static
structure of the program in a specific programming language. It is based on counting the number of
operators and operands used in the program. These metrics allow you to calculate

program length;

program size;

evaluation of its software implementation;
difficulty understanding software;
coding complexity;

level of language of expression;
informational content;

optimal modularity in software;
forecast of system resources;
prediction of the number of errors;
overall complexity;

connectivity;

hybrid.

This metric is based on measurable program characteristics: the number of unique program
statements (n1); the number of unique operands (n2); total number of operators (N3); total number of
operands (N2).

After highlighting the main characteristics of the software, you can calculate such indicators as:

alphabet (n) = n1+n2;

experimental program length (Ne) = N1+N2 ;

theoretical program length (NT): = nl-log2(nl) + n2-log2(n2);
program size (V) =Ne-log2(n);

potential volume (V*) = (N1*+N2%*) -log2(nl* + n2%*);
program level (L) =V*/V (from 0 till 1);

program complexity (S)=L-1;

expected program level (L™): =(2/n1)-(n2/N2);

program intelligence (I)=L" - V;

programming work (E)=V-S = V/L;

coding time (T) =E/St (St — Stroud number from 5 to 20);
expected coding time (T”) =n1-N2 - N-log2(n) / (2-St'n2);
Programming language level (Lam): =(V*) -(V*)/V;
Mistakes level (B)=V / 3000.

With the help of this metric, you can describe the potential volume of the program, the
corresponding most compactly implementing the algorithm, you can calculate the programming time,
the level of the program (structure and quality). It can also be used to assess the complexity of
intermediate development products.

Cyclomatic complexity of McCabe (McCabe's cyclomatic number) [8, 13] — characterizes the
complexity of the testing program. This metric is based on the calculation of the cyclomatic number
and the cyclomatic complexity of the software. The complexity of the program control flow is
calculated on the basis of the control flow graph of the program. This graph is constructed as a
directed graph, in which computational operators or expressions are represented as nodes, and the
transfer of control between nodes is represented as arcs.

To calculate the cyclomatic McCabe number Z(G), apply the formula

Z(G)=1-v + 2p, (1)
where | is the number of arcs of a directed graph G;
Vv is the number of vertices;
p is the number of connected components of the graph.

Moreover, the number of connected components of a graph is considered as the number of arcs
that must be added to convert the graph into a strongly connected one.

The advantages of this metric are in the simplicity of calculations and the ability to repeat the
results, as well as visibility. It also allows not only to make an assessment of the complexity of the
implementation of individual elements of a software project and adjust the overall indicators for
assessing the duration and cost of the project, but also to assess the associated risks and make the
necessary management decisions. The disadvantages include: insensitivity to the size of the program,
insensitivity to changes in the structure of the program, no correlation with the structure of the
program, no difference between the structures.

Metric T. Jilba [12] allows you to determine the logical complexity of the program using the
expressions IF_ THEN_ELSE, for this purpose, the absolute complexity of the program (CL),
characterized by the number of condition operators; cl is the relative complexity of the program,
characterized by the saturation of the program with conditional operators, i.e. cl is defined as the ratio
of CL to the total number of operators.

Allows you to evaluate:
the number of operators L1oop cycle;
the number of conditional operators LIF;

e the number of modules or subsystems L mod;

e the ratio of the number of links between modules to the number of modules

f=N4SV /L mod;

o the ratio of the number of abnormal outputs from the set of operators to the total number of

operator’s f * =N*SV /L.

With the help of the Jilba metric, you can perform an analysis of cyclic constructions You can also
analyze the relationship between the number of variables in the program and the number of calls to
them with the complexity of the program itself. This metric also allows you to improve such quality
indicators as: internal elasticity; openness (adaptability); tolerance to changes in the system;
universality; convenience of transfer; comparability.

The complexity of the program by the method of boundary values [12, 14]. This metric is based on
the calculation of values using an oriented graph of a program with a single initial and only final
vertices G = (V, E). In the graph under consideration, the number of arcs entering a vertex is called
the negative degree of the vertex, and the number of arcs emanating from the vertex is called the
positive degree of the vertex. The set of vertices of the graph consists of vertices with a positive
degree <=1 — receiving vertices and vertices with a positive degree >= 2 — selection vertices.

The graph G is divided into the maximum number of subgraphs G 'that satisfy a number of
conditions: the entrance to the subgraph is made only through the selection peak; each subgraph
includes a vertex (called the lower boundary of the subgraph) that can be reached from any other
vertex of the subgraph.

Each receiving vertex has a corrected complexity equal to 1, except for the final vertex, the
corrected complexity of which is 0. The corrected difficulties of all the vertices of the graph G are

summed to form the absolute boundary complexity of the program. Further, the relative boundary
complexity of the program is determined:

So=1-(w-1)/S,, (2)
where So — relative boundary complexity of the program;
Sa — absolute boundary complexity of the program;
v — the total number of vertices of the program graph.

This metric allows you to determine the boundary values of these functions, the complexity of the
program and to plan actions in case of going beyond the permissible boundaries.

Metrics of data flow complexity [12]. The main calculations are based on the data “module —
global variable (p, r)”, where p is the module that has access to the global variable r. Depending on
the presence in the software of the actual access to the variable r, two types of “module-global
variable” pairs are formed: actual and possible. A possible reference to r with p shows that the region
of existence of r includes p.

The ratio of the number of actual references to possible is determined by the formula

Rup = Aup/Pup (3)
where Ay, value — how many times the U, modules actually accessed global variables, and Py, - how
many times they could get access.

This metric demonstrates the approximate probability of a link of an arbitrary module to an
arbitrary global variable. In this case, the higher the probability, the higher the probability of an
“unauthorized” change in any variable, which can significantly complicate the work associated with
the modification of the program.

Metrics of Pivovarsky [12] — aimed at assessing the complexity of the program differences not
only between sequential and nested control structures, but also between structured and unstructured
programs. The metric can be calculated by the formula

N(G) =n=*(G) +SP;, (4)
where n *(G) — is the modified cyclomatic complexity is taken into account in that the CASE operator
with n-outputs is treated as one logical operator, and not as n - 1 operators. P; is the nesting depth of
the i - that predicate vertex.

To calculate the depth of nesting of predicate vertices, the number of spheres of influence is
required. It should be borne in mind that the depth of nesting increases due to the nesting not of the
predicates themselves, but of the spheres of influence. This metric is well used in the case of
transition from sequential to nested programs and further to unstructured ones.

Metrics of the Chepin program complexity [12, 14]. The calculation of the metrics is based on an
assessment of the informational strength of a single program module using the analysis of the nature
of using variables from the input-output list.

In the course of the analysis, the entire set of variables that make up the I / O list is divided into
functional groups: P - input variables for calculations and for providing output. M - variables
modified or created within the program. C - variables involved in the management of the program
module (control variables). T — “parasitic” variables not used in the program. Such variables do not
directly participate in the implementation of the information processing process for which the
analyzed program is written, however they are stated in the program module.

The initial expression for determining the Chepin metric is as follows:

Q = a4P + a;M + azC + a,T, (5)
where a;, a,, as, as — weight coefficients.

The weight coefficients are used to reflect the different effects on the complexity of the program of
each functional group.

The Chepin metric is based on an analysis of the source code of the programs, which provides a
unified approach to the automation of the calculation and can be calculated using specially developed
software. You can also get an estimate of reliability using weights. The main problem is to obtain
these factors, which are calculated based on the experience of previous projects. With the rapid
change of technology, methods and design tools, the experience of previous projects is inappropriate
to use and as a result it will give incorrect estimates.

MacClure metric [9, 12]. Allows you to assess the complexity of the software, using data on the
number of possible ways to run the program, the number of control structures and variables.

First, the complexity of the function C (i) is calculated by the control variable i:

C@ = (D@ *J@)/n, (6)
where D (i) is a value that measures the scope of the variable i. J (i) is a measure of the complexity of
the interaction of modules in terms of the variable i;

n is the number of individual modules in the partitioning scheme.
Next, determine the value of the complexity of the functions M (P) for all modules
M(P) = fp » X(P) + gp * Y(P), (7)
where fp and gp are the number of modules immediately preceding and immediately following the
module P;
X (P) is the difficulty of accessing the module P, Y (P) is the complexity of controlling the call from
the module P of other modules.

After that, the total complexity MP of the hierarchical scheme of program partitioning into

modules is calculated according to all possible values of the P - program modules
MP = SUMM(M(P)). (8)

When calculating, it is necessary to take into account that in each module there is one entry point
and one exit point, the module performs exactly one function, and the modules are called according to
a hierarchical control system that defines the call relationship on multiple program modules.

The MacClure metric is designed to manage the complexity of structured programs in the design
process. In most cases, this metric is well applied to hierarchical schemes for dividing programs into
modules; this allows you to choose a dividing scheme with less complexity long before writing a
program. The metric demonstrates the dependence of the program's complexity on the number of
possible execution paths, the number of control structures and the number of variables (on which the
choice of the path depends).

The Berlinger metric [13] is a measure of the complexity of information theory based on the
frequency of program symbols in a program. The measure of complexity is calculated as

I(R) = m(F= (R) x F—(R))Z.)

The disadvantage of this metric is that a program containing many unique characters, but in small
guantities, will have the same complexity as a program containing a small number of unique
characters, but in large quantities. Another of the problems of applying this metric is to determine the
values of the characteristics and determine the probability of each value

The Cocolt metric [16] takes one metric as a basis, and also takes into account other metrics that
should influence the final result. It is defined as follows:

HM = (M + Ry * M(My) +...+ R, * M(M,)/(1 + R +...+Ry) , (10)
where M is the base metric;
M; are other interesting measures;
Ri are correctly chosen coefficients;
M (M;) are functions.

The functions M (Mi) and the coefficients Ri are calculated using regression analysis or task
analysis for a specific program.

The metric of Cocolt allows to receive the general numerical value for a set of metrics taking into
account the weighed coefficients. It also allows in a numerical form to get the normalized
characteristics of the groups of characteristics that reflect the quality of the program code.

ABC-metric (Fitzpatrick) [6] inventory used to classify and prioritize resource allocation. This
metric is based on the counting of assignments of variables (Assignment), explicit control transfers
beyond the scope, i.e. function calls (Branch), and logical checks (Condition).

It is determined based on three different indicators ABC =. The first indicator n. (from the English
Assignment) is highlighted under the lines of code that correspond to the assignment of variables to a
certain value, for example, int number = 1. The indicator ny (from the English Branch) is responsible
for the use of functions or procedures, that is, operands that work outside software visibility. The
indicator n. (from the English Condition) counts the number of logical operands such as conditions
and loops. The metric value is calculated as the square root of the sum of the squares of the values n,,

Ny, and ne.
F=yn’+nZ+n? . (11)

The metric is easily calculated for different code fragments and is visual. The ABC metric can be
used to estimate the size and complexity of the fragments of the analyzed application, as well as for
automatic search.

Myers interval metrics (Myers) [5] calculate the complexity of the program based on the strength
of the individual modules of the program and the coupling between each pair of modules:

0.15-(S; +5;)+0.7-Cy, if C;; 20
D;=40,if C; =0 , (12)
1, ifi=j
where Dj; is the probability that module j will have to change when module i changes, if we consider
modules i and j outside the context of the entire program (the relationship is considered symmetrical);
Siand S; are the strengths of these modules i and j;
Cij is the coupling of modules i and j.

This metric allows you to distinguish between different software complexity or functions, but it is
very rarely used in Ukraine, and it has proven itself well in America. As applied to code analysis, the
Myers metric does not have any noticeable advantages over simple cyclomatic complexity.

Hanson Metric [12]. Allows you to estimate the complexity of a program or function using betting
values - cyclomatic complexity and the number of operators (A, B), where A is the McCabe metric, B
is the number of executable operators. This increases the sensitivity of the metrics to the structure of
the program.

Sometimes in practice, this metric is used to assess the complexity of analyzing a binary code in a
situation where the analyst knows the approximate size of the entire software and the number of
instructions in its component functions.

The Schneidewind metric [10] is expressed in terms of the number of possible paths in the control
flow graph. This metric is based on the approach that the later the errors occur, the more important
they are for the process of predicting errors in the program.

Assumptions are based on the fact that there are m testing intervals, and presumably fi errors are
found on the i-th interval.

This metric is appropriate to use in cases where data from all testing intervals are needed to predict
the future state of the software. Or in the case when there was a certain change in the process of error
detection, and only the data of the last m - (s-1) intervals makes sense to take into account in the
forecasts for the future. It should be borne in mind that this metric does not take into account the
complexity of the unfulfilled branches of the program.

The Kafura metric (Henry & Kafura) [15] is based on the concept of information flows (also found
under the name “Fan in / out complexity”). This metric allows the evaluation of local and global
information flows, an assessment of the information complexity of the procedure and module.

A local information flow from A to B exists if: module A calls module B (direct local flow);
module B calls module A and A returns B the value used in B (indirect local flow); module C calls
modules A, B and transfers the result of module A to B.

The global information flow from A to B through the global data structure D exists if module A
places information in D, and module B uses information from D. On the basis of these concepts, the
quantity I is entered - the information complexity of the procedure:

I = length * (fan_in * fan_out)"2 , (13)
where length is the complexity of the procedure text (measured using the Halstead, McCabe, LOC,
etc. metrics);
fan_in - the number of local streams inside the procedure plus the number of data structures from
which the procedure takes information;
fan_out is the number of local streams from the procedure plus the number of data structures that are
updated by the procedure.

You can define the informational complexity of a module as the sum of the informational
complexities of its member procedures. Next, the informational complexity of the module is
calculated relative to some data structure:

J =WxR + WxWrRd + WrRdxR + WrRd » (WrRd — 1) , (14)

where W is the number of procedures that only update the data structure;

R — only read information from the data structure;
WrRd — both read and update information in the data structure.

Kafur metric allows you to take into account the complexity of the text. Allows you to determine
the information complexity of the module given the number of elements and data structures from
which the module takes information and which are updated by the module, respectively.

The Oviedo metric [7]. In this case, the program is divided into linear non-intersecting segments —
rays of operators that form a graph of the control flow of the program. The complexity metric of each
ray is defined as the sum of the quantities of the determining occurrences for each variable used in the
ray.

There is also an interpretation of the Oviedo metric: C = aCF + bDF, where CF is the complexity
of the control flow, taking into account only the number of arcs of the graph; DF — the complexity of
the data stream, calculated as the sum of the complexity of the data streams of the basic blocks of the
program, and the complexity of the data stream of a block is the number of variables that are used but
not defined in the block; a, b — weights that can be taken equal to 1.

The author of the metric assumes that it is easier to find the relationship between definitions and
uses of a variable inside a ray than between rays, and that the number of different defining
occurrences in each ray is more important than the total number of occurrences of the variable in each
ray. The Oviedo measure can be considered as a transition from “pure” metrics to a combined data
stream because it takes into account the flow of control and increases with the number of “inter-block
links” when a variable is defined and used in different basic blocks of the program.

As can be seen from the general analysis of metrics, not all of them allow an even and
unambiguous assessment: labor-intensive; labor costs; total time to create a program; the number of
people needed to work on the software; development period; cost and costs of the project stages;
project risks; functional fitness; the complexity of the execution of the software; depth of the
inheritance tree; software size; total number of objects; average labor productivity; scope of testing
and cost of testing; popularity of the technologies used. Therefore, it is advisable to continue the study
in order to find answers to questions related to software evaluation which should facilitate the
software evaluation stage at the design stage.

4. Analysis software evaluation metrics at the design stage

Based on the foregoing, it is further advisable to perform a more complete analysis of software
assessment metrics at the design stage. The result of the analysis is shown in Table 1, which shows
the calculated criteria of the considered metrics and implicit criteria that allow you to select the
necessary criteria for evaluating the quality of software within the metric. Table 2 shows the
advantages and disadvantages of each considered metric used to evaluate software at the design stage.

Table 1
Explicit and implicit characteristics of metrics that allow software quality assessment
Ne Metrics Explicit Implicit
1 Halstead - program length; - the time necessary for a person to perform
Metrics - program volume the elementary difference of objects;
- assessment of its - program level - characterizes the efficiency
implementation; of the implementation of the algorithm
- the difficulty of relative to memory costs;
understanding it; - programming work;
- the complexity of coding; - determination of the number of modules in
- level of language of the program;
expression; - to predict probable errors in the program
- informational content;- for necessary work;
optimal modularity. - average number of differences between

possible programming errors;
- assessment of intellectual efforts;

2 McCabe
Cyclomatic
Complexity
(McCabe
Cyclomatic
Complexity)

3 Metric
T. Jilba

- the complexity of the
program control flow;

- graph of the control logic of
the program;

- cyclomatic complexity.

- the number of loop
operators;

- the number of condition
operators;

- the number of modules or
subsystems;

- the ratio of the number of
connections between
modules to the number of
modules;

- the ratio of the number of
abnormal exits from the set
of operators to the total
number of operators;

- logical complexity of the
program;

- the absolute complexity of
the program;

- the relative complexity of
the program.

- level of programming quality;

- the complexity of understanding the
program;

- the complexity of coding software;

- language level - this characteristic allows
you to determine the mental costs of
creating software;

- required solutions when writing software.

- the complexity of the program;

- logical complexity of the program;

- criterion for covering all branches of the
program;

- the number of tests sufficient for testing;
- assessment of the complexity;

- the feasibility of individual software
elements;

- to predict probable errors in the program
for necessary work;

- the duration and cost of the project;

- assess the associated risks;

- determination of the most complex, high
risks, on the basis of which take measures to
eliminate risks by making adjustments.

- assessment of the cost of software at the
initial stages of design;

- the complexity of development;

- the complexity of understanding the
program;

- the difficulty of writing a program;

- general software complexity;

- assessment of the complexity;

- software reliability;

- the maximum level of nesting of
conditional and cyclic operators;

- to predict probable errors in the program
for necessary work;

- internal elasticity;

- openness (adaptability);

- tolerance to changes in the system;

- universality;

- ease of transfer;

- comparability;

- determination of the most complex, high
risks, on the basis of which take measures to
eliminate risks by making adjustments.

4 The
complexity
of the
program
according to
the method
of boundary
values
(boundary
value)

5 Data Flow
Complexity
Metric

6 Pivovarsky
Metrics

7 Chepin's
complexity
metrics

- relative marginal complexity
of the program;

- absolute boundary
complexity of the program;

- the boundary complexity of
the program;

- the total number of vertices
of the program graph.

- informational complexity of
the module relative to some
data structure;

- analysis of static data flow
(Static Data Flow Analysis);

- Cross Reference Analysis;

- analysis of information flow
(Information Flow Analysis);
- cohesion of the data
structure;

- complicate the work
associated with the
modification of the program.

- a modified cyclomatic
measure of complexity;
- general assessment of
software complexity;

- nesting depth.

- a measure of the difficulty
of understanding programs
based on input and output
data;

- assessment of the
information strength of a
single software module;

- plan actions in case of exceeding
permissible boundaries;

- evaluate implemented functionality;

- the complexity of the processes;

- to predict probable errors in the program
for necessary work;

- openness (adaptability);

- tolerance to changes in the system;

- ease of transfer;

- determination of the most complex, high
risks, on the basis of which take measures to
eliminate risks by making adjustments.

- perform analysis of data streams;

- the duration of the program and the level
of data nesting;

- evaluate the integrity of software modules;
- the complexity of understanding the
program;

- the difficulty of writing a program;

- general software complexity;

- determination of the complexity of the
work associated with the modification of the
program;

- evaluate implemented functionality;

- identification of hidden dependencies in
the software and convert them into an
explicit form, thereby simplifying the
program logic.

- the complexity of the program;

- criterion for covering all branches of the
program;

- the number of tests sufficient for testing;
- assessment of the complexity;

- the feasibility of individual software
elements;

- to predict probable errors in the program
for necessary work;

- internal elasticity;

- openness (adaptability);

- tolerance to changes in the system;

- universality;

- ease of transfer;

- comparability.

- the complexity of the program;

- criterion for covering all branches of the
program;

- the number of tests sufficient for testing;
- assessment of the complexity;

- the feasibility of individual software
elements;

- the complexity of the
program of each functional

group.
8 McClure - the complexity of the
Metric interaction of the modules;

- complexity of functions;

- software complexity;

- the number of possible ways
to execute programs;

- the number of control
structures and variables.

9 Burlinger - the complexity of the
Metric program.
10 Bell Metric - program length;

- program volume

- assessment of its
implementation;

- the difficulty of
understanding it;

- the complexity of coding;
- level of language of

- to predict probable errors in the program
for necessary work;

- tolerance to changes in the system;

- ease of transfer;

- reliability assessment.

-the degree of standardization of interfaces
(communication commonality);

- functional completeness (completeness);
- the feasibility of individual software
elements;

- to predict probable errors in the program
for necessary work;

- the uniformity of the used design rules and
documentation (consistency);

- error tolerance;

- performance efficiency;

- expandability (expandability);

- independence from the hardware platform
(hardware independence);

- completeness of logging errors and other
events (instrumentation);

- modularity;

- convenience of work (operability);

- security (security);

- simplicity of work (simplicity);

- ease of learning (training).

- assessment of the possibility of software to
transition from sequential to embedded
programs;

- assessment of the relationship of elements
within the program;

- predict hidden dependencies and convert
them into an explicit form;

- the number of tests sufficient for testing;

- assessment of the complexity;

- the feasibility of individual software
elements;

- to predict probable errors in the program
for necessary work;

- the ability to simplify the logic of the
program.

- classification of applications according to
complexity of analysis;

- assessment of labor costs;

- determination of the number of tests
sufficient for testing;

- assessment of the logical complexity of the
program;

- identification of the most complex, high

11 ABC Metric
(Fitzpatrick)
(6]

12 Myers
Interval
Metric
(Myers)

expression;

- informational content;
- optimal modularity;

- cyclomatic complexity.

- software size;

- assessment of software
complexity;

- accumulation of technical
debt of the application;

- analysis of duplicate code
fragments;

- finding errors;

- distribution of resources;

- distribution of indirect costs.

- cyclomatic measure,
- the number of individual
conditions.

risks and take measures to eliminate risks by
making adjustments;

- the time necessary for a person to perform
the elementary distinguishing of objects; -
the effectiveness of the implementation of
the algorithm relative to memory costs;

- evaluation of programming work;

- errors in the program;

- the average number of elementary
differences between possible programming
errors;

- assessment of intellectual efforts

- level of programming quality;

- the complexity of understanding the
program;

- the complexity of coding the program;

- level of language of expression;
informational content of the program (this
characteristic allows you to determine the
mental costs of creating the program);

- assessment of intellectual efforts in
software development.

- assessment of the size and complexity of
software fragments;

- the complexity of development;

- the complexity of understanding the
program;

- the difficulty of writing a program;

- general software complexity;

- to predict probable errors in the program
for necessary work;

- tolerance to changes in the system;

- universality;

- determination of the most complex, high
risks, on the basis of which take measures to
eliminate risks by making adjustments.

- the complexity of the program;

- logical complexity of the program;

- the number of tests sufficient for testing by
the criterion of coverage of all branches of
the program;

- the number of tests sufficient for testing;

- assessment of the complexity;

- the feasibility of individual software
elements;

- duration and cost of the project;

- assess the associated risks;

- determination of the most complex, high
risks, on the basis of which take measures to
eliminate risks by making adjustments.

13 Hanson
Metric

14 Kafura
Metric
(Henry &
Kafura)

15 Oviedo
Metric

- a pair (cyclomatic number,
number of operators);

- there are errors;

- prediction of errors in the
program;

- testing intervals.

- informational complexity of
the procedure;

- the complexity of the text of
the procedure;

informational complexity of
the module;

- level of commenting on the
program;

- the overall complexity of the
structure.

- complexity of the control
flow;

- the complexity of the data
stream;

- base blocks of the program;
- weighting factors;

- program complexity.

- the complexity of the program;

- the logical complexity of the program;

- the number of tests sufficient for testing by
the criterion of coverage of all branches of
the program;

- the number of tests sufficient for testing;

- assessment of the complexity;

- the feasibility of individual software
elements;

- assess the associated risks;

- determination of the most complex, high
risks, on the basis of which take measures to
eliminate risks by making adjustments.

- evaluate implemented functionality;

- the complexity of the processes;

- assessment of the relationship of elements
within the program;

- Predict hidden dependencies and convert
them into an explicit form;

- the number of tests sufficient for testing;
- assessment of the complexity;

- the feasibility of individual software
elements;

- to predict probable errors in the program
for necessary work;

- the ability to simplify the logic of the
program.

- tests to achieve an acceptable level of code
coverage;

- assessment of the relationships between
subtasks;

- evaluate the integrity of software modules;
- the complexity of understanding the
program;

- the difficulty of writing a program;

- general software complexity;

- determination of the complexity of the
work associated with the modification of the
program;

- evaluate implemented functionality;

- identification of hidden dependencies in
the software and convert them into an
explicit form, thereby simplifying the
program logic;

- determination of the most complex, high
risks, on the basis of which take measures to
eliminate risks by making adjustments.

Table 2
Advantages and disadvantages of software evaluation metrics at the design stage

Ne Metrics Advantages Disadvantages

1 Halstead - Allows, in numerical form, to - The need for the availability of
Metrics evaluate the potential volume of the source code of the software.

the program, corresponding to - The characteristics of reliability,
the most compactly implementing functionality is not taken into
algorithms. account.

- Allows you to calculate the - There is a limitation that the
approximate programming time, length of a correctly compiled
program level. program should not deviate from
- It can be used to assess the the theoretical program length by
complexity of intermediate more than 10%.

development elements. - When determining the mental

- You can evaluate the quality of the costs of creating a program,
development process based on the debugging work, which also
degree of expansion of the text requires intellectual costs, is not
relative to the potential volume. taken into account.

- Allows you to determine the

mental costs of creating a program

and evaluate the necessary

intellectual effort.

- Evaluation does not depend on the

language of software

implementation.

- There is no need to completely

recount all indicators when

translating a program from one

language to another.

2 McCabe - The simplicity of the calculations. - Insensitive to program size.
Cyclomatic - Opportunities for repeatability of - Lack of correlation with the
Complexity results. structure of the program.
(McCabe - Visibility. - Lack of distinction between
Cyclomatic - Allows you to evaluate the designs.

Complexity) complexity of the implementation of - When calculating cyclomatic

individual software elements.

- Ability to adjust the overall
indicators for assessing the duration
and cost of the project.

- Allows you to assess the associated
risks and make the necessary
management decisions.

- The indicator of cyclomatic
complexity can be calculated for
different structural units of software
(module, method, etc.).

complexity, logical operators are
not taken into account

- Insensitivity to changes in
program structure.

- Representation of the same
graphs may have predicates of
completely different complexity

- When calculating the logical
complexity of software, the choice
of data structures, algorithms,
variables or comments is not taken
into account.

- It is intended only for evaluating
programs developed in
accordance with certain

3

Metric
T. Jilba

The complexity
of the

program
according to the
method of
boundary
values
(boundary
value)

Data Flow
Complexity
Metric

- Ability to perform analysis of cyclic
structures.

- You can analyze the relationship
between the number of variables in
the program and the number of calls
to them with the complexity of the
program itself.

- Allows you to increase such quality
indicators as: internal

elasticity; openness (adaptability);
tolerance to changes in the system;
universality; ease of transfer;
comparability.

- Allows you to evaluate the relative
complexity to build a profile of
complexity.

- Allows you to control the program
development process from TK to trial
operation.

- It makes it possible to determine
the boundary values of the
complexity of the program.

- Allows you to plan actions in case
of exceeding the permissible limits
of complexity.

- Allows you to evaluate in different
ways those implementing the same
functionality.

- Ability to perform data flow
analysis.

- It takes into account the duration
of the program and the level of data
nesting.

- Allows you to evaluate the integrity
of software modules.

- It makes it possible to determine
the complexity of the work
associated with the modification of
the program.

- Allows you to identify hidden
dependencies in the program and
convert them into an explicit form,
thereby simplifying the program
logic.

requirements for a programming
style.

- Not suitable for building a
software complexity profile.

- The need for the availability of
the source code of the software.
- The characteristics of reliability,
functionality is not taken into
account.

- Not suitable for building a
software complexity profile.

- Requires a certain degree of
creativity and specialization in the
task at hand.

- Determining the boundaries for
the task is a time-consuming
process.

- Lack of verification of the
combination of input values.

- Sometimes a metric
demonstrates the approximate
probability of an arbitrary module
referencing an arbitrary global
variable.

- The subjectivity of some criteria
for choosing routes.

- The need for templates for
control structures.

- It must be taken into account
that the higher the probability of
linking an arbitrary module, the
higher the likelihood of an
“unauthorized" change in any
variable, which in turn can
significantly complicate the work
associated with modifying a
program.

6

7

8

Pivovarsky
Metrics

Chepin's
complexity
metrics

McClure Metric

- Allows you to evaluate software in
the event of a transition from
sequential to embedded programs.
- There is a possibility of transition
from embedded software to
unstructured.

- Provides a unified approach to
calculation automation.

- Facilitates the process of software
automation.

- Allow you to calculate reliability
using weights.

- Allows you to manage the

complexity of structured programs in

the design process.

- Allows you to evaluate hierarchical
schemes based on the division of
programs into modules, which in

turn allows you to choose a partition

scheme with less complexity long
before writing a program.

- A reliable number of spheres of
influence is necessary in order to
calculate the nesting depth of
predicate vertices.

- It is necessary to monitor that
the nesting depth increases due to
the nesting of predicates
themselves, but of spheres of
influence.

- Based on an analysis of the
source code of programs.

- Definition of weights, which are
calculated based on the
experience of previous projects.
- It is inexpedient to use when
rapidly changing technologies,
methods and

design tools (demonstrates
incorrect estimates).

- It is necessary to take into
account that in the calculations
this metric is based on the fact
that in each module there is one
entry point and one exit point, the
module performs exactly one
function, and the modules are
called in accordance with the
hierarchical control system, which
sets the call ratio on many
program modules. That is, for
complex elements, its use is not
advisable.

- Demonstrates the dependence of
program complexity on the
number of possible execution
paths, the number of control
structures and the number of
variables (on which the choice of
path depends).

- Each metric affects the
assessment of several quality
factors.

- The numerical expression of the
calculated factor is distributed
differently for different
organizations, development
teams, types of software,
processes used, etc.

- Designed for programs that are
well structured and composed of

9 Burlinger Metric

10 Bell Metric

11 ABC Metric
(Fitzpatrick) [6]

- Allows you to calculate the
complexity of the program.

- Allows you to evaluate software in
the event of a transition from
sequential to embedded programs.
- Allows you to evaluate the
relationship of elements within the
program.

- Allows you to identify hidden
dependencies in the program and
convert them into an explicit form,
thereby simplifying the program
logic.

- Allows you to get the total
numerical value for a set of

- Empirical data on the relationship
of the elementary measures used in
previous projects should be taken
into account.

- The characteristics of reliability,
functionality is not taken into
account.

- It is intended only for evaluating
programs developed in accordance
with certain requirements for a
programming style.

- It takes into account the experience

of employees and their other
qualities.

- Insensitive to program size.

- Dependence on the expert who
makes the calculation.

- Allows classification and
prioritization of resource allocation.
- Possibilities for repeatability of
results.

- Visibility.

- Allows you to calculate the
assignment of variable values, i.e.
explicit transfers of control out of
scope.

hierarchical modules that define
the functional specification and
management structure.

- The need for the availability of
the source code of the software.
- The need to consider that a
program containing many unique
characters, but in small numbers,
will have the same complexity as a
program containing a small
number of unique characters, but
in large numbers.

- The choice of values of the
characteristics and determination
of the probability of each value is
not unique, which in turn affects
the indicators.

- Depends on the probability of
occurrence of the value.

- The need for the availability of
the source code of the software.
- Empirical data on the
relationship of the elementary
measures used in previous
projects should be taken into
account.

- The characteristics of reliability,
functionality is not taken into
account.

- Itis intended only for evaluating
programs developed in
accordance with certain
requirements for a programming
style.

- It takes into account the
experience of employees and their
other qualities.

- Insensitive to program size.

- Dependence on the expert who
makes the calculation.

- May take a value of zero for
some non-empty program units.
- It does not depend on the
selected period.

- Sensitive to a small number of
observations.

- The data are very different from
the results of other metrics when
calculating.

12 Myers Interval
Metric (Myers)

13 Hanson Metric

- Easy to calculate, can be calculated
for different pieces of code.

- It can be used to assess the size and
complexity of fragments of the
analyzed application, as well as for
automatic search.

- Allows you to take into account
more cases of adding operators to
the script text.

- Approach management issues in
terms of cost, quality and
productivity of the actions
performed, as well as assess the risks
associated with them.

- Allows you to distinguish between
different software or functions in
complexity.

- The simplicity of the calculations.

- Opportunities for repeatability of
results.

- Visibility.

- Allows you to evaluate the
complexity of the implementation of
individual software elements.

- Ability to adjust the overall
indicators for assessing the duration
and cost of the project.

- Allows you to assess the associated
risks and make the necessary
management decisions.

- Allows you to evaluate the
complexity of a program or function
using a bet of values - cyclomatic
complexity and the number of
operators.

- Allow you to perform a structured
program.

- Sensitivity to software structuring.
- Allows you to evaluate the
complexity of binary code analysis in
a situation where the analyst knows
the approximate size of the entire
software and the number of
instructions in its constituent
functions.

- High complexity and significant
costs for the implementation of
ABC in the enterprise.

- With regard to code analysis, the
Myers metric has no noticeable
advantages over simple cyclomatic
complexity.

- Insensitive to program size.

- Lack of correlation with the
structure of the program.

- Lack of distinction between
designs.

- When calculating cyclomatic
complexity, logical operators are
not taken into account.

- Requires additional analysis of
each predicate to determine the
number of variables on which it
depends.

- Insensitive to program size.

- Lack of correlation with the
structure of the program.

- Lack of distinction between
designs.

- When calculating cyclomatic
complexity, logical. operators are
not taken into account.

- Insensitivity to changes in
program structure.

- It is intended only for evaluating
programs developed in
accordance with certain
requirements for a programming
style.

Not suitable for building a
software complexity profile

14 Kafura Metric
(Henry &
Kafura)

15 Oviedo Metric

- Considers the complexity of the
software text.

- Allows you to determine the
information complexity of the
module given the number of
elements and data structures from
which the module takes information
and which are updated by the
module, respectively.

- Allows you to consider the control
flow in different base blocks of the
program.

- Allows you to assess the associated
risks and make the necessary
management decisions

- Allows you to evaluate the
relationship of elements within the
program.

- Allows you to identify hidden
dependencies in the program and
convert them into an explicit form,
thereby simplifying the program
logic.

- The need to introduce the
concepts of local and global flows
in software, on which the
assessment of information
complexity depends.

- Based on an analysis of the
source code of programs

- Definition of weights, which are
calculated based on the
experience of previous projects. It
is inappropriate to use with a rapid
change in technology, methods
and design tools (demonstrates
incorrect estimates).

- The subjectivity of some criteria
for choosing routes.

- The need for templates for
control structures.

- Distortion of the control flow,
which leads to an increase in the
complexity of the vertices of the
control flow graph, which does not
allow to use the metric efficiently.
- Control variables can also affect
program control flow.

Thus, the solution of the same problem by different authors can lead to significant variations in the
values of the metrics; therefore, it is advisable to use several assessment metrics for their subsequent
comparison. Since the metrics complement each other and answer different questions in the software
evaluation process, this allows you to achieve the required quality, taking into account the required
and necessary criteria.

The results obtained will allow us to further develop a generalized classification model of metrics
used to evaluate software, taking into account the type of software, selected project management
functions based on a hierarchical quality model and highlighted advantages and disadvantages of
software assessment metrics at different stages of software development. In turn, the introduction and
use of such a classification of metrics will not only improve control over the software development
process, but also more consciously carry out their selection and use at various stages of the LC
software, thereby improving the quality of the final product and facilitate the process of choosing the
necessary metrics.

5. Conclusions

In the course of this work:

o the analysis of the current state of the problem of the applied software assessment metrics was
performed at the design stage, which are currently used in development management;

o the importance of performing a preliminary assessment of the software was determined before
embarking on its implementation;

e review of the most used software evaluation metrics at the design stage was made.

As a conclusion throughout the work, it can be said that software evaluation at the design stage has
a high practical application, since allows you to perform a software assessment before it starts, which
in turn allows you to take into account most of the possible risks of the project and the development
stages. In turn, this allows you to compare what costs are needed and what the future cost of the
project. It should be noted that practically on all software development platforms there are tools for
evaluating most of the reviewed software evaluation metrics at the design stage.

During the analysis, it was found that not a single universal metric exists. Any controlled metric
characteristics of the program should be controlled either depending on each other, or depending on
the specific task. It should be noted that any metric is only an indicator that depends heavily on the
language and programming style; therefore, no measure can be raised to an absolute and any decisions
can be made based only on it.

It should be remembered that there exist and apply in practice standards that support the metric
assessment of the quality and reliability of software, including the regulatory documents of the IEEE
982 series, ISO / IEC 9126, DSTU 28195, RUP.

When evaluating software at the design stage, it is advisable to use several assessment metrics for
their subsequent comparison to improve the quality. Since the metrics complement each other and
answer different questions in the software evaluation process, this allows you to achieve the required
quality with the necessary criteria. If the result is completely different results, it means that there is
not enough information to obtain a more accurate assessment, or the wrong characteristics were
selected within the framework of the designed software. In this case, it is necessary to use additional
information, or choose more indicative criteria, after which it is necessary to repeat the assessment,
and so on until the results of the various methods become close enough.

The obtained results will allow to continue the work on the analysis of the used statistical metrics
of software evaluation used in the development of software projects throughout the life cycle of
software development.

6. References

[1] A. A.Platonov, V. I. Timofeev, Integrity Monitoring of Dynamic Objects of Computing Systems
Using Metric Standards, volume 38, 2015, pp. 136-160. doi: 10.15622/sp.38.8.

[2] P. E. Efimova, Ensuring the quality of management decisions when designing instrumentation on
the basis of a comprehensive mathematical model of the process, Ph.D. thesis, Rybinsk, 2011.

[3] A. Wasif, Metrics in Software Test Planning and Test Design Processes, Ronneby, 2018.

G. M. Muketha, Metrics and Models for Evaluating the Quality and Effectiveness of ERP
Software, in: G. M. Muketha (Eds.), Advances in Systems Analysis, Software Engineering and
High Performance Computing, 1st ed., 2019.

[4] O. V. Kazarin, Reliability and security of software: a textbook for undergraduate and graduate
studies, Publishing House Yurite, Moscow, 2019. ISBN 978-5-534-05142-1. URL.:
https://urait.ru/bcode/441287 (case date: 15.02.2021).

[6] K. E. Serdyukov, Study of methods for assessing the complexity of program code when
generating input test data, Proceedings of the Information technologies and nanotechnologies
(ITNT-2020), volume 4. Data sciences, Publishing House Samara, 2020, pp. 662-671.

[6] 1. Ledovskikh, Code complexity metrics: Technical Report 2012-12, p. 22, 2012. URL:
http://www.ispras.ru/preprints/docs/prep_25_2013.pdf .

[7] K. Smelyakov, A. Datsenko, V. Skrypka, A. Akhundov, Efficiency of Image Reduction
Algorithms with Small-Sized and Linear Details, in: Proceedings of the 2019 IEEE International
Scientific-Practical Conference Problems of Infocommunications, Science and Technology, PIC
S&T’2019, Kyiv Ukraine, 2019, pp. 745-750.

[8] K. Smelyakov, O. Ponomarenko, A. Chupryna, D. Tovchyrechko, I. Ruban, Local Feature
Detectors Performance Analysis on Digital Image, in: Proceedings of the 2019 IEEE
International Scientific-Practical Conference Problems of Infocommunications, Science and
Technology, PIC S&T °2019, Kyiv Ukraine, 2019, pp. 644-648.

[9] D. A. Mayevsky, E. Yu. Mayevskaya, A. A. Orekhova, A. Yu. Krivtsov, V. S. Kharchenko,
Green software, in: Proceedings Workshop, National Aerospace University named after
N.E. Zhukovsky "KHAL", Kharkov, 2015.

[10] M. Frappier, Software Metrics for Predicting Maintainability, 2014.

[11] Models and metrics of software quality assessment, 2020. URL: http://www.met-
rix.narod.ru/page2.htm.

[12] A. V. Averyanov, I. N. Koshel, V. V. Kuznetsov, Application of Halstead metrics for
guantitative estimation of computer program characteristics, Journal of Instrument Engineering,
volume 62, N 11, 2019, pp. 970-975 (in Russian).

[13] N. Sharonova, O. Kanishcheva, Image and video tag aggregation, in: CEUR Workshop
Proceedings, 2017, pp. 161-172.

[14] Y. I. Hrytsiuk, O. T. Andrushchakevych, Means for determining software quality by metric
analysis methods, Scientific Bulletin of UNFU, 28(6), 2018, pp.159-171.
d0i:10.15421/40280631.

[15] A.V. Tsarevsky, A priori estimation of information processing algorithms by topological metrics
of complexity, Automation of control processes. 1, 2012, pp. 95-101.

[16] S. K. Chernonozhkin, Measures of program complexity (review). System Informatics,
Novosibirsk: Science, Issue 5: Architectural, formal and software models (2019) 188-227. URL.:
https://www.elibrary.ru/item.asp?id=26865926.

	1. Introduction
	2. Research problem statement
	3. Software evaluation metrics at the design stage
	4. Analysis software evaluation metrics at the design stage
	5. Conclusions
	6. References

