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Abstract 
Lately artificial intelligence has been becoming more and more popular, but at the same time 

a stereotype has been formed that AI is only is based solely on the neural networks even 

though a neural network is only one of the numerous directions of artificial intelligence. The 

aim of this paper is to bring attention to other directions of AI, such as genetic algorithms. 

Study the process of solving the travelling salesman problem (TSP) via genetic algorithms 

(GA) and take a look at the problems of this method. The genetic algorithm is a method for 

solving both constrained and unconstrained optimization problems that is based on natural 

selection, the process that drives biological evolution. One of the common problems in 

programming is the traveling salesman problem. There are many various methods that can be 

used to solve it, but the one we are going to take a look are the genetic algorithms. The aim of 

this study is to the most efficient application of genetic algorithms in the travelling salesman 

problem. 
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1. Introduction 

One of the common problems in programming is the traveling salesman problem. There are many 

various methods that can be used to solve it, but the one we are going to take a look are the genetic 
algorithms. The aim of this study is to the most efficient application of genetic algorithms in the 

travelling salesman problem [3, 19]. 

Lately artificial intelligence has been becoming more and more popular, but at the same time a 
stereotype has been formed that AI is only is based solely on the neural networks even though a 

neural network is only one of the numerous directions of artificial intelligence. The aim of this paper 

is to bring attention to other directions of AI, such as genetic algorithms [5, 15]. 
Study the process of solving the travelling salesman problem (TSP) via genetic algorithms (GA) 

and take a look at the problems of this method. 

The origins of the travelling salesman problem are unclear. A handbook for travelling salesmen 

from 1832 mentions the problem and includes example tours through Germany and Switzerland, but 
contains no mathematical treatment [7-8, 16]. 

It was first considered mathematically in the 1930s by Merrill M. Flood who was looking to solve 

a school bus routing problem. Hassler Whitney at Princeton University introduced the name travelling 
salesman problem soon after [11, 12]. 

There are many methods of solving this problem. Some of them give exact results, others only 

approximate. One of the more interesting methods is the methods of route optimization with the use 

of genetic algorithms [1, 14, 22]. 
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First experiments which involved simulated evolution were conducted by Nils Aall Barricelli in 
1945. Later they were also conducted by Nils Aall Barricelli, Ingo Rechenberg and Hans-Paul 

Schwefel. Thanks to them artificial evolution became a well-known optimization method [3]. 

2. Theoretical basis  

The travelling salesman problem is a problem of finding the fastest (most efficient) route between 
n cities where the route must go once through every city. If the problem is presented in the form of a 

graph, then the answer will be in the form of the shortest Hamiltonian cycle. 

The travelling salesman problem can be presented as a [6, 15, 23]: 

 Graph. In this form the represented cities are displayed as vertices and edges represent the 
criteria of profitability (distance, time). 

 Asymmetric and symmetric problems. The catch in the asymmetric problem is that the 

profitability between the cities is dependent on the direction of edges whereas in the symmetric 

problem the direction has no role. 

There are two main groups of methods for solving the travelling salesman problem which can be 
combined [5,10, 17]: 

 Precise — they find the precise optimal solution to the problem, but takes a long time to 

calculate. 

 Heuristic — they give an approximation of the optimal route, but take notably less time to 

calculate. 
Genetic algorithms are generally more efficient than the complete vocabulary as there is no need to 

go through all the possible combinations. At the same time genetic algorithms are heuristic which do 

not guarantee a precise solution, but only the best possible approximation with the given amount of 

time(iterations) [9, 18]. 

3. Genetic algorithms 

The genetic algorithm is a method for solving both constrained and unconstrained optimization 

problems that is based on natural selection, the process that drives biological evolution. 

Genetic algorithms can be broken down into the following steps [4, 21]: 
1. Creation of the base population. 

2. Repeat of the same actions(Evolution) 

 Rating. 

 Selection. 

 Cross-breeding and/or mutation. 

 Formation of the new generation in the case the result was not achieved. 

3. Obtaining the resulting generation on the Figure 1. 
During the creation of the base population individuals are generated with mostly randomized 

parameters. Each parameter is a specific gene and a set for those parameters form a chromosome. I 

our case the most efficient type of data to store in a chromosome are route options. For instance, we 
have 5 cities A, B, C, D and E, inside the chromosome specific routes will be stored e.g. ABCDE, 

BADCE, BDCEA. 

With the base population ready we can start a cyclic process of creating population which with 

each iteration would become more and more optimized for the goal. 
The first step is for the population to go through a rating process where for each individual a 

certain adaptability score is assigned. 

Now we can commence our selection. We do that by selecting the best fitted individuals for their 
cross-breeding and/or mutation [8, 20]. 

In order to improve the level of adaptivity of the population in classic genetic algorithms the best 

individuals are bred or mutated and sometimes both. 
The process of cross-breeding imitates the sexual reproduction. In order to create a new individual 

(child) 2 individuals are required which will be called parent in relation to the child. To inherit parent 



traits child chromosomes are formed in a certain way by combining parent genes. This process is 
called a crossover. 

 

 
Figure 1: Stages of the genetic algorithm 

 

In case when both mutation and cross-breeding have been performed in order to avoid a situation 
in which the population did not improve or got stuck on a certain iteration some if not all individuals 

are mutated. In other words one or some genes in a chromosome are replaced. Even though this 

process of mutation is not mandatory as mutations can both improve the rate of approximation to the 
result and slow it down [7, 21]. 

After cross-breeding and mutating it is mandatory to correct the number of individuals in the 

population so that the population did not increase in size after each iteration. Only the most adapted 

individuals will go on into the next generation (the rest will be annihilated). 
If the generation is not adapted enough we repeat processes of rating, selecting, cross-

breeding / mutation and forming the new generation. 

If the new generation is adapted enough, it can be considered to be resulting. In our case the route 
is as short as possible and any improvements are either insignificant or are impossible [1-3, 13]. 

4. Analytical part 

The complexity of using this method is that isn’t possible to use a regular crossover or a mutation.  

In classic genetic algorithms crossovers are generally presented as simple combinations of 
different parts of the parent chromosomes. For instance let us say we have the following parents:  

 

В D A E C 

Parent 1 

A D E C B 

Parent 2 
 

Then our children will have the following appearance. 

 

В D A C B 

Child 1 

A D E E C 

Child 2 
 

As we can see the regular crossover is not applicable to this problem as it is possible to get to one 

city two times and do not get to another at all. 
The same situation will occur with the use of the regular mutation. 

This situation can be avoided if the complexity of the crossover and the mutation is increased. 

 



4.1. The first strategy (Simple) 

As was mentioned before, in order to avoid getting to the same city twice merely differently 

combining halves of parent chromosomes will not be sufficient. The simplest way to resolve this is to 

change the city which is repeated to a city that is not present. But at the same time this method entails 
the fact that each possible descendant may have several options. 

Back to the same example. 

 

В D A C B 

Parent 1 
A D E E C 

Parent 2 
 

Is incorrect. After the correction they will have the following representation: 

 

В D A C E 

Child 1 

A D E В C 

Child 2 

 

The main drawback of this method is the large amount of iterations which are required to find the 
repeats which are needed to be competed for this cross-breeding. As a result, this method is quite 

inefficient in terms of runtime. 

Even though the operation of correcting children is similar to mutation, a full-fledged mutation 

still needs to be implemented, because otherwise child elements with similar genome might cease to 
evolve. 

4.2. The second strategy (Cycle) 

The previous strategy was based on a basic crossover which had to be improved so that children 

could form a Hamiltonian cycle which in term would create a large quantity of children variations. 
If we take the premade directions of movement which were taken from parent chromosomes, then 

there would be no reason to correct the children. As a result, by using this method we will acquire a 

wanted amount of children and will not be dependent on the amount of repeating cities. 
The idea of this strategy is that the combination of parent genes should immediately form a 

Hamiltonian cycle [5-7, 16]. 

In addition to make sure that the child chromosome would not repeat its parent it necessary to limit 
the length parents chromosome from which the child will be built. 

To understand this method let us look at the following example. We have our parents: 

 

E A B D C 

Parent 1 
B C A E D 

Parent 2 
 

And we can copy up to three genes in one parent in a row. 

To begin with let us take a part of genes from one of the parents, three genes from parent 1 to be 
exact. 

Then we shall take the other fathers’ gene (BCAED). As we can see, it is in the first place. Next 

we choose a direction leading to a city in which we have not been yet. And because we are looking 

for a cyclic route we are not restricted to only moving from the previous gene to the next gene(city), 
but we can also move from the first to the last one and vice versa. In this case we can both move to D 

and C. For the sake of optimization let us assume and moving to the right has a higher priority, so we 

add C. 
After that, we are going to be moving through the parent in the same direction until we hit a city to 

which we have been to before. Then we move to the next parent and repeat the previous step. This 

continues until we reach all the cities. 



In our case after C comes A to which we have been before we also cannot move backwards and 
because of that we move to the next parent. Here we can go to D and that is going to be our last gene. 

As a result we will get: 

E A B C A 

4.3. The third strategy (Nearest) 

Based on the second strategy a new more efficient crossover can be created. In the second strategy 
we have up to 4 different moves and if the most efficient one can be chosen then the runtime of the 

algorithm can be substantially improved while at the same time drastically decreasing the number of 

generations needed and at the same time will increase the time designated for computing in a single 
generation. 

In order to make sure that the complexity of the algorithm will not increase the restriction 

regarding copying the fathers’ sequence shall be ignored. As a side effect this creates an issue where 
the child can become a carbon copy of the parent yet it can be solved by either mutating such child or 

by banishing it from the general population. 

Going back to our previous example, our parents: 

 

E A B D C 

Parent 1 

B C A E D 

Parent 2 

 

In this case we are not just going to the first available city, but rather we choose and optimal path. 
In the beginning a starting gene is randomly chosen, so the simplicity sake in this example the first 

parent gene will be chosen, let us E. Next we have the options between A, C or D and the shortest one 

will be chosen. Given that we have not specified the distances between the cities let us assume that C 

is the shortest. And as a result we get more children which are more efficient than their parents. 

5. Mutation 

In order to simplify the work we will take the method of mutation from the first method i.e. the 

process of mutation goes as it would go for a regular genetic algorithm. Then we will correct the cities 

which are missing. As a result, we will just swap the places of two random genes. 
The chromosome before mutation: 

 

В D A E C 

 
And after mutation: 

 

В C A E D 

 
In order to improve the algorithm, we could also look for the most efficient swap, but that would 

only waste resources it will amount to little to no optimization gain. 

6. Selection of individuals for reproduction 

The next problem that occurs is the selection of individuals which will be bred and how they will 

be bred. The simplest and possibly the most efficient one method is sorting the individuals according 

to some coefficient and pairwise crossing of the most adapted individuals [12, 13].  

That fact that crossing the same parents will yield the same individual. In order to avoid breeding 
the same pairs of parents each individual will have its list of partners with whom he created offspring 

and block its ability to breed with these individuals. 

Development of the software solution 
The structure of the software solution can be separated into three parts [2]: 



 Structural specifics of the travelling salesman problem where the structural interpretation of 

cities and connections between them are described. 

 The genetic algorithm which is the main aspect of this problem, because inside of it the 
algorithm is described. 

 Cross-breeding and mutation implementation. 

Structural specifics of the travelling salesman problem. 

In order to work with genetic algorithms input data is required and in this particular problem it is 

presented in the form of the list of cities between which we are looking for the shortest route. 
In order to be able to consider the graphic formulation of the route cities are represented as points 

with their names on the coordinate plane. 

 

 
Figure 2: UML diagram of the city class 

 

When selecting the structure to hold the data it is important to take into account that connections 
between the cities are more important than the cities themselves (Figure 2) and that it is wise to store 

the calculated distances and retrieve them rather than constantly recomputing them as it will create an 

excessive load on the program. So for this purpose we will realize a sort of map which will store all 
the cities and distances between them. To ease the access to data inside the said map the list of cities 

and the list of distances between them will be presented as hash-maps. Cities will be accessed through 

their name and the distances will be accessed by using a key which is composed out of the names of 

the cities distance between which we are looking for [10]. 
Considering the fact that the algorithm is supposed to work with only one instance of the map we 

should restrict its access to creating multiple maps. This can be done by implementing map based on 

the Singleton pattern. 
Also, in order to not repeat the operation of creating a map every time we call the algorithm 

options of saving the map to a file, loading it from the said file and generating it with randomized data 

have been implemented (Figure 3). 

Genetic algorithm in this specific problem 
An individual is the smallest structural unit in any genetic algorithm and all individuals have a 

chromosome and an adaptivity score. In our case a chromosome is a sequence of cities a.k.a one of 

the possible routes and the adaptivity score is the ratio of the length of the shortest known route to the 
length of the current individual [7]. 

In order to determine the best adapted individuals, we need to be able to compare them by their 

adaptivity score and for this a “Comparable” will be used. 
The first generation will be generated with random routes. 

The process of generating individuals 

We get our list of cities from the map and for this every individual should also have access to the 

map. Individuals should also have the same access to the values of the shortest route and the size of 
their chromosomes (Figure 4) [8]. 

Evolution occurs in each generation. Generation is an imitation of the life cycle where in every 

generation there is a population of individuals and within that population that population the breed. 
During the creation of the next generation only the individuals with the highest adaptivity score are 

kept alive [6]. 

 



 
Figure 3: UML maps and their dependencies 

 

 
Figure 4: Class diagram of the individual 

 

Generations must be limited by their size and by the amount of individuals which have the right to 
breed. These parameters can be changed in order to observe the change in evolution. 

In order for the evolution to occur we need to be able to create our starting generation and other 

generations based on previous ones. 

Generating the starting generation 

We need to implement a method for killing individuals whose adaptivity score is too low 

considering the fact that not every individual has the ability to reproduce or to be moved to the next 
generation. 

And an option to get the best individual in the generation has been added in order to allow us to 

gather additional static data (Figure 5). 

In order to generalize the algorithm and data a Calculation class has been created in which the 
following data is stored: 

 Size of the population. 

 Number of generations. 

 Percentage of individuals which can reproduce. 

 Error (𝜺) that determines the stopping of the algorithm. 

 Reproduction type. 
 



 
Figure 5: Class diagram of the individual 

 

The two main methods are shown below. The first one launches the algorithm with required 

parameters and the second one save the resulting data into a file. 

Implementation of the cross-breeding and mutation methods 

Cross-breeding and mutation methods are implemented inside an enumerative class where each 

element represents one method of cross-breeding and mutation. 
Also the ability of acquiring descendants from the breeding individuals has been added in that 

class. 

The generalized representation of this class (Figure 6). 

 

 
Figure 6: Class diagram of the reproduction implementation 

 

Inside the first method everything takes place in two steps. The first one is the combination of 

parent chromosomes and the second one is the formatting of the resulting chromosome to make sure it 

fits the standard model. This method involves adding two sequences of cities and removing 
repetitions from them. 

Mutation on the other hand is realized as a swap of two random genes. 

Inside the second method everything is a bit more complicated. First of all an attempt is made to 
copy parents transitions and if at some point it becomes impossible to do so then all the cities which 

were not visited are added to it. 

The third method is similar to the second one but with a slight change. The shortest possible parent 

transition is selected. 
 



7. Results 

We will conduct a study on equal terms for each one of the methods. For this we shall use the 

same map and the starting generation (Figure 7). 

Let us generate a map with 20 cities (Table 1). 
 

Table 1 
Coordinates 

Name x y Name x y 

A 1 10 K 12 1 
B 19 0 L 18 10 
C 9 13 M 6 18 
D 15 12 N 4 9 
E 16 1 O 11 19 
F 16 15 P 11 18 
G 11 3 Q 0 3 
H 9 10 R 8 15 
I 13 18 S 8 7 
J 18 3 T 11 1 

 

 

Figure 7: View of the cities on the coordinate plane 
 

Analyzing the efficiency of the cross-breeding method 
We will conduct a study on 50 generation with the size of each being 100 individuals and the 

possibility to reproduce in the 90% of the population. 

In the first method the most efficient route is “N-A-S-B-E-J-G-T-K-L-D-F-O-M-R-C-P-I-H-Q" 
(Figure 8). Where its length is 109.67769964641892 and the runtime is 5501 ms, 110 ms per iteration. 

In the second method the most efficient route is “C-A-H-R-N-Q-S-T-K-J-B-E-G-L-F-I-D-M-O-P” 

(Figure 9). 

Where its length is 118.9046735493942 and the runtime is 3865 ms, 77 ms per iteration. 
In the third method the most efficient route is "H-C-R-M-P-O-I-F-D-L-J-B-E-K-T-G-S-Q-A-N" 

(Figure 10). Where its length is 77.68934906917778 and the runtime is 2341 ms, 46 ms per iteration. 

 



 
Figure 8: View of the first method 

 

 
Figure 9: View of the second method 

 

 
 

Figure 10: View of the third method 
 



As we can see the third algorithm has the best runtime and gives us the shortest final route. The 
second algorithm is average in both runtime and the final route. And the third one has the worst 

runtime and returns mediocre results. 

An analysis of the approximation to the optimal solution 

As we can see from the chart the third method gives us the best results and the results of simple 
and cycle methods are actually quite similar (Figure 11). 

The nearest algorithm has the largest decline and because of that it needs fewer generations to 

achieve the optimal solution. 
Cycle gave us some interesting results (Figure 11). It has a jump-like approximation and it 

happens much less often than in other algorithms. And as a result, the best fitted individual survives 

for much longer compared to other simple and nearest algorithms. 
 

 
Figure 11: Chart of the speed of approximation to optimal solution 

8. Conclusion 

In the article three methods of crossing are proposed. After all, in classical genetic algorithms, the 

crossover occurs through the simple bonding of different halves of the chromosomes of both parents. 

Therefore, it is not suitable for solving our task, because using it we will get to the same city twice 
and will not visit other cities. A similar situation will occur when using a normal mutation. Therefore, 

if you complicate the crossover and mutation, you can avoid this situation. 

To do this, use three strategies. The first is to replace a recurring city with a missing one. At the 
same time, this method entails the fact that each possible offspring may have several options. The 

disadvantage of this method is the large number of iterations to find repetitions to be performed for 

one crossing. 
The second strategy is the gluing of parental genes to form a Hamiltonian cycle. Based on the 

second method, you can create an even more efficient crossover. 

The third strategy is to choose the most efficient move, to speed up the algorithm and to reduce the 

number of required generations. A side effect of this strategy is that the offspring can become a copy 
of the father: however, this can be solved either by mutating the offspring or removing it from the 

general genetic population. The third strategy has a feature of the method of the nearest neighbor, 

which in turn makes each offspring more effective than his father. 
As we can see genetic algorithms are a nice way of locating the best possible solution. They have a 

quite short runtime where one iteration takes about 46-110 ms in 20 cities. We took a look at three 

methods of cross-breeding and from them the most efficient one was the third one. This is thanks to 

the fact that the third one has one special feature from the nearest neighbor which in terms makes 
every child have a better adaptivity score than its parents. 
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