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Abstract  
This paper proposes a method for detecting a network of bots in the recommendation system 

based on graph clustering and analysis of user actions. This method is proposed to be used if 

there are signs of an attack on the recommendation system and a set of probable targets of the 

attack is revealed. A series of experiments was carried out to test the effectiveness of the 

proposed method. The input data for the experiments were generated in the developed 

software simulation model of users and items of the recommendation system that made it 

possible to simulate the influence of external destabilizing factors on the system such as 

information attacks. A subsystem of information security of the recommendation system has 

been developed. Such subsystem consists of a method of detecting an information attack on 

the recommendation system based on trend analysis in item ratings and a method of detecting 

bot networks in the recommendation system based on graph clustering and user action 

analysis. Also, appropriate algorithms have been developed. 
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1. Introduction 

Most often information attacks on recommendation systems are carried out for marketing purposes 

in order to increase the ratings of the attacking party's products or decrease the ratings of competitors' 

products [1-6]. Also attacks on recommendation systems may also be aimed at propagating 

informational influences during informational conflicts, e.g., for political purposes. Various 

information influences are often carried out through social networks [7-12]. Recommendation systems 

as their components have become one of the targets for information attacks in order to implement 

such influences [1-6, 13-15]. By successfully attacking a social network recommendation system or 

news aggregator one can change the content and order in which items of news feed are displayed to 

system users. It can be used not only for marketing but also for political or fraudulent purposes. To 

implement attacks on recommendation systems bot networks are used, since only a certain set of 

profiles in the system can influence recommendations formation by their joint actions [1-6, 14, 15]. 

1.1. Related Works and Problem Statement 

Mostly in existing studies [4, 14-17] it is proposed to consider the detection of an information 

attack on the recommendation system as identical to the detection of bot profiles, and for detecting a 

bot network, all user profiles are clustered based on their statistics by non-hierarchical methods (for 

example, k-means clustering). After such clustering bots and authentic users get into different 
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clusters. 

Since the detection of bot profiles is quite a resource-intensive task, this paper proposes to split the 

task of protecting the recommendation system from information attacks into two parts: 1) detection of 

attack signs and 2) detection and neutralization of bot profiles. 

Attack detection can be a less resource-intensive task if it will be realized as tracking the dynamics 

of ratings of system items (all ratings or only critical ones from the point of view of information 

security).  For example, if the ratings of items to protect start to change rapidly, and new ratings that 

lead to changes in ratings do not match previous average ratings of these items, you should check for 

bots among users who have started making such ratings. This approach will reduce the number of user 

profile checks. First, since they will need to be checked only if an attack is suspected. Secondly, because 

it will be necessary to check the profiles of not all users, but only those who carry out suspicious actions. 

If in the system items with an abnormal change in rating trends are detected (that could 

hypothetically be the result of a botnet attack), the next logical step is to try to identify user profiles that 

influenced this change and try to find out if they are connected to a coordinated network or networks. 

It is natural that changes in trends in the ratings of items are influenced by all users who gave them 

ratings equal to the target – high if the item's ratings increased or low if the item's ratings decreased. 

The set of such users is easily identified by simple queries to the recommendation system database. 

But it is much more difficult to determine which user profiles are really part of the botnet and perform 

coordinated actions with other members of the botnet and who simply gave a rating that corresponded 

to their preferences. 

Thus, the purpose of this work is to develop а method of detecting bot networks in the 

recommendation system of social network, which could be used only after detecting signs of an attack 

to check only those user profiles who interacted with possible attack objects. 

The problem of botnet revealing among the profiles of system users can be reduced to the problem 

of finding a subgraph in the social graph of the recommendation system. The vertices in such a 

subgraph will be user profiles linked by some joint actions that influenced changes in rating trends of 

all or most items probable targets of the information attack [4, 18]. Therefore, to develop a method for 

detecting a bot network we decided to use methods of graph clustering. 

2. Development of a method for detecting bot networks in the 
recommendation system  

2.1. Detection of signs of information attacks on the recommendation 
system  

Since it is proposed in this paper to split the problem of protecting the social network 

recommendation system from information attacks into two parts: detecting signs of attack, searching 

for bot profiles, we will first consider how to solve the first problem before developing a method for 

solving the second problem. 

In [19] a method to determine the set of probable goals of the information attack of the bot 

network by analyzing the trends of ratings of items of the recommendation system was proposed. 

Let's consider the basic principles of this method. 

The set of possible targets of the attack will be denoted as G. 

The presence of an information attack on the recommendation system causes a change in the 

ratings of a group of items (increases or decreases them), but the change in the ratings of items is not 

a sufficient reason to think that there is an attack, since ratings may change due to the actions of 

authentic users. Therefore, a number of additional features which may indicate an information attack 

have been selected. A set of indicators to determine the presence or absence of an information attack 

on the item of the recommendation system was proposed as follows: 

𝑄𝑎,𝑖 = {𝑡𝑟, 𝑝𝑟, 𝑑𝑟, 𝑑𝑡 , 𝑛𝑟, 𝑛𝑡𝑟, 𝑛𝑟𝑒𝑐}, (1) 
where tr – is a trend of rating dynamics of item i that can take the following values {–1, 0, 1} –

respectively "rating downward trend", "no change" and "upward trend"; 𝑝𝑟 – is a prediction for the trend 

of the rating dynamics of item i, for example, based on the Hurst exponent [20]; 𝑑𝑟  – is a variance of 

ratings of item 𝑖; 𝑑𝑡  – is a variance of time of grading for item 𝑖; 𝑛𝑟 – is a number of ratings of item 𝑖 at 



the studied time interval; 𝑛𝑡𝑟 – is a number of target ratings for item 𝑖 at the studied time interval;  

𝑛𝑟𝑒𝑐 – is a number of gettings of item 𝑖 into user recommendation lists at the studied time interval. 

We will assume that the attack on the recommendation system occurs when the ratings of one o r 

more items of the system are purposefully changed by the joint actions of a group of system user 

profiles. Herewith the size of damage from the attack does not always depend on the number of items. 

Successful change of the ratings of even one item can have great consequences if the item is 

important and it is, for example, in the social, political or medical sector etc. 

It is proposed to determine the presence and type of attack according to the following rules: 

Rule 1. If the item has any 5 signs from the data: the trend of increasing the rating 𝑡𝑟𝜏 = 1, 

𝐻 >  0.73, 𝑑𝜏 ≤  𝑑𝜏,𝑎𝑣𝑟 , 𝑑𝑡  ≤  𝑑𝑡,𝑎𝑣𝑟, 𝑛𝑟 >  𝑛𝑟,𝑎𝑣𝑟, 𝑛𝑡𝑔 >  𝑛𝑡𝑔,𝑎𝑣𝑟, 𝑛𝑟𝑒𝑐  >  𝑛𝑟𝑒𝑐,𝑎𝑣𝑟, then we 

believe that there is a high probability of a rating upgrade attack for this item. 

Rule 2. If the item has any 5 signs from the data: the trend of decreasing the rating 𝑡𝑟𝜏 = −1, 

𝐻 >  0.73, 𝑑_𝜏 ≤  𝑑𝜏,𝑎𝑣𝑟, 𝑑𝑡  ≤  𝑑𝑡,𝑎𝑣𝑟, 𝑛𝑟 >  𝑛𝑟,𝑎𝑣𝑟, 𝑛𝑡𝑔 >  𝑛𝑡𝑔,𝑎𝑣𝑒𝑟, 𝑛𝑟𝑒𝑐  <  𝑛𝑟𝑒𝑐,𝑎𝑣𝑟, then we 

believe that there is a high probability of a rating downgrade attack for this item. 

Once the attack on the recommendation system is detected and the set of probable targets of bots 𝐺 

is created, it will be logical to investigate the profiles of all users who influenced the change of item 

rating trends from this set 𝐺. And in this work, it is precisely such actions that are proposed to be done 

for the search of bot profiles. 

2.2. Identification of bot profiles in the recommendation system 

To solve the problem of identification of bot profiles in this paper a method based on graph 

clustering and analysis of user actions was developed using the coefficients of "distrust". The method 

consists of the following stages: 

Stage 1. Create a set of suspicious user profiles 𝑆, in which we place the profiles that gave the 

target estimates 𝑟𝑡 for items from the set 𝐺. 

Stage 2. Assign to each user from the set 𝐺 label :suspicious and coefficient of distrust calculated 

by the next formula: 

𝑘𝑑,𝑖 = ∑  

𝑗∈𝐺

𝐸𝑟𝑡,𝑖,𝑗

𝑛𝑔
, (2) 

where 𝐸𝑟𝑡,𝑖,𝑗
 – is a presense of target rating 𝑟𝑡 from user 𝑖 for item 𝑗 belonging to the set 𝐺 of probable 

targets of the attack, takes values 1, if target rating exists and 0 – in the absence of such a rating from 

user 𝑖 for item 𝑗; 𝑛𝑔 – is a number of items in the set 𝐺 of probable targets of the attack. 

Stage 3. For each pair of users 𝑖1 and 𝑖2 from the set 𝑆, where 𝑘𝑑,𝑖1 ≥ 𝑞 and 𝑘𝑑,𝑖2  ≥  𝑞, create an 

edge between them with a label :BotNet.  

Stage 4. Perform graph clustering for a subgraph containing vertices with labels :User and 

:suspicious and edges with label :BotNet. The results of such clustering will be as follows – all bots 

will get into one large cluster, if there is one botnet, or to several large clusters – if there are several 

botnets; authentic users will get into different clusters, each of these clusters will contain one user or a 

small number of users. It is also possible that a certain number of authentic users will get into the 

cluster with bots, or a group of similar and active authentic users will create a separate cluster if their 

actions shift the ratings of some items. 

Stage 5. Define the largest clusters consisting of (𝑁𝑐𝑟 –  𝑒) users, where 𝑁𝑐𝑟 – is a minimum 

number of users that may affect the performance of the recommendation system (depends on the 

parameters of a particular system), 𝑒 – is an approximate value of the error when dividing user 

profiles into clusters. We consider such cluster (or clusters) as a possible bot network (bot networks). 
For users who do not get into these clusters, remove the edges with the label :BotNet. Users who got 

to the subgraph BotNet needed to be further checked analyzing the statistical characteristics of their 

profiles, for example, using the method proposed in the previous section using neural networks [21]. 

Also for additional check of profiles from the subgraph BotNet one can search for certain features 

characteristic of bots, for example, poorly completed personal data or extremely high activity (the 

characteristics of bots depend on the specific system and can become known in the process of 



collecting statistics during its operation). One of the common features of bots for many systems can 

be: the difference between the values of the variance of ratings and the variance of time intervals 

between ratings in the profiles of bots from the average values of the corresponding variances in the 

profiles of system users. For a particular system, the features of bots can be: features of profile 

registration, features of filling the profile with personal information, style of writing and content of 

comments, user friends list etc. After checking the statistics of individual user profiles that got into the 

subgraph BotNet, it have to be corrected, removing from it users identified by statistics as authentic. If 

there is a cluster in which all users are recognized as authentic – it should cease to be considered a bot 

network. 

Stage 6. Correct the set 𝐺 after analyzing the user ratings from the subgraph BotNet. It is necessary 

to check which items users from the botnet have coordinately targeted. Remove from 𝐺 items that did 

not receive at all or received a small percentage of target ratings from users identified as bots. Add to 

the set 𝐺 items that have received target scores from all bots (or a large percentage of bots). 

The research to the most well-known and frequently used methods of graph clustering was 

conducted [22-27]. Consider the methods of graph clustering that can be used in the proposed method 

of detecting a network of bots and the basic principles of their operation. 

Louvain (or Multilevel) method – graph clustering method based on multilevel optimization of 

the modularity function [23, 28]. Modularity is a numerical characteristic that describes the strength 

of division of a graph into modules, is one measure of the structure of networks or graphs [23, 25, 26]. 

To assess the modularity the next formula can be used: 

𝑄 =
1

2𝑛𝑒
∑  

𝑖𝑗

(𝐴𝑖𝑗 −
𝑑𝑖𝑑𝑗

2𝑛𝑒
) 𝛿(𝐶𝑖, 𝐶𝑗), (3) 

where 𝑛𝑒 – is a number of edges in the graph; 𝐴 – is an adjacency matrix of the graph; 𝑑𝑖 – is a 

number of edges adjacent to the vertex 𝑖; 𝑑𝑗 – is an number of edges adjacent to the vertex 𝑗; 

𝛿(𝐶𝑖, 𝐶𝑗) – is a delta function equal to one, if 𝐶𝑖  =  𝐶𝑗 and zero otherwise. 

This value is equal to the difference between the number of edges within the cluster during the 

current splitting and the number of edges if they were randomly generated [26].  

The value of modularity shows the severity of clusters, it will be: 

 equal to one for a complete graph in which all vertices are placed in one cluster; 

 equal to zero for division into clusters, in which each vertex is in a separate cluster; 

 for unsuccessful partitions modularity can take a negative value. 

In essence, the value of modularity can be used to assess the quality of splitting graphs into 

clusters. Qualitative partitioning is characterized by the fact that the number of internal links within 

each cluster must be greater than the number of its external links. 

The value of modularity characterizes not how much for this partition intra-cluster bonds are 

denser than inter-cluster, but how much they are denser compared to some initial density. Therefore, 

there is a comparison with the "null hypothesis", which is that the arcs are distributed randomly, that 

is, there are no patterns in the distribution of the density of arcs within the graph. 

The principle of graph clustering algorithms based on modularity optimization is that at each step of 

the algorithm each cluster vertex is somehow matched to a cluster, the modularity value is calculated 

and the graph vertices are redistributed between clusters so as to increase the modularity value. The 

operation of such algorithms stops when it is no longer possible to improve the value of modularity. 

The Louvain method consists of two parts. The first part is a greedy optimization of modularity. 

The second part of the method is as follows: a new graph is created with metapeaks in the form of 

found clusters and edges with the total weight of all edges going from one cluster to another (loops 

with total weights of connections inside the cluster are also created). Such a graph is called a metagraph. 

The algorithm is restarted on a new graph. This is one of the most well-known methods due to its speed. 

LabelPropagation method – graph clustering method based on graph labeling. It divides the 

graph into clusters as follows: each vertex in the graph belongs to the cluster to which most of its 

neighbors belong, if there are several such clusters, then one of them is chosen by chance [23, 26, 28]. 

This method is based on the idea that the vertex belongs to the cluster to which the largest number of 

its neighboring vertices belongs. Consider the principle of operation of this method. At the initial 

point in time, all vertices are assigned a separate cluster. Each vertex receives a label or color of the 



corresponding cluster. Then, for each vertex, it is checked which clusters its neighbors belong to and 

the cluster membership is redistributed. Due to coincidences, it is important to change the order of 

vertex traversal at each iteration. The algorithm ends when there is nothing to change – all vertices 

belong to the same clusters as most of their neighbors. To improve the results, one can use the 

following trick – run the algorithm several times, save the result of its work each time and choose the 

best option for splitting the graph. The main advantage of this algorithm is almost linear complexity. 

The disadvantage of the algorithm is that noisy graphs often combine all vertices into one cluster or a 

small number of clusters. 

2.3. Experiments to test the effectiveness of the proposed method on a 
software model 

A series of experiments was carried out to test the developed method of detecting a network of bots. 

Since there is no information on bot profiles in the available open datasets for testing 

recommendation systems, it is necessary to create a software simulation model of users and 

recommendation system items to generate datasets that will also contain bot profiles.  

2.3.1. Software simulation model of users and items of the recommendation 
system 

A software simulation model of users and items of the recommendation system with the ability to 

simulate information attacks has been developed. Let's consider the basic principles of work of the 

developed software simulation model of users and items of the recommendation system. 

The main type of attacks on recommendation systems are profile injection attacks, which involve 

the creation of a number of bot profiles (bot networks) that, by coordinated actions, change the ratings 

and frequency of getting target items into recommendation lists. 

A study of existing models of attacks on recommendation systems was carried out in the paper. 

The bot profile can contain the following types of ratings: 

 Ratings for items from the set 𝐼𝑓 to simulate the actions of real users. The attacker doesn't try 

to change these ratings, but instead tries to find values for them that are as close as possible to the 

real target group of users he seeks to influence. 

 Ratings for items from the set 𝐼𝑡𝑖, these are the maximum (or close to them) ones in the 

system for target items for which the attacker seeks to increase the rating. 

 Ratings for items from the set 𝐼𝑡𝑑, are the minimum (or close to them) ones in the system for 

target items for which the attacker seeks to decrease the rating. 

The number of target items in the bot can vary from 1 to 𝐾 and be contained only in the set 𝐼𝑡𝑖 or 

only in the set 𝐼𝑡𝑑, or both, and the number of items to fill the profile – from 0 to 𝑁. 

Random Attack 

In bot profiles the set 𝐼𝑓 will be filled with ratings for randomly selected items. Ratings for selected 

items will also be selected randomly, but in such way that they are close to the global average score in 

the system, for example, a normal distribution with a mathematical expectation equal to the global 

average will be used. The target item will be given the maximal 𝑟𝑚𝑎𝑥  or minimal rating 𝑟𝑚𝑖𝑛, 

depending on the targets of the attack. The knowledge and effort required to carry out such an attack 

is quite minimal – the global average score in many systems can be easily learned directly or through 

indirect data. This attack is not very effective. 

Average Attack 

Uses the individual averages of each item's ratings to create the set 𝐼𝑓. More information needs to 

be gathered for this attack. However, an average attack can be successful even with a small set of 

elements in 𝐼𝑓, that reduces the amount of information needed to collect. But the cost of such a reduction 

in the required data will be a large number of profiles with almost the same set of rated elements that 

will, of course, be easy to detect. This attack is more effective than random. But it is practically 

ineffective for collaborative filtering algorithms based on the neighborhood model of item-based type. 



The average attack requires a relatively large amount of knowledge about the statistics of the 

actions of real users in the system. Reasonable defense of the recommendation system from such 

attacks will make it difficult for the attacker to collect the necessary data. To bypass such defense, 

other attacks are used, for which the requirements for the amount of knowledge are much lower.  

Consider existing attacks that require less knowledge than the average attack, but work more 

effectively than a random attack. 

Bandwagon Attack 

The purpose of this attack is to associate the attacked item with a small number of items that are 

often rated by users (let's call them widely known). An attacker creates profiles of bots that contain a 

set 𝐼𝑓 of ratings of widely known items. Such profiles are more likely to look like a large number of 

users, as well-known items are those that are rated by many users. Data for such an attack is quite 

easy to obtain. So, among the well-known items, several are chosen at random. These items are given 

maximum ratings along with the target item. Some of the items in the set 𝐼𝑓 can be randomly rated, for 

example like in a random attack, to vary bot profiles. This is a fairly effective attack but like the 

average attack becomes ineffective when used against collaborative filtering based on the item-based 

neighborhood model. 

Segment Attack 

The basic idea of this attack is to change the rating of the item in the target group of users with 

known or easily predictable preferences. The target item will be rated only in a certain segment of users, 

so that it gets recommendations only to them. Otherwise, if the target item gets in recommendations for 

users from other segments, it may start receiving low ratings from them and the number of such low 

ratings will be greater than artificially inflated ones. To carry out such an attack, an attacker need to 

find real users who belong to the target segment and collect data on the ratings that they usually give 

to system items. As with the bandwagon attack, it is usually determined which items in the target 

segment are widely known. These items are assigned the maximal rating together with the target item. 

To ensure maximum effect from the attack, some items for the set 𝐼𝑓 are randomly selected and 

receive minimal ratings, which allows the attacker to make the bot profiles various. This attack is 

effective against collaborative filtering algorithms based on the item-based neighborhood model.  

It should be noted that all of the attack models discussed above can be used to decrease item 

ratings, but there are specialized attacks that work better than others exactly to decrease ratings.  

Consider attack models designed to decrease ratings of recommendation system items. 

Love/Hate Attack 

This attack is very simple – no knowledge to be required. The target item is given a minimal rating 

𝑟𝑚𝑖𝑛, and the items for the set 𝐼𝑓 are chosen randomly and receive maximal ratings 𝑟𝑚𝑎𝑥. Despite its 

extreme simplicity, this is one of the most effective downgrade attacks against collaborative filtering 

algorithms based on the user-based neighborhood model. 

Reverse Bandwagon Attack 

This is variation of the above-described bandwagon attack that selects widely known items for 𝐼𝑓 

that are rated low by the vast majority of users. These items are rated low in bot profiles, and low 

ratings are assigned to the target item. Thus the target item begins to be associated with items that are 

not liked by a large number of users, and this increases the probability that low ratings will be 

predicted for the item and it will not be included in the lists of recommendations. Although this attack 

is not as effective as the average attack with a lot of knowledge for user-based systems, it is a very 

effective attack to downgrade against item-based systems. 

Low-level attacks use widely known items to fill a bot's profile with ratings for them. In this way, 

an attacker can create a profile similar to the average user by examining the ratings of only widely 

known items. 

If an attacker knows exactly which algorithm the referral system uses, he can gather more 

information to attack. 

Thus, attacks can be classified into:  

 Attacks with little knowledge –  this type of attack does not require detailed knowledge of the 

distribution of scores in the system. It requires system-independent knowledge that can be easily 

obtained through public sources of information. 

 Attacks with a lot of knowledge – an attacker needs to have as much knowledge as possible 



about the system's algorithms and the distribution of ratings of system items. For example, some 

attacks require the attacker to know the mean and standard deviation for each item in the system. 

An example of an attack with a lot of knowledge is a popular attack.  

Popular Attack 

Assume that the system uses a standard user-based collaborative filtering algorithm, where 

similarity between users is determined by Pearson correlation. As in the bandwagon attack, the set 𝐼𝑓 

is filled using well-known system items. However, this does not guarantee a high similarity between 

the bot profile and the real profiles. Therefore, the popular attack uses the average values of the 

ratings of selected well-known items to fill the set 𝐼𝑓. And in order to vary the profile data assign to 

some randomly selected items in 𝐼𝑓 ratings equal to (𝑟𝑚𝑖𝑛  +  1) or 𝑟𝑚𝑖𝑛, depending on whether the 

average rating for the item is higher or lower. This strategy will lead to positive correlations between 

bot profiles and authentic profiles. It doesn't take a lot of knowledge to identify well-known items, but 

a lot of information needs to be gathered to determine the average ratings of selected items. A popular 

attack can also be easily tuned for downgrade attacks. This attack can be detected by comparing 

profiles in the system – the bot profiles of one bot network will be very similar. 

Probe Attack 

The more similar bot ratings are to those of real users, the more difficult it is to recognize bot 

profiles. Knowledge of the real preferences of different segments of users can be obtained from the 

system itself through a probe attack. To carry out this attack the attacker creates a seed profile and 

then uses it to obtain recommendations from the system. These recommendations are created on the 

basis of system information about real users, so the use of the received recommendations will allow 

the attacker to create bot profiles more similar to real users. The attacker can probe a small number of 

users to then affect a small group, as in a segmental attack, or a large part – to obtain information, for 

example, for an average attack. An attacker needs to use only a small number of seed profiles in order 

for the recommendation system to provide him with the necessary information in the form of 

recommendations. 

Our studies of models of information attacks on recommendation systems have shown that the 

easiest to implement and the least resource-intensive attacks are random and average ones, and the 

most effective and inconspicuous (although quite resource-intensive) attack is a popular attack. Other 

studied models of attacks in fact are their modifications, for example, designed to attack only a certain 

segment (segment attack), or to attack only to lower ratings (love/hate attack), or to reduce resource 

consumption by reducing the inconspicuous of the botnet (bandwagon attack, love/hate attack). 

Therefore, in the software simulation model of users and items of the recommendation network, we 

decided to model botnets based on three main models of attacks – random, average and popular attack. 

 

 
 
Figure 1: Types of models of profile injection attacks on recommendation systems 

 

The proposed method of software simulation of users and items of the recommendation system 

consists of the following parts: 

 Generation of the structure of the social graph of the recommendation system [29]. 

 Simulation of the behavior of users and bots of the recommendation system. 
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The generation of the structure of the social graph of the recommendation system was carried out 

on the basis of theory complex networks [22, 30-32] and the Barabashi-Albert (BA) model [22, 30], 

which creates scale-free networks based on 2 conditions: 

Growth. Starting with a small number of nodes 𝑛0, on each new time iteration one new node is 

added with 𝑛 links (where 𝑛 ≤ 𝑛0) connecting a new node to 𝑛 different existing nodes. 

Preferential attachment. Probability 𝑃 that the new node connect to some existing node 𝑖 is the 

higher the more connections the 𝑖-th node has: 

𝑃𝑖 =
𝑘𝑖

∑ 𝑘𝑗𝑗
, (4) 

where 𝑘𝑖 – is a degree of 𝑖-th node, and the denominator calculates the sum of all degrees of existing 

nodes in the network. 

To generate the recommendation system the following subgraphs are used: 1) Users-Friends, 

Users-Followers, Posts-Published, Posts-Viewed and Posts-Liked – are created by the generator of the 

social network graph, 2) Users-Similarity, Posts-Similarity and Posts-Recommended – are created by 

the recommendation system.  

Stages of the developed method: 
Stage 1. A non-oriented subgraph Users-Friends is generated based on BA.  

Stage 2. A non-oriented subgraph Users-Followers is generated based on BA.  

Stage 3. Subgraphs Users-Friends and Users-Followers are combined into one graph. 

Stage 4.  An oriented subgraph Posts-Published is generated based on modified BA. In the first 

iteration 𝑛0 users are randomly selected to "create" 𝑚0 posts. Probability post publication by some 

user: 

𝑃𝑖 =
𝑘1𝑖 + 𝑘2𝑖 + 𝑘3𝑖

∑  𝑗 (𝑘1𝑗 + 𝑘2𝑗 + 𝑘3𝑗)
, (5) 

where 𝑘1𝑖 – is a number of friends of 𝑖-th node, 𝑘2𝑖 – is a number of subscribers of the 𝑖-th node,  

𝑘3𝑖 – is a number of posts of the 𝑖-th node, and the denominator calculates the sum of all these values 

for all existing nodes in the network. 

Stage 5. Subgraph Posts-Published is joined to the general graph. 

Stage 6. An oriented subgraph Posts-Viewed is generated based on BA. Probability the post to be 

reviewed: 

𝑃𝑖 =
𝑞1𝑖 + 𝑞2𝑖 + 𝑞3𝑖

∑  𝑗 (𝑞1𝑗 + 𝑞2𝑗 + 𝑞3𝑗)
, (6) 

where 𝑞1𝑖 – is a number of friends of the author of the 𝑖-th post, 𝑞2𝑖 – is a number of subscribers to 

the author of the 𝑖-th post, 𝑞3𝑖 – is a number of views of the 𝑖-th post, and the denominator calculates 

the sum of all these values for all existing nodes in the network.  

Stage 7. Subgraph Posts-Viewed is joined to the general graph. 

Stage 8. Subgraph Posts-Liked is generated. Probability of getting a like: 

𝑃𝑖 =
𝑞1𝑖 + 𝑞2𝑖 + 𝑞3𝑖 + 𝑞4𝑖

∑  𝑗 (𝑞1𝑗 + 𝑞2𝑗 + 𝑞3𝑗 + 𝑞4𝑗)
, (7) 

where 𝑞1𝑖 – is a number of friends of the author of the 𝑖-th post, 𝑞2𝑖 – is a number of subscribers to the 

author of the 𝑖-th post, 𝑞3𝑖 – is a number of views of the 𝑖-th post, 𝑞4𝑖 – is a number of likes of the 𝑖-th 

post, and the denominator calculates the sum of all these values for all existing nodes in the network. 

Stage 9. Subgraph Posts-Liked is joined to the general graph. 

Stage 10. Subgraphs Users-Similarity, Posts-Similarity and Posts-Recommended are generated by 

the algorithms of the selected recommendation system. 

Studies of the parameters of the generated social graphs [29] (in particular such as density, 

diameter of a network, clustering coefficient et al.) showed their correspondence to the properties of 

real social networks. 

Modeling of user behavior was based on the generation of a dynamic graph Users-Ratings-Items. 

Stages of the developed method: 
Stage 1.  Initialization of user parameters and system items.  

Stage 2.  Creating a "Seed" of social graph.  

 



Stage 3.  Simulation of time iterations. At each time iteration, a number of users, items, and bots 

join the model. Users and bots rate items. 

Stage 4.  Stopping the model and saving the resulting data set to a file. 

Generating ratings for regular users: 

𝑑𝑢,𝑚 =
∑  𝑛

𝑖=0 |𝑓𝑢,𝑖 − 𝑓𝑚,𝑖|

𝑛
, (8) 

𝑟𝑢,𝑚 = Ψ(5𝑑𝑢,𝑚 + 𝑏𝑢 + 𝑏𝑚) , (9) 
where 𝑑𝑢,𝑚 – is a distance between user 𝑢 and item 𝑚 in the multidimensional space of hidden factors;  

𝑛 – is a number of hidden factors; 𝑓𝑢,𝑖 – is a i-th hidden factor of user 𝑢;  𝑓𝑚,𝑖  – is a 𝑖-th hidden factor of 

item 𝑚; 𝑏𝑢  – is a user offset in items' evaluation (level of requirements to contenct); 𝑏𝑚 – is a shift of the 

item in obtaining ratings (content quality level); Ψ() – is an function that converts the resulting fractional 

number into a discrete number from a set of ratings [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]. 

Among the existing attack models for software simulation we chose random, average and popular 

attacks – since these models are the most commonly used, universal and illustrate different attack 

strategies.  

Generating a ratings for bots: 

𝑟𝑢,𝑚 = {
 attackPattern(), if item – "ordinary" 
 5.0, if item – "target" 

,  (10) 

where attackPattern() – is a function generating ratings for non-target items according to the type of 

attack model selected. 

2.3.2. The results of experiments to verify the effectiveness of the proposed 
method of detecting bot networks 

Data sets for experiments were generated in the developed software simulation model of the 

recommendation system. The format and statistical features of the data were generated as close as 

possible to the corresponding characteristics of MovieLens Datasets [33]. Information attacks were 

modeled using random, average, and popular attack models [2-5]. The Label Propagation algorithm 

was used as a graph clustering algorithm. 

In the series of experiments, 5%, 10%, 20% and 30% of bots were generated in different series, all 

other users of the system are authentic. In different experiments bots had different numbers of targets to 

attack: 1, 5, 10, 15, 20, 25, 30, 35, 40 and 45 targets. Also 20% of profiles with a high level of activity in 

the recommendation system were generated among authentic users. Such users gave significantly more 

ratings than the average user. System items were generated to belong to one of the 19 clusters. 

The bot search algorithm for the studied recommendation system had the following parameters:  

 𝑞 =  0.05 – that is, the user has set target ratings of at least 5% of the items that are identified 

by the information security subsystem as probable targets of the attack. The threshold is small because 

it is not known how accurately the targets of the attack are recognized, there may be many items with 

the ratings that have changed naturally. 

 The elimination of user profiles from the BotNet subgraph is based on the values of the 

variance of ratings and the variance of time intervals between ratings. Authentic users who mistakenly 

get into the BotNet subgraph are users whose profile data satisfy the following rule: 

|𝐷𝑟 – 𝐷𝑟,𝑎𝑣𝑟| <  0.15 AND (𝐷𝑡,𝑟  >  72 AND 𝐷𝑡,𝑟 <  600), 

where 𝐷𝑟 – is a variance of ratings in the user profile, 𝐷𝑟,𝑎𝑣𝑟 – is a truncated mean variance of ratings 

in the system user profile (30% of the extreme values were truncated, i.e., value equal to the 

maximum possible percentage of bots in the system in question), 𝐷𝑡,𝑟 – is a variance of time intervals 

between rates. The variance of ratings in the profiles of authentic users is not significantly different 

from the average variance (the attacker of system can not know this value, he can only estimate it, so 

can not accurately reproduce this characteristic when creating bot profiles). And checking the 

variance of time intervals between ratings is as follows – users who have too identical or too different 

time intervals between ratings should be considered suspicious, while the variance of time intervals 

between ratings of authentic users is usually in a certain range. 

 



In the table 1 the results of a series of experiments to verify the accuracy of the developed method 

of identification of bot profiles are show. The following notations of attack models are used:  

RA – random attack, AA – average attack, PA – popular attack. 

 

Table 1 
The results of testing the accuracy of the developed method of identifying bot profiles in the 
recommendation system based on graph clustering and analysis of user actions for different models 
of attacks and different numbers of bots and attack targets 

N
o

. o
f 

ex
p

er
im

en
t 

Percenta-
ge of 
bots 

among 
the 

system 
profiles, 

% 

Number 
of 

targets 
for each 

bot,  
pcs. 

Attack 
type 

Number 
of 

correctly 
recog-
nized 

targets,  
%  

Number of 
incorrectly 
recognized 
as targets, 

% 

Precision 
of bot 

detection 

Recall 
of bot 

detection 

Type I 
errors,  

% 

Type II 
errors,  

% 

RMSE of 
bot 

recogni-
tion 

1 5 1 RA 100.000 24.1206 0.666666 0.800000 2.1052 20.0000 0.173205 
2 5 5 RA 40.0000 22.0513 0.571428 0.800000 3.1578 20.0000 0.200000 
3 5 10 RA 60.0000 21.0526 0.800000 0.800000 1.0526 20.0000 0.141421 
4 10 1 RA 0.00000 22.1106 0.375000 0.600000 5.2631 40.0000 0.264575 
5 10 5 RA 60.0000 24.1025 0.538461 0.700000 6.6666 30.0000 0.300000 
6 10 10 RA 90.0000 21.5789 0.888888 0.800000 1.1111 20.0000 0.173205 
7 20 1 RA 100.000 30.6532 0.692307 0.900000 4.4444 10.0000 0.223606 
8 20 5 RA 100.000 23.5897 0.700000 0.700000 7.5000 30.0000 0.346410 
9 20 10 RA 80.0000 18.9473 0.850000 0.850000 3.7500 15.0000 0.244948 

10 30 1 RA 100.000 33.6683 0.823529 0.700000 3.7500 30.0000 0.300000 
11 30 5 RA 80.0000 29.7435 0.896551 0.866666 4.2857 13.3333 0.264575 
12 30 10 RA 80.0000 23.6842 0.884615 0.766666 4.2857 23.3333 0.316227 

Average: 74.1666 24.6085 0.723953 0.773611 3.9476 22.6388 0.245681 
13 5 1 AA 100.000 18.0905 0.625000 1.000000 0.0000 3.26080 0.173205 
14 5 5 AA 100.000 21.0257 0.555555 1.000000 0.0000 4.39560 0.200000 
15 5 10 AA 60.0000 21.5789 1.000000 1.000000 0.0000 0.00000 0.000000 
16 10 1 AA 100.000 24.6231 0.588235 1.000000 0.0000 7.77770 0.264575 
17 10 5 AA 60.0000 25.6410 0.900000 0.900000 1.1111 10.0000 0.141421 
18 10 10 AA 70.0000 25.2631 0.833333 1.000000 2.2222 0.00000 0.141421 
19 20 1 AA 100.000 25.1256 0.740740 1.000000 8.7500 0.00000 0.264575 
20 20 5 AA 100.000 22.0512 0.850000 0.850000 3.7500 15.0000 0.244948 
21 20 10 AA 60.0000 13.6842 0.900000 0.900000 2.5000 10.0000 0.200000 
22 30 1 AA 60.0000 14.5728 0.909090 1.000000 4.2857 0.00000 0.173205 
23 30 5 AA 100.000 17.9487 0.928571 0.866666 2.8571 13.3333 0.244948 
24 30 10 AA 60.0000 11.5789 0.925925 0.833333 2.8571 16.6666 0.264575 

Average: 80.8333 20.0986 0.813037 0.945833 2.3611 6.70283 0.192739 
25 5 1 PA 75.8793 24.1206 0.714285 1.000000 2.1052 0.00000 0.141421 
26 5 5 PA 40.0000 17.9488 0.625000 1.000000 3.1578 0.00000 0.173205 
27 5 10 PA 60.0000 22.6315 0.416666 1.000000 7.3684 0.00000 0.264575 
28 10 1 PA 100.000 22.1105 0.666666 1.000000 5.5555 0.00000 0.223606 
29 10 5 PA 80.0000 30.2564 0.900000 0.900000 1.1111 0.10000 0.141421 
30 10 10 PA 90.0000 19.4736 0.888888 0.800000 1.1111 0.20000 0.173205 
31 20 1 PA 0.00000 30.1507 0.000000 0.000000 6.2500 1.00000 0.500000 
32 20 5 PA 100.000 14.3589 0.800000 0.600000 3.7500 0.40000 0.331662 
33 20 10 PA 100.000 17.8947 0.869565 1.000000 3.7500 0.00000 0.173205 
34 30 1 PA 100.000 28.6432 0.909090 1.000000 4.2857 0.00000 0.173205 
35 30 5 PA 100.000 25.6410 0.900000 0.600000 2.8571 0.40000 0.374165 
36 30 10 PA 100.000 17.3684 0.892857 0.833333 4.2857 0.16666 0.282842 

Average: 78.8232 22.5498 0.715251 0.811111 3.7990 0.18889 0.246043 

 



To assess the quality of the developed method the following metrics were selected. 

Precision – a measure that characterizes how many positive triggers of the information security 

subsystem of bot detection are correct. It was calculated by the formula: 

precision =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 , (11) 

where 𝑡𝑝 – is a correctly detected bot; 𝑓𝑝 – is an authentic user incorrectly identified as a bot. 

Recall (or Sensitivity) – a measure that characterizes the ability of the information security 

subsystem to correctly detect the profiles of bots without taking into account false positives. It was 

determined by the formula: 

recall =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (12) 

where 𝑡𝑝 – is a correctly detected bot; 𝑓𝑛 – is a bot incorrectly identified as an authentic user. 

RMSE – root mean square error: 

𝑅𝑀𝑆𝐸 = ∑  

𝑛

𝑖=1

(𝑦̂𝑖 − 𝑦𝑖)

𝑛
 (13) 

As shown by a series of experiments from Table 1, the precision of bot detection by the developed 

method in average is 0.72 for a random attack, 0.81 for an average attack, and 0.71 for a popular 

attack. 

The accuracy of bot recognition by the developed method for the popular attack model was also 

investigated in more detail (Table 2). 

 

Table 2 
The average values of the accuracy of the developed method for different numbers of information 
attack targets in bots 

№ 
Percentage of bots 
among the system 

profiles, % 

Number of targets 
for each bot, pcs. 

Precision 
of bot detection 

Recall 
of bot detection 

RMSE of 
classification of 

users on bots and 
authentic 

1 10 1 0.571391191 0.843750000 0.240591404 
2 10 5 0.750070242 0.925000000 0.208735147 
3 10 10 0.751688997 0.937500000 0.208005683 
4 10 15 0.757313520 0.950000000 0.194432974 
5 10 20 0.759444202 0.931250000 0.191765580 
6 10 25 0.780512370 0.925000000 0.189773836 
7 10 30 0.781431763 0.875000000 0.192072089 
8 10 35 0.684367195 0.737500000 0.242168980 
9 10 40 0.676923250 0.581250000 0.267032399 
10 10 45 0.641781656 0.568750000 0.274543689 
  Average: 0.715492439 0.827500000 0.220912178 

 
The experiments have shown that the detection precision of bots by the method developed for a 

popular attack in avereage is 0.71, completeness is 0.82, and RMSE is 0.22. The worst results were 

obtained when the target for the attack of bots was single, then the accuracy of the developed method 

dropped to 0.57 on average. The highest precision was observed when there were 25-30 targets of the 

attacks, in that case it reached a value of 0.78.  

3. Conclusions 

Method of detecting botnets in the recommendation system based on graph clustering and analysis 

of user actions was developed. This method allows to detect botnets and distinguish them by sets of 

attack objects. Also, appropriate algorithms have been developed. A subsystem of information 

security of the recommendation system has been developed. This subsystem consists of a method of 

detecting an information attack on the recommendation system based on trend analysis of item ratings 



and a method of detecting botnets in the recommendation system based on graph clustering and 

analysis of user actions. The developed information security subsystem allows providing higher 

robustness of the system to external destabilizing factors represented by information attacks in 

contrast to existing methods. 

Our experiments have shown that the precision of bot detection by the developed method averages 

0.72 for a random attack, 0.81 for a medium attack, and 0.71 for a popular attack. The worst results 

were obtained when the target for the attack of bots was single, then the accuracy of the developed 

method, for example, for a popular attack averages 0.57. The highest precision was observed when 

there were 25-30 targets of the attack and then it reached a value of 0.78 for a popular attack. In case 

of a successful bot attack which have shifted target ratings, the presence of a botnet (and a significant 

percentage of bots from it) was always detected. All user profiles identified as bots should be verified 

using existing bot identification methods based on statistical analysis of individual profile data. This 

allows to refine the results and remove from this set of user profiles those are mistakenly identified as 

bots. 
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