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Abstract  
In the paper, networks characterized by vertices with a number of attributes (attributed 

networks) are studied. The networks cover a wide class of real-world ones, particularly social 

networks, making them especially attractive for further development. We analyze how the 

attributed networks are formed and present several mathematical models built based on their 

specifics and utilizing well-known classes of graphs – full ones, Erdös-Rényi and Barabasi-

Albert random graphs. The computational experiment part includes simulation of test 

networks for all presented formation models, evaluating their metrics, and confirming their 

social networks properties. Barabasi-Albert graphs' based model best demonstrated these 

features. The results can be further used in Community Detection, Cluster Analysis, missing 

network attribute's restoration and other related Network Analysis problems. 
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1. Introduction 

Network Analysis  (NA) is a research field developed intensively in recent years. Researches in 

NA study different networks, particularly their social and structural characteristics, investigate 

statistic and dynamic behaviour of networks, design their formation models, single out their specific 

features,  and solve many other related problems. Among all networks, social ones (SNs) that explore 

and reflect people and relationships between them are an absolute priority. 

Why studying and deep understanding SNs is so important? First of all, it provides an 

understanding of how the world around us is organized. In turn, this allows us to realize what place 

we occupy in this global human network and how this understanding and knowledge can be used to 

achieve our goals. At the moment, many features of social networks have been derived. For example, 

it is known that in the networks there is a so-called "small-world" effect is observable. It manifests 

itself in a few handshakes between any two people on Earth. At the same time, despite the sparsity of 

SNs, dense subgraphs called communities are always present in the networks. Many researchers tried 

to design an ideal model of a social network. However, their attempts have not been crowned with 

success so far, although they managed to reproduce every single feature of SNs.  

This paper is dedicated to modelling social networks and other ones in which vertices and edges 

are decorated with some discrete-valued attributes (attributed networks, ATNs). We propose three 

mathematical models for such networks based on the combination of isolated random graphs 

associated with different attributes and their values. Then we confirm experimentally that such 

networks are closer to SNs than the ones known so far. 
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2. Related Works and Motivations 

Let us hypothetically imagine that we aim to study the global network of humanity and its 

community structure. Assume that we have full information about this network, about its participants,  

contacts and, most importantly, about the strength of these contacts. Thus, we are given full 

information about the weighted graph displaying this network. Also, imagine that we have access to 

the most powerful supercomputer in the world for conducting community detection (CD) for analysis 

in the global network. Evidently, the result of the CD will be quite predictable and will provide the 

division of people into families since relative relationships are the strongest.  

The result of the CD is fully predictable; it would be a division by families because normally 

people spend most of the time with their families and because family ties are very strong. However, 

when we set up the experiment, we expected to get something we did not know before. We expect to 

see the network from different sides, for example, to see the relationship between friends or 

colleagues. However, in this global humankind network, many other communities are present. They 

combine people connected with other commonalities than family ties. In fact, setting the problem of 

the global community detection, we are generally interested in those hidden communities. We are 

interested in how to single out groups of colleagues in this network, groups of classmates, people with 

common interests etc. All these communities will be hidden in the network under the first layer of 

family relationships. Let us imagine that we managed to single out properly the weighted network 

corresponding to family relations. Then, having removed this dominant layer from the global network, 

we come to the next network where other layers of communities such as colleges', classmates' ones 

become visible and therefore detectable by community detection algorithms (CDAs). Having now 

analyzed the obtained network, repeated CD in it and associated the derived communities with a 

certain attribute, it becomes possible to single out a second dominant subnetwork. Now, by 

subtracting it from the graph, we can detect less significant communities hidden under the 

subnetwork. In such a way, hidden information in the global network becomes visible and detectable.  

In NA terminologies, the human network vertices represent people, and edges reflect relationships 

between people. Each person is unique, and his uniqueness can be represented by a unique 

combination of quantitative and qualitative characteristics playing the role of the vertices attributes. 

The same works for the network's edges since the nature and strength of people relations depend on 

many things representable by edges attributes. As a result, we move from a consideration of a usual 

unweighted graph as a mathematical model of social networks to the one with heterogeneous vertices 

and edges. Such networks are called attributed, and the paper is focused on their study. 

There are many issues of the hour related to attributed network analysis such as ATNs' formation 

models; recovering those attributes that are missing; CD in attributed SNs that utilizes knowledge on 

a network nature contained in its attributes associated with edges and vertices;  interpretation of CD-

results, and many other related issues. The later problems were studied in [1, 2], where a notion of a 

multi-layer attributed network (ATN) was introduced, explored and applied in SN Analysis (SNA). 

This paper is dedicated to the investigation of the first problem related to ATNs' formation modelling. 

Its solution is of high importance since this allows a deeper understanding of the nature of social and 

other ATNs and, accordingly, modelling and solving problems of our interest, such as CD, clustering, 

restoring networks etc. 

2.1. Social Networks' Peculiarities 

Networks depicted people relationships are called social (SNs). In a graph associated with the 

network, users of the network are representable by vertices and the users' contacts - by its edges or 

arcs. In the graph, people heterogeneity is accumulated in attributes of the vertices, while edges' 

attributes depict a variety of their relationships. 

 An SN is defined as the following:  

 Definition 1 [3] A social network is a hybrid graph represented in the form of:  

= ( , , , ),G V E    (1) 



with  a set of vertices V  (social network's users), is a set of edges E  (the users' relationships),   and 

  accumulate data on attributes for each vertex v V  and edge { , }u v E , respectively.  

Due to SNs are formed based on human relationships, they have specific features that are not 

characteristic of other networks, such as production, transport, technological, biological ones, and so 

on. The specifics are caused by the necessity of humans to communicate. Among them are sparsity, 

low diameter and average shortest path, while the average clustering coefficient is high. Also 

commonly,  there are a few highly sociable people with plenty of contacts, representable in an SN by 

high degree vertices (hubs). In contrast, there exist numerous unsociable humans with rare 

connections depicted by vertices of low degree. It results in a vertex degree distribution (VDD) with a 

"heavy" tail. Another crucial feature of SNs is in the presence of relatively dense subgraphs 

(communities). Concepts "small-world networks" and "scale-free networks" accumulate the listed 

properties [4, 5, 6, 7]. 

 Definition 2 [6]. A small-world network is a graph G , where the distance ( , )dist u v  between 

two randomly chosen vertices ,u v V  grows proportionally to the logarithm of its order n network, 

i.e.  

( , ) .dist u v log n  (2) 

Features of small-world networks are:  

 main are  high CC  and small l ;  

 additional are: a) the presence of many cliques and near-cliques caused by high CC ; 

b) existence of a relatively short path between most of the pairs of vertices caused by small l ;  

Definition 3 [7] A network is called scale-free if its VDD is power-law, i.e., a probability ( )p m  of 

appearing a vertex of degree m  connections is approximated as the following:  
1 : ( ) = ( = ) , .uR p m P d m m u V      (3) 

Due to the listed features, SNs are of interest to researchers [5, 8, 9]. For instance, when SNs are 

modelled, the investigations primarily concentrate on reproducing small-world peculiarity (2) and 

scale-free graphs (3). Much fewer results are on modelling networks with clusters and communities, 

and even fewer papers consider an issue of simulating all the listed properties of SNs [5, 6, 7]. The 

real interest is riveted to the area of community detection (CD) [8, 10, 11, 12]. 

Communities may overlap or not. That is why we consider two types of vertex divisions.  

Definition 4 A partition of a network is its vertex division 

 = { } :k k L
C


 (4) 

1
= ,

L

k
k

C V

  (5) 

where vertex clusters  , [ ] 1,...,kC V k L L    are pairwise disjoint.  

Normally, CD assumes designing a network partition. Two classes of the partitions will be 

considered – a vertex partitions into communities being an output of any CDA and a network 

partitions into clusters associated with a certain value of the discrete vertex attribute. By combining 

all such partitions for all the vertex attributes, a resulting network cover is derived.  

Definition 5 A network's cover is a division (4) of the network vertices satisfying (5).  

Let [13] ( , )E C C  be an edge set between vertex clusters ,C C V  . For C V , let [ ]G C  be a 

subgraph G  induced by C . For the network partition (4), the following notation will be used:  

*

* = { }  is a partition  into communities,l l L
C G

 
 

  (6) 

*

*| |=| [ ] |= , , = .l l l l

l L

C G C n l L n n
 
 

     
(7) 

For a network G , assume that we a given by attributes of vertices and (or) edges besides the 

standard information regarding its vertex set V  and edge set E . Thus, the network is decorated 

[5,14] by these attributes and therefore belongs to the class of ATNs [15]. The question arises how 

this additional information on the attributes can be used to understand deeper the nature of the 



network,  in particular, is it helpful in CD? Our idea is that communities derived by CDAs are closely 

related to a single vertex attribute of an ATN or to their combination of these attributes.  

3. Results and Discussion  

3.1. ATN Formation Models 

In the current section, we will consider the issue of forming ATNs. We will be interested in how 

an ATN (1) is created, provided attributes of vertices and their values   are known. Thus, we 

investigate ways of forming an edge set E , the attributes and matrix  . Here, we assume that the 

network edges are formed only based on the similarity of the vertices' attributes. Three ways to solve 

the problem will be outlined resulted in three ANT models. All of them can be seen as models of SNs. 

3.1.1. Model I - an association network model 

 As introduced in  [14], an association network 
aG  is an ATN, where any identical value of an 

attributes results in creating an edge. Indeed, even if people do not know each other but have a 

common interest, they are related to each other to some extent. Maintaining the contact, in this case, 

does not cost anything since this contact is virtual. 

With any activity/interest (AI), let us associate a network 
kG ,  k K . Assume that networks 

kG  and 
kG

 ( k k ) corresponding to different attributes are formed independently. In terms of 

[14], the weighted network =w aG G  can be represented as a weighted network sum (WNS) 

 

= .w k k

k K

G w G


  (8) 

of K  subnetworks being  a union of complete graphs:  

 
= , .

k

k

k Knl L l

G K k J

   (9) 

Thus, 
aG  is a cover of K  partitions of V  by a disjoint union of complete graphs. Weights of the 

network are defined by (8), (10), where  

   = ( )  if , , otherwise 0 ( , ),ak lk

ij i jw k W v v E i j n     (10) 

( )k  is a normalized factor of 
kG  making its weight equal to 1,  

  : , .k

k i j ll L v v AC    (11) 

3.1.2. Model II: an attributed Erdös-Rényi random graph-based model  

Assume that, for the formation of an edge, the presence of identical attribute values is necessary 

but not sufficient. Likewise Model I, we form the network 
wG  by formula (8). Edges of the auxiliary 

kG  are formed with a probability 
k

lp  between two vertices ,i jv v  with a value 
nk

lat  of 
nkAT . Thus, 

the network 
kG  will be a vertex partition by Erdös-Rényi Random Graphs (ERRGs) [14]:  

 = ( , ), .k k k

l l
l L

k

G ERRG p n k K
 
 

   (12) 

The accumulated network 
w wIIG G  will be a cover, where K  partitions by ERRGs are 

overlapped. Weights of edges of a subnetwork 
kG  are defined as follows  

   ( ) ,= ( )   if , , otherwise 0 ( , ),k II II lk

ij i jw k W v v E i j n      (13) 

where  

  : , ,{ , } ;k

k i j l i jl L v v AC v v E     (14) 



 

1

,( ) = 2 , .II lk k

l

l L
k

k W m k K



 
 

 
    
 
 

  

Model II simulates a real situation of establishing human contacts when a group of people are 

formed simultaneously. They have no opportunity to analyze who of the group members is the most 

interesting person. As a result, contacts arise randomly, and then they become permanent only if there 

are indeed commonalities of the people interests. 

3.1.3. Model III - an attributed Barabasi-Albert preferential attachment-
based model  

In contrast to Model II, we simulate a situation when the team is formed gradually in the next 

model. Respectively, new people can analyze who is more influential and interesting in the group 

from his perspective and establish contacts.  

 

 

Figure 1: Model I: the layers 1 3G G  and the resulting weighted association network dG  made 
from them  

 
w wIIIG G  will also be a WNS (8) of subnetworks 

kG ,  k K . The networks { }k

kG  are 

formed consecutively as k  increases with respect to their weights. For  k K , the edge set of the 

network 
kG  is formed within clusters of vertices with the identical value of 

nkAT  consecutively by 

ni J  with probabilities that depend on degrees { }k

i id    of all preceding vertices iv   ( <i i ) as well as 

on parameters , ( )k k k kp p p p   for new and earlier established contacts, correspondingly. The 

model uses Barabasi-Albert Preferential Attachment Model [7]  and generalizes it onto ATNs. 

Another way of generalization is to form each network 
kG  as follows: the disjoint subsets of vertices 

to link according to the preferential attachment. The resulting subgraphs will create a vertex partition 
k

. Then, these all are united into a multi-layer cover . In contrast with the two above models, 

the network's layers will be dependent regardless  = ,k kp p k K   (Model III.1) or the one where   

: <k k

Kk J p p   (Model III.2). 

 



Model III.1 induces a vertex partition by Barabasi-Albert random Graphs (BARGs). 
kG  can be 

represented likewise  (9), (12) yielding:  

 = ( , ),  ,k k k

l l
l L

k

G BARG n k K
 
 

   (15) 

where 
k

l  is the power of preferential attachment in 
k

lAC ,    ,kl L k K  .  

 

 

Figure 2: Model II: the layers 1 3G G  and the resulting weighted network wIIG  made from them  
 

 

Figure 3: Model III: the layers 1 3G G  and the resulting weighted network wIIIG  made from them  

3.2. ATN Simulation 

The ATN Models I-III introduced in Section 4 we illustrate by examples of simulations in the 

IGraph implemented in R. The first one is a simulation of an association network 
aG  (Model I), the 

second one demonstrates Model II (a network 
wIIG ), and the last one shows Model III (a network 

wIIIG ). 



These networks have the following common characteristics: the order is = 60n , the number of 

the vertex attributes is = 3K , the vertices are randomly partitioned into { } = {5,4,6}k kL  attribute 

clusters of equal size 
   

5 4 6

,
( ) = ( ) = (12 ,15 ,10 )

L
kk k

l k Kl L k K
k

n n
  

 

   .  

3.2.1. Examples of Models I-III simulation 

The weights of the ATNs are = (0.5,0.3,0.2)
II

W .  

Example 1 - Model I simulation 

 
aG  is the weighted network sum of vertex partitions by 5, 4,6  complete graphs, respectively (see 

(8), (9)): 
1 2 3= 0.5 0.3 0.2aG G G G     , e.g., 

 

1

12
5

=
l

G K

 . In Figure 1, one can see the graphs  

1 2,G G  and 
3G , which are partitioned by a disjoint union of complete graphs, along with the 

corresponding association network 
aG .  

 

Example 2 - Model II simulation 

According to (8) and (12), 
wIIG  is the following weighted network sum of vertex partitions by 

random graphs: 
1 2 3= 0.5 0.3 0.2wIIG G G G     . The result of the simulation with parameters 

   
5 4 6

,
( ) = (( ) ) = (0.3 ,0.3 ,0.5 )

Lk k k
l k Kl L k K

k

p p
  

 

 is depicted in Figure 2. Here, for example, 

   

1

5 5
= ( , ) = (0.3,12)l l

l l
G ERRG p n ERRG

 
   and 

wIIG  is overlapping of three such partitions by 

random graphs.  

 

 

Figure 4: Model I. Top two - in log scale, a comparison of degree distribution with power-law in 
1G  

(left), 
aG  (right); Bottom two – the degree distribution in 

1G (left) and
aG  (right).   

 

Example 3 - Model III simulation 

Similarly, for the network 
wIIIG , which is simulated according to Model II, we chose a linear 

preferential attachment model (
   , ,

( ) = ( ) , = 1k

l l L k K l L k K
k k

  
      
   

). 
wIIIG  is formed by (8), (15) 

and shown in Figure 2. Here, for instance, 
 

1

5
= (12,1)

l
G BARG


  is a disjoint union of BARGs. At 



the same time, 
wIIIG  is a connected graph being a cover by overlapping interconnected graphs formed 

from 
1 2 3, ,G G G  which are formed bases on vertex attributes of consecutively arising vertices. 

 

 

Figure 5: Model II. Top two - in log scale, a comparison of degree distribution with power-law in 
1G  

(left), 
wIIG  (right); Bottom two – the degree distribution in 

1G (left) and
wIIG  (right). 

3.2.2. Attributed networks Models Comparison 

The purpose of this section is to identify to which extend the proposed network models reproduce 

social networks. For this, we analyze the listed above properties of SNs and make a comparison of 

them. 

 

 

Figure 6: Model III. Top two - in log scale, a comparison of degree distribution with power-law in 
1G  

(left), 
wIIIG  (right); Bottom two – the degree distribution in 

1G (left) and
wIIIG  (right).  

 



 

Figure 7: Model I: modularity values for 
aG  and its subnetworks 

1 3G G  
 

We conduct CD for all three simulated networks. Table 1-3 shows the obtained values of 

modularity along with other metrics related to SNs. One can see that modularity is high enough for 

subgraphs 
1 3G G , namely, [0.747,0.833]M  . At the same time, for the resulting network, this 

value is much lower due to overlapping the above subgraphs, namely, (0.393,0.640)M  . Only for 

the third model, the modularity is still high enough and indicates a clear community structure.  The 

CD results on 
aG , 

wIIG , and 
wIIIG  are illustrated in Figures 7-9.  

 

 

Figure 8: Model II: modularity values for 
wIIG  and its subnetworks

1 3G G   
 



 

Figure 9: Model III: modularity values for 
wIIIG  and its subnetworks 

1 3G G   
 

Table 1 

Model I: the metrics in aG  

i metric 1G  2G  3G  wIIIG  

1 n 60 60 60 60 
2 m 330 420 270 851 
3   0,186 0,237 0,153 0,481 

4 l  1 1 1 1,519 

5 CC  1 1 1 0,567 

6 M 0,8 0,75 0,833 0,393 

 
Table 2 

Model II: the metrics in wIIG  

i metric 1G  2G  3G  wIIIG  

1 n 60 60 60 60 
2 m 128 214 154 446 
3   0,072 0,121 0,087 0,252 

4 l  1,7 1,507 1,441 1,783 

5 CC  0,346 0,522 0,534 0,34 

6 M 0,798 0,747 0,832 0,403 

 
Table 3 

Model III: the metrics in wIIIG   

i metric 1G  2G  3G  wIIIG  

1 n 60 60 60 60 
2 m 55 56 54 145 
3   0,031 0,032 0,031 0,082 

4 l  2,091 2,776 2,407 3,975 

5 CC     0,476 

6 M 0,8 0,786 0,833 0,64 



Table 4 
Comparison of Models I-III 

metric aG  wIIG  wIIIG  

  0 0,5 1 

l  1 1 0 

CC  1 0 0,5 

M 0,5 0,5 1 
power-law 
distribution 

0 0 1 

Total 2,5 2 3,5 

 

Here, density 
2

0.5
( 1)

m

n n
 


, where | |n V , | |m E ; an average shortest path length 

(ASPL) 
{ , }

1
( , )

u v E

l l u v
m 

  , where ( , )l u v  is the shortest path length between ,u v V ; the average 

clustering coefficient (ACC) 
1

i

i

CC CC
n

  , where 
2

( 1)

i
i

i i

d
CC

d d





 is the local clustering 

coefficient of iv V , ,i id d   is the iv -degree and number of edges within a neighbourhood of iv ; 

 ,

,

0.5 / 2
l

w

u v u v

l u v C

M a d d


    is the modularity, where ud  is the degree of u V . 

The densities of the networks 
aG , 

wIIG , 
wIIIG  are a bit lower than the one of a sum of 

1 3G G  

one. The network is the densest with ( ) = 0.481aG , while the network 
wIIIG  is the sparsest having 

( ) = 0.082wIIIG . Besides, 
wIIG  is rather sparse and demonstrates ( ) = 0.252wIIG . In all these 

networks, the ASPL-metric is low, and its values fluctuate around 1.6. The only exception is the 

network 
wIIIG  utilizing preferential attachments, namely, ( ) = 3.975wIIIl G . On the other hand, the 

ACC -value in this network is quite high, namely, ( ) = 0.476wIIICC G . At the same time, in the 

second network 
wIIG , the value is less - ( ) = 0.34wIICC G . 

In the last part of the computational experiment, we analyzed the power-low distribution of vertex 

degrees in our modelled networks. Figure 4-6 shows that in the resulting networks 
aG  and 

wIIG , the 

degree distribution differs significantly from the distribution of the subnetworks, particularly in 
1G , 

and from power-law. Only the latest model 
wIIIG  shows in Figure 6  behaviour similar to a power-law 

distribution. In Figure 6 from the two later plots, it is clearly seen the havier right tail in the 

accumulated network 
wIIIG  than the one in 

1G . The two early plots demonstrate fitting the degree 

distribution by a linear function after switching to a logarithmic scale. The multiple determination 

coefficient of the linear regressions gets values 
2 1( ) = 0.646R G  and 

2 ( ) = 0.761wIIIR G , 

respectively.  This says that an exponential function fits good the achieved degree distribution of the 

presented network models. The exponential approximation curve better fits the preferential 

attachment-based Model III. We can conclude that the AN 
wIIIG  is the closest to a SN. It has the 

highest overall rank for the evaluated SN metrics (see Table 4). In the table, the rank 0  corresponds 

to the worst-case and 1  - to the best. Also, the accumulation of three partitions by BARGs results in 

an AN closer to an SN than the graph partitions itself. Also, note that in terms of human 

communication, the networks 
wIIG  and 

wIIIG simulate contrasting situations, where contacts are 

established absolutely by accident or made fully intend. The real situation is a combination of these 

two. That is why we propose one more network model 
2 3=w wII wIIIG W G W G , where 



2 3 2 31,  , 0W W W W   . We expect that 
wG  is can take advantages of its component, such as the 

ASPL decreases thanks to 
wIIG , while the ACC rises due to the presence of 

wIIIG . 

4. Conclusions 

 In the paper's scope, decomposition of social and other attributed networks (ATNs) into 

subnetworks related to single vertex attributes is studied as a way of their modelling. A number of 

models of  ATNs with a finite number of discrete-valued vertex attributes is presented. They utilize 

famous graph models such as complete, Erdös-Rényi and Barabasi-Albert random graphs. 

Experimentally, it is shown that the proposed ATN models, particularly the Barabasi-Albert graph-

based model, are enable to reproduce most social networks peculiarities. It is progress in comparison 

with known so far networks models. 
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