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Abstract  
In the recent decades data has indeed become one of the most valuable assets for government 

institutions, private businesses, and individual persons. Nowadays almost any software, from 

social networks and dating mobile applications to large information systems and analytical 

services for enterprise management, accumulates, stores, and processes data to solve certain 

problems in their subject areas. Extremely large data volumes are organized in databases that 

are used as the baseline for almost all of modern software applications. As the most important 

components of software systems, databases should be carefully designed, since drawbacks at 

the stage of requirements elicitation may result in exponential growth of defects fixing costs 

at testing and maintenance phases. Therefore, this study proposes an approach and software 

tool to database schema generation from textual requirements also known in database design 

domain as business rules. This may help database designers to rapidly obtain usable database 

schemas in order to detect and fix defects as early as possible. Moreover, proposed solution 

may simplify the database design process, since database creation scripts are generated from 

business rules directly. Thus, instead of coding all the required statements, engineers are only 

need to check obtained schema and make certain adjustments to data types, unique attributes, 

or used naming style. This research considers relational model and relational databases, since 

they are most widely used nowadays. State-of-the-art analysis is made, proposed approach is 

described in details, software tool with its brief usage examples is described, conclusions are 

made, and further research directions are formulated. 
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1. Introduction 

Databases are essential components of almost all modern software systems despite their usage area 

or architectural complexity, or users demographic. Databases could be considered as computer-based 

structures that store collections of raw facts, valuable for database users (so called end-user data), and 

metadata (i.e. data about data) that describes how end-user data is managed. Database management 

systems (DBMS) are specialized software systems that manage database structures, make collections 

of data persistent and shareable in a secure way [1]. Originally databases and information systems (IS) 

that use databases were utilized by enterprises (except some small ones), which had data they needed 

to store in ways which will be easy to retrieve later [2]. In [2] authors made an example of a ledger of 

names and addresses of persons or other companies that deal with the enterprise. For small businesses 

such lists could have been kept on paper, in text files, or spreadsheets. However, tremendous growth 

of business process complexity, data volumes, and information technology adoption made impossible 

to store enterprise data without using databases. Nowadays, even simple mobile applications, such as 

to-do lists, address books, or budget managers, use databases to store users’ data in a persistent secure 
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manner. This means that database design is the part of almost any software engineering project and it 

may require special engineers who have advanced data modeling and database construction skills. It is 

natural for waterfall or iterative projects, where project teams tend to be large and responsibilities are 

separated for different specialists or even teams [3]. In pre-agile era, such database design teams were 

responsible for database design at the early stages of each project and when they had completed tasks 

for one project, they moved to the next one. But currently agile practices are dominating in software 

engineering projects, where there are no separate software engineers who exclusively responsible for 

database design. Database design, implementation, and support in agile projects is done by the same 

team members who are usually involved in server-side programming [3]. Lack of special training and 

time to consider the database design more carefully leads to potential design flaws or even mistakes in 

a database schema. Occurrence of such problems may be prevented by specialized tools that support 

database design activities when translating gathered requirements into database objects. Hence, in this 

paper we propose an approach and software tool to translate database design requirements into scripts 

for database schema generation and its further tuning by responsible project members. 

The paper is organized into five sections. Introduction and problem description is given in current 

section. Section 2 depicts current trends in database design, briefly outlines requirements formulation 

for database design based on business rules, provides state-of-the-art analysis, and problem statement. 

Section 3 describes proposed approach to database schema generation from textual business rules and 

the software design and implementation is outlined in Section 4. In Section 5 conclusion is made and 

future work in this area is formulated. Sixth section contains only references used in this paper. 

2. Related Work 
2.1. Current Trends in Relational Database Design 

Since the relational model, which established the foundations of databases theory, was introduced 

by Codd in 1970s, relational DBMS have dominated for several decades. But in the recent decade and 

half the data management landscape was modified by data structures for which the relational model 

appeared inefficient. For example, specific systems were designed to handle semi-structured (“raw”) 

data presented by text and XML (eXtensible Markup Language) files on the one hand, or graph-based 

“linked” data used by Semantic Web models and languages on the other hand. Also the phenomenon 

of Big Data refers to data volumes that became so huge that traditional database management systems 

cannot process them. As a result, so called NoSQL systems appeared as a response to these needs [4]. 

However, according to the DB-Engines Ranking resource [5], which ranks database management 

systems with respect to their popularity, the five most popular DBMS are: 

 Oracle (relational DBMS, also supports document and graph models). 

 MySQL (relational DBMS, also supports document model). 

 Microsoft SQL Server (relational DBMS, also supports document and graph models). 

 PostgreSQL (relational DBMS, also supports document model). 

 MongoDB (document model). 

As it is shown, the four most popular database management systems use relational models as their 

primary engines, while only fifth by popularity DBMS MongoDB uses document store as its primary 

model. Some of the denoted relational DBMS are proprietary (e.g. Oracle and SQL Server) and some 

are open-source (e.g. MySQL and PostgreSQL). Nevertheless, these database solutions are not purely 

relational, since all of the support at least one secondary database model, such as document or graph, 

or event both [5]. However, the fact that originally relational DBMS are still dominating in February 

2021 is quite strong evidence of relational databases actuality and popularity. Even if we take a look 

at the first 15 database management systems, relational DBMS, such as IBM DB2, SQLite, Microsoft 

Access, MariaDB, and Azure SQL, still prevail. 

In general, relational database design principles did not change much since the relational model 

was introduced in early 1970s. The primary objects of relational databases to be designed are [6]: 

 Database tables. 

 Columns within tables (also known as attributes in the relational schema [7]). 

 Relationships between tables. 



Relational model requires databases to be designed consistent with its principles. Soundness of the 

database design is defined by following main principles [6]: 

 Each table represents exactly one entity in order to avoid redundancy. 

 Fields of tables are properly defined and constrained (by domain) in order to prevent errors. 

Ranking of DBMS (relational and other kinds) by their popularity [5] is demonstrated in Fig. 1. 

 

 
Figure 1: Database management systems ranking [5] 

 

In order to provide relationships between tables, the linking fields should be used for many-to-one 

or one-to-one relationships, while intermediate linking tables should be used to create many-to-many 

relationships [6]. Also each table in a relational database has tuples usually referred as rows and fields 

or attributes usually referred as columns. Tuples and attributes define the two-dimensional structure of 

a table. While tables represent entities of the subject area, each table column represents corresponding 

attribute of the entity. Primary keys are used to identify each row of the table uniquely. An attribute or 

combination of attributes could be used as the primary key. Foreign keys are used to keep references 

between the tables [7]. 

The relational database quality is measured using normal forms [1] also referred as normalization 

levels or degrees [8]. Each level of normalization shows how properly a given database is designed. 

Normalization is used by database designers to increase data integrity by eliminating anomalies and 

minimizing data redundancy. The three types of anomalies are possible: modification, insertion, and 

deletion anomalies [8]. 

The objective of normalization is to ensure that a database schema is at least in third normal form 

(3NF), even though high-level normal forms exist [1]. On practice the 3NF might seem as sufficient 

to ensure the data integrity and consistency. In [9] Carpenter has explained to which normal form a 

database designer should aspire. According to this paper, designer should reach the 4NF in order to 

avoid anomalies that might still exist at lower levels of normalization. However, a high granularity of 

relations, obtained after normalization, may result in efficiency and performance issues, increase of 

software complexity, and lack of convenience for users and database administrators [9]. Hence, the 

tradeoff between data vulnerability to anomalies and system performance should be reached. In [10] 

authors state that databases not normalized to the 3NF will have anomalies and data consistency will 

not be guaranteed. Author of [11] addresses the 3NF as the generally regarded industry standard for 

relational databases. It is a common practice to recommend decomposition of databases to the third 

normal form, since it is considered as lossless decomposition, it preserves functional dependencies, 

and it is resistant to anomalies [11]. 



2.2. Business Rules in Database Design 

In database design business rules are used as sources for correct discovery of entities, attributes, 

constraints, and relationships. Business rules are brief, precise, and unambiguous textual descriptions 

of policies, processes, and principles within a certain organization. The main sources of business rules 

are people and documentation within organization: managers of different levels, company policies, or 

process manuals. Also business rules could be elicited by directly interviewing end users that will use 

a database and an IS under design [1]. From the IS design perspective, business rules are formulated 

as statements that define or constraint some aspects of organizational activities. Simplified taxonomy 

of business rules includes six categories [12]: 

 Facts. Statements that define entities and relationships within data models. 

 Constraints. Statements that restrict actions, which IS or its users are allowed to perform. 

 Action enablers. Rules that trigger some activities if certain conditions are true. 

 Inferences. Rules that can be used to create new facts from already existing facts, often such 

business rules are written using “if-then” statements (as well as action enablers). 

 Computations. Specific equations or algorithms that transform existing numerical values into 

new numerical values. 

 Terms. Words, abbreviations, and phrases valuable to a business. Often merged with facts. 

In contrast to Wiegers [12], whose book is focused on software requirements elicitation in general, 

luminaries of database design Coronel and Morris [1] define database business rules as definitions of 

data model components (entities, attributes, relationships, and constraints). Business rules by Coronel 

and Morris [1] are close to “facts” business rules by the taxonomy presented in [12]. Therefore, in 

next sections business rules will be referred exactly as definitions of entities, attributes, relationships, 

and constraints. 

2.3. State-of-the-Art and Problem Statement 

Translation of business rules into data model components and then into database schema requires 

involvement of engineers with special skills and certain experience. Database designers need to check 

all the requirements, gathered by business analysts and presented in the form of business rules [1, 12], 

translate such requirements into entity-relationship models, and implement data models using DBMS. 

Described activity is indeed the bottleneck of all database design process, since cost of errors occurred 

and undetected at the requirements stage may increase dramatically at further stages [13]. To prevent 

such risks, agile software development methodologies ensure improvement of product quality through 

rapid deliveries of usable software components at each stage of the lifecycle [14]. Existence of usable 

prototype is vital for quality assurance, so the earlier the database schema (or at least the data model) 

can be obtained from business rules, the earlier the defects can be detected [15]. 

Analysis of the state-of-the-art has shown only several studies devoted to business rules translation 

into a database structure. In [16], Bajwa et al. proposed an approach of translating natural language 

specifications to SBVR (Semantic Business Vocabulary and Rules) business rules. They have adopted 

SBVR, which is a standard introduced by OMG (Object Management Group) consortium to represent 

informal specifications, which usually captured in natural languages, in the formal logic for machine-

processing [16]. Translation of SBVR business rules into SQL (Structured Query Language) queries 

is described in [17]. However, this research paper is focused on DML (Data Manipulation Language) 

operations, such as SELECT, UPDATE, INSERT, and DELETE, on a relational schema [17]. Most 

recent paper by Kate et al. [18] considers natural language query to SQL query translation but only for 

data retrieval. As for translation of textual descriptions into DDL (Data Definition Language) scripts, 

such studies have not been discovered yet. Our previous study [19] only introduced considered idea. 

Thus, considered research direction is relevant and might be elaborated. Research objective of this 

paper includes a process of business rules translation into a database schema. Research subject is the 

approach and software tool for textual business rules translation into DDL scripts to create a database 

on DBMS server. This study aims to improve the database design process by decreasing of errors that 

may occur when business rules are translated into data models and then into database schemas. 



3. Database Schema Generation from Textual Business Rules 
3.1. Business Rules to Relational Model Translation 
3.1.1. Business Rules Formalization 

In this study business rules are considered as verbal definitions of main database objects, including 

entities, attributes, relationships, and constraints. According to the business rules taxonomy given in 

[12], we focus on fact business rules. At the same time it is recommended to use “well-structured and 

carefully written natural language” [12]. Therefore, fact business rules that describe database entities 

and relationships between such entities could be described using the following tuple: 

𝑅𝑒𝑙 = 〈𝐴𝑑𝑗, 𝐸𝑝𝑎𝑟𝑒𝑛𝑡 , 𝐷𝑒𝑠𝑐𝑟, 𝐶𝑎𝑟𝑑, 𝐸𝑐ℎ𝑖𝑙𝑑〉, (1) 
where: 

 𝐴𝑑𝑗 is the adjective in the beginning of each business rule that describes relationships among 

database entities, e.g. “Each student is enrolled to many courses”, 𝐴𝑑𝑗 ∈ {"𝑒𝑎𝑐ℎ", "𝑠𝑜𝑚𝑒"}; 

 𝐸𝑝𝑎𝑟𝑒𝑛𝑡 is the identifier of a database entity from which relationship is directed to another one 

database entity (so-called “parent” entity); 

 𝐷𝑒𝑠𝑐𝑟 is the description of a relationship between two database entities, e.g. “is assigned to”, 

“is related to” etc.; 

 𝐶𝑎𝑟𝑑 is the relationship cardinality between two database entities, 𝐶𝑎𝑟𝑑 ∈ {"𝑜𝑛𝑒", "𝑚𝑎𝑛𝑦"}; 

 𝐸𝑐ℎ𝑖𝑙𝑑 is the identifier of database entity to which the relationship is directed from another one 

database entity (so-called “child” entity). 

As it is demonstrated below, sample fact business rule “Each student is enrolled to many courses” 

could be described formally as: 𝐴𝑑𝑗 = "𝑒𝑎𝑐ℎ", 𝐸𝑝𝑎𝑟𝑒𝑛𝑡 = "𝑠𝑡𝑢𝑑𝑒𝑛𝑡", 𝐷𝑒𝑠𝑐𝑟 = "𝑖𝑠 𝑒𝑛𝑟𝑜𝑙𝑙𝑒𝑑 𝑡𝑜", 

𝐶𝑎𝑟𝑑 = "𝑚𝑎𝑛𝑦", and 𝐸𝑐ℎ𝑖𝑙𝑑 = "𝑐𝑜𝑢𝑟𝑠𝑒" (plural database entity identifiers extracted from business 

rules should be singularized). Therefore, corresponding business rule takes the following form: 

𝑅𝑒𝑙𝑆𝑡𝑢𝑑𝑒𝑛𝑡−𝐶𝑜𝑢𝑟𝑠𝑒 = 〈"𝑒𝑎𝑐ℎ", "𝑠𝑡𝑢𝑑𝑒𝑛𝑡", "𝑖𝑠 𝑒𝑛𝑟𝑜𝑙𝑙𝑒𝑑 𝑡𝑜", "𝑚𝑎𝑛𝑦", "𝑐𝑜𝑢𝑟𝑠𝑒"〉. (2) 
Fact business rules are used not only to describe relationships between database entities, but also 

to describe attributes of database entities. Such business rules could be described using the following 

tuple: 

𝐸𝑛𝑡 = 〈𝐴𝑑𝑗, 𝐸, 𝑃𝑟𝑒𝑑, 𝐴𝑡𝑡𝑟〉, (3) 
where: 

 𝐴𝑑𝑗 is the adjective in the beginning of each business rule that describes attributes of database 

entities, e.g. “Each student has full name, birth date, enrollment date”, 𝐴𝑑𝑗 = "𝑒𝑎𝑐ℎ"; 

 𝐸 is the identifier of database entity; 

 𝑃𝑟𝑒𝑑 is the predicate, 𝑃𝑟𝑒𝑑 = "ℎ𝑎𝑠"; 

 𝐴𝑡𝑡𝑟 is the set of attributes that describe a database entity, 𝐴𝑡𝑡𝑟 = {𝑎𝑡𝑡𝑟𝑖|𝑖 = 1, 𝑛̅̅ ̅̅̅}, where 𝑛 

stands for the number of attributes in an entity. 

As it is demonstrated below, sample fact business rule “Each student has full name, birth date, 

enrollment date” could be described formally as: 𝐴𝑑𝑗 = "𝑒𝑎𝑐ℎ", 𝐸 = "𝑠𝑡𝑢𝑑𝑒𝑛𝑡", 𝑃𝑟𝑒𝑑 = "ℎ𝑎𝑠", and 

𝐴𝑡𝑡𝑟 = {"𝑓𝑢𝑙𝑙 𝑛𝑎𝑚𝑒", "𝑏𝑖𝑟𝑡ℎ 𝑑𝑎𝑡𝑒", "𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 𝑑𝑎𝑡𝑒"}. Therefore, a business rule is written as: 
𝐸𝑛𝑡𝑆𝑡𝑢𝑑𝑒𝑛𝑡 = ⟨"𝑒𝑎𝑐ℎ", "𝑠𝑡𝑢𝑑𝑒𝑛𝑡", "ℎ𝑎𝑠",

{"𝑓𝑢𝑙𝑙 𝑛𝑎𝑚𝑒", "𝑏𝑖𝑟𝑡ℎ 𝑑𝑎𝑡𝑒", "𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 𝑑𝑎𝑡𝑒"}⟩.
 

(4) 

Next subsection describes how such business rules (1) and (2) are extracted from textual domain 

descriptions provided by business analysts or other stakeholders. 

3.1.2. Business Rules Extraction 

In order to demonstrate syntax of business rules provided as text, the Extended Backus-Naur Form 

(EBNF) is used [20]. Therefore, fact business rules that describe database entities and relationships 

between such entities should have the following structure: 

< 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝_𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠_𝑟𝑢𝑙𝑒 >∷= {𝑒𝑎𝑐ℎ|𝑠𝑜𝑚𝑒} < 𝑝𝑎𝑟𝑒𝑛𝑡_𝑒𝑛𝑡𝑖𝑡𝑦 >

{𝑖𝑠 < 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 >} {𝑜𝑛𝑒|𝑚𝑎𝑛𝑦} < 𝑐ℎ𝑖𝑙𝑑_𝑒𝑛𝑡𝑖𝑡𝑦 >.
 

(5) 



Fact business rules that describe attributes of database entities should have the following structure, 

which is also described using the EBNF [20]: 

< 𝑒𝑛𝑡𝑖𝑡𝑦_𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠_𝑟𝑢𝑙𝑒 >∷= {𝑒𝑎𝑐ℎ} < 𝑒𝑛𝑡𝑖𝑡𝑦 >

{ℎ𝑎𝑠} {< 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 >,  . . . }.
 

(6) 

We assume that textual description passed as input contains business rules provided as sentences, 

so we could split input text into the set of sentences, and then process each sentence as a standalone 

business rule. Formally input text that may contain business rules could be described using following 

equation: 

𝐵𝑅𝑇𝑒𝑥𝑡 = {𝐵𝑅𝑗|𝑗 = 1, 𝑚̅̅ ̅̅ ̅̅ }, (7) 

where: 

 𝐵𝑅𝑗 is the one of sentences that form textual domain description, and which may be parsed as 

certain business rule; 

 𝑚 is the number of sentences (potential business rules) provided in considered textual domain 

description (7). 

Business rules extraction procedure includes following steps: 

1. Preparation step. 

In order to extract sentences 𝐵𝑅𝑗, 𝑗 = 1, 𝑚̅̅ ̅̅ ̅̅  that may turn out to be business rules, it is required to 

split input text 𝐵𝑅𝑇𝑒𝑥𝑡 using “.” (dot) character as the separator. Obtained collection (an array or a list 

depending on the software implementation in future) then need to be processed in order to: 

 Avoid sentences (string values) of zero length. 

 Trim sentences (string values), i.e. remove leading and trailing spaces. 

2. Identification step. 

Each of extracted sentences 𝐵𝑅𝑗, 𝑗 = 1, 𝑚̅̅ ̅̅ ̅̅  must be brought to the one of two fact business rule 

types: ones that describe relationships, or ones that describe entity attributes. This could be done using 

regular expressions based on introduced syntax descriptions (5) and (6): 

 The regular expression to parse business rules that describe database entities and relationships 

between such entities has the following form: 

𝑅𝑥𝑅𝑒𝑙 = "(𝑒𝑎𝑐ℎ|𝑠𝑜𝑚𝑒)\𝑠 + (. +)\𝑠 + ((𝑖𝑠). +)\𝑠 + (𝑜𝑛𝑒|𝑚𝑎𝑛𝑦)\𝑠 + (. +)"; (8) 
 The regular expression to parse business rules that describe attributes of database entities has 

the following form: 

𝑅𝑥𝐸𝑛𝑡 = "(𝑒𝑎𝑐ℎ)\𝑠 + (. +)(ℎ𝑎𝑠)\𝑠 + (. +)". (9) 

If certain sentence 𝐵𝑅𝑗, 𝑗 = 1, 𝑚̅̅ ̅̅ ̅̅  does not match to any of these regular expression (8) and (9), this 

sentence should be excluded from consideration as of potential business rule. 

3. Relational mapping step. 

When certain sentence 𝐵𝑅𝑗, 𝑗 = 1, 𝑚̅̅ ̅̅ ̅̅  matches to the regular expression 𝑅𝑥𝑅𝑒𝑙, there are following 

tokens that we may extract (see Fig. 2). 

 

 
Figure 2: Example of business rule matching to the regular expression 𝑅𝑥𝑅𝑒𝑙 

 

All parsed tokens that correspond to “parent” entity 𝐸𝑝𝑎𝑟𝑒𝑛𝑡, relationship cardinality 𝐶𝑎𝑟𝑑, and 

“child” entity 𝐸𝑐ℎ𝑖𝑙𝑑 should be trimmed (there should be removed leading and trailing spaces for each 



of the extracted tokens), and any sequences of spaces presented in such tokens must be replaced with 

underscores “_” in order to avoid syntax errors when translating database structure to DDL language 

commands. Before sentences are parsed they should be translated to lower case. 

Here it is necessary to introduce the following equation, which denotes that each table 𝑇𝑎𝑏 maps 

database entity identifiers to structural descriptions of database tables: 

𝑇𝑎𝑏: 𝐸 → 〈𝑃𝐾, 𝐹𝐾, 𝐶𝑜𝑙𝑠〉, (10) 
where: 

 𝐸 is the identifier of database entity to which certain database table corresponds; 

 𝑃𝐾 is the primary key columns of database table 𝑇𝑎𝑏; 

 𝐹𝐾 is the set of foreign key columns and table references of database table 𝑇𝑎𝑏; 

 𝐶𝑜𝑙𝑠 is the set of remaining non-key column names derived from the attributes set 𝐴𝑡𝑡𝑟 (3). 

Relational mapping of business rules that describe database entities and relationships between such 

entities includes the following stages: 

 If mapping 𝑇𝑎𝑏 (10) does not exist for the “parent” entity 𝐸𝑝𝑎𝑟𝑒𝑛𝑡, then it should be provided 

as following: 

𝑇𝑎𝑏(𝐸𝑝𝑎𝑟𝑒𝑛𝑡) → 〈𝐸𝑝𝑎𝑟𝑒𝑛𝑡 + "_𝑖𝑑", ∅, ∅〉. (11) 

As it is demonstrated in (11), there should be used concatenation of “parent” entity identifier and 

“_id” suffix as the primary key. For example, for “student” entity there should be created 𝑃𝐾 named 

“student_id”. Obtained structure could be represented using the fragment of entity-relationship model 

shown in Fig. 3. 

 

 
Figure 3: Visual representation of “parent” table mapping provided in (11) 

 

 If mapping 𝑇𝑎𝑏 (10) does not exist for the “child” entity 𝐸𝑐ℎ𝑖𝑙𝑑, then it should be provided as 

following: 

𝑇𝑎𝑏(𝐸𝑐ℎ𝑖𝑙𝑑) → 〈"", ∅, ∅〉. (12) 
As it is demonstrated in (11), there should be used empty primary key until relationship cardinality 

is checked. Obtained structure could be represented using the fragment of entity-relationship model 

shown in Fig. 4. 

 

 
Figure 4: Visual representation of “child” table mapping provided in (12) 

 

 If relationship cardinality 𝐶𝑎𝑟𝑑 is equal to “one”, then for the mapping 𝑇𝑎𝑏(𝐸𝑐ℎ𝑖𝑙𝑑) primary 

key column 𝑃𝐾 should be set to 𝐸𝑝𝑎𝑟𝑒𝑛𝑡 + "_𝑖𝑑" (in order to implement one-to-one identifying 

relationship between two entities), while the 𝐹𝐾 set should be appended with the following pair of 

foreign key column and table reference: 〈𝐸𝑝𝑎𝑟𝑒𝑛𝑡 + "_𝑖𝑑", 𝐸𝑝𝑎𝑟𝑒𝑛𝑡〉. Obtained relationship could be 

represented using the fragment of entity-relationship model shown in Fig. 5. 

 

 
Figure 5: Visual representation of one-to-one relationship between “parent” and “child” tables 

 



 Otherwise, if cardinality 𝐶𝑎𝑟𝑑 is equal to “many”, then for the mapping 𝑇𝑎𝑏(𝐸𝑐ℎ𝑖𝑙𝑑) primary 

key column 𝑃𝐾 should be set to 𝐸𝑐ℎ𝑖𝑙𝑑 + "_𝑖𝑑" (since one-to-many relationship is non-identifying), 

while the 𝐹𝐾 set should be appended with the same pair of 〈𝐸𝑝𝑎𝑟𝑒𝑛𝑡 + "_𝑖𝑑", 𝐸𝑝𝑎𝑟𝑒𝑛𝑡〉. Obtained 

relationship could be represented using the fragment of entity-relationship model shown in Fig. 6. 

 

 
Figure 6: Visual representation of one-to-many relationship between “parent” and “child” tables 

 

When certain sentence 𝐵𝑅𝑗, 𝑗 = 1, 𝑚̅̅ ̅̅ ̅̅  matches to the regular expression 𝑅𝑥𝐸𝑛𝑡, there are following 

tokens that we may extract (see Fig. 7). 

 

 
Figure 7: Example of business rule matching to the regular expression 𝑅𝑥𝐸𝑛𝑡 

 

All extracted tokens, which correspond to the entity 𝐸 and attributes set 𝐴𝑡𝑡𝑟, should be trimmed 

(leading and trailing spaces should be removed for each of the extracted tokens). The substring that 

corresponds to attributes set 𝐴𝑡𝑡𝑟 should be separated using comma “,” in order obtain collection of 

attribute names. Also all the sequences of spaces presented in extracted tokens (entity and attribute 

names) are replaced with underscores “_” in order to avoid syntax errors when translating database 

structure to DDL language commands. Before sentences are parsed they should be translated to lower 

case respectively. 

Relational mapping of business rules that describe attributes of database entities includes the next 

stages: 

 In case if mapping 𝑇𝑎𝑏 (10) does not exist for considered entity 𝐸, then it should be provided 

as following: 

𝑇𝑎𝑏(𝐸) → 〈𝐸 + "_𝑖𝑑", ∅, {𝑎𝑡𝑡𝑟𝑖|𝑖 = 1, 𝑛̅̅ ̅̅̅}〉. (13) 

 Otherwise, existing mapping 𝑇𝑎𝑏(𝐸) should be appended by adding extracted and processed 

set of attributes {𝑎𝑡𝑡𝑟𝑖|𝑖 = 1, 𝑛̅̅ ̅̅̅} as column names. 

Obtained structure could be shown using the fragment of entity-relationship model in Fig. 8. 

 

 
Figure 8: Visual representation of entity mapping provided in (13) 

 

The example of relational mapping produced by the described business rules extraction procedure 

is demonstrated in Fig. 9. Obviously demonstrated example (Fig. 9) is not perfect and vulnerable for 



anomalies, however it is shown only to display how business rule statements are translated into entity-

relationship structures. However, compliance of generated relational structures to the 3NF depends 

only on business rules granularity and elaboration: formulated business rules should be free of partial 

and transitive dependencies, multi-valued attributes, and multi-valued dependencies [9]. 

 

 
Figure 9: Example of relational mapping produced by business rules extraction procedure 

 

Demonstrated relational model (Fig. 9) contains “full_name” attribute of “student” entity, which 

could be decomposed into at least two atomic attributes to store first name and last name respectively. 

Another drawback of demonstrated approach, is that for now it is limited to support only one-to-many 

or one-to-one relationships. Also, in the outlined example, many-to-many relationship was achieved 

by using two one-to-many relationships from both “sides” of the “score” entity. This technique may 

mislead business analysts or other users who are responsible for business rules description but do not 

have enough training and experience in relational database modeling. 

3.2. Relational Model to Database Scripts Translation 
3.2.1. Database Scripts Generation 

Proposed business rules extraction procedure produces structures 𝑇𝑎𝑏 (10), which map database 

entity identifiers to structural descriptions of database tables. These structures describe meta-data of a 

future database and, hence, could be translated into DDL statements. 

At first, for each mapping should be generated CREATE TABLE scripts using the following rules: 

 Database entity name 𝐸 is translated into a table name. 

 The primary key 𝑃𝐾 attribute is translated into the INTEGER column. Since primary keys are 

artificial identifiers (e.g. 1,2,3, …), corresponding columns should have auto-increment properties. 

 Those foreign keys 𝐹𝐾, which are not included in primary key, are translated into INTEGER 

columns as well. 

 Attributes 𝐶𝑜𝑙𝑠 are translated into non-key columns. At this point, the black-box function that 

maps attributes to three generic domains (date and time, numerical, and text data) is introduced: 

𝑑𝑜𝑚𝑎𝑖𝑛: 𝑎𝑡𝑡𝑟𝑖 → {𝐷𝑎𝑡𝑒𝑇𝑖𝑚𝑒, 𝐷𝑒𝑐𝑖𝑚𝑎𝑙, 𝑉𝑎𝑟𝑐ℎ𝑎𝑟}, 𝑖 = 1, 𝑛̅̅ ̅̅̅. (14) 
Obviously suggested domains may be adjusted by the database designer if necessary. Proposals for 

the data types, which could be chosen for considered domains (14) are outlined in next subsection. As 

it was outlined in 3.1.2, primary keys are generated automatically and contain auto-increment integer 

values. But there may be present unique alternate keys, which identification is considered in 3.2.3. 

The example of CREATE TABLE scripts generation, shown in Fig. 10, is based on the example of 

relational mapping demonstrated in Fig. 9. 

 



 
Figure 10: Example of CREATE TABLE scripts generation to create tables 

 

After database tables are declared using CREATE TABLE commands, it is necessary to establish 

keys and relationships between the tables. This means adding primary key constraints and foreign key 

references to “child” tables. This can be done using special ALTER TABLE scripts, which examples 

for the considered topic are shown in Fig. 11. 

 

 
Figure 11: Example of ALTER TABLE scripts generation to create foreign keys 

 

When mapping the relational model into DDL statements, primary keys should be implemented as 

auto-increment integer columns in order to simplify their processing in a database. Obviously primary 

attributes are all have NOT NULL property, as well as the foreign key attributes should have NOT 

NULL property in order to provide the strong relational integrity. Auto-increment keys and not-null 

fields are the essentials of relational databases and supported by all well-known relational DBMS. 

By default, primary keys, as well as the corresponding foreign keys, are all artificial (entity name 

concatenated with “_id” suffix as it was demonstrated above), however there are also alternate keys 

possible for some domain-specific attributes. These alternate keys are also supposed to be not-null, 

since they are used to represent real-world identifiers. Detection of these keys, as well as the domains 

for table columns, is outlined in the next subsections. 

3.2.2. Column Domains Suggestion 

Suggestion of domains or data types using only column names is a non-trivial goal, which could be 

accomplished using naming conventions and commonly used attribute names that belong to specific 

domains. For this purpose, we have used the schema.org vocabulary [21], which declares four generic 

domains: 

 DateTime. 

 Number. 

 Text. 

 Boolean. 

For this domains should be introduced a vocabulary of categorized attribute titles, which could be 

then matched to attribute titles of database entities when DDL statements are generated. 



Frequencies of attribute title occurrences among the vocabulary of titles categorized by considered 

domains are calculated and the Naïve Bayes approach [22] could be used to suggest domains, since it 

is fast enough for real-time multiclass predictions and does not need large volumes of training data: 

𝑐 = arg max
𝑐∈𝐶

𝑃(𝑐|𝑑), (15) 

where: 

 𝐶 is the set of domains used as classes, 𝐶 = {𝐷𝑎𝑡𝑒𝑇𝑖𝑚𝑒, 𝑁𝑢𝑚𝑏𝑒𝑟, 𝑇𝑒𝑥𝑡, 𝐵𝑜𝑜𝑙𝑒𝑎𝑛}; 

 𝑃(𝑐|𝑑) is the number of titles, which belong to the domain 𝑐 ∈ 𝐶, matched to the attribute 𝑑. 

However, when using (15) there may occur situations when frequency values 𝑃(𝐷𝑎𝑡𝑒𝑇𝑖𝑚𝑒|𝑑) and 

𝑃(𝑁𝑢𝑚𝑏𝑒𝑟|𝑑) are equal for respective domains. In such case, the Text domain could be suggested in 

order to provide flexibility of data storage, and as the one more reason for database tuning. Obviously 

suggested domains, as well as tables, columns, keys, and relations, do not show final database design 

and could or even must be tuned with respect to the considered subject area. 

Therefore, the vocabulary of attribute titles categorized by domains should be extended over time. 

Hence, the following human-computer interaction procedure could be introduced (Fig. 12). 

 

 
Figure 12: Procedure of column domains suggestion 

 

Modern enterprise-level DBMS support various options of data types that correspond to suggested 

domains. For example, DATETIME for the DateTime domain, DECIMAL for the Number domain, 

VARCHAR for the Text domain, and TINYINT(1) for the Boolean domain. Numbers of digits (in 

total and after the decimal point) for DECIMAL data type and characters for VARCHAR data type 

should be manually selected by the database designer or database administrator in order to achieve 

better performance and provide sufficient space for stored data. 



3.2.3. Alternate Keys Suggestion 

As it was outlined above, the detection of possible alternate keys is necessary in order to assure 

uniqueness of certain values like social-security number (SSN), vehicle identification number (VIN), 

personal identification (ID) card number, bank account number etc. 

Similarly to the column domains detection procedure, the vocabulary of column names that could 

be used as UNIQUE indexes should be introduced. Frequencies of attribute title occurrences among 

the vocabulary of possible alternate key titles are calculated and the logistic activation function [23] 

could be used to formalize suggestion of UNIQUE indexes: 

𝑝(𝑥) =
1

1 + 𝑒−𝑥
, 

(16) 

where 𝑥 is the frequency of attribute title occurrences among the vocabulary of alternate key titles. 

We use logistic or sigmoid activation function (16), since it comes along with the threshold value 

suitable for binary classification. For example, if a value obtained using the logistic model is greater 

than 0.5, then such column might be used as unique index [23]. The higher returned value is, the more 

chances this is indeed an alternate key. In further research there may be considered special threshold 

values to filter alternate key suggestions, as well as more advanced classification methods. Also the 

vocabulary may be extended over time when some specific subject areas are considered. Hence, the 

following human-computer interaction procedure could be introduced (Fig. 13). 

 

 
Figure 13: Procedure of alternate keys suggestion 

 

As well as the column domains, alternate keys could or sometimes must be manually tuned before 

a database is deployed to the server. Detected alternate keys could be implemented as unique indexes, 



which are supported by all modern relational DBMS. This could be achieved using special ALTER 

TABLE scripts, which examples for the considered topic are demonstrated in Fig. 14. 

 

 
Figure 14: Examples of ALTER TABLE scripts generation to create unique indexes 

 

Demonstrated statement (see Fig. 13) may be executed in addition after DDL statements sufficient 

to create a database were generated using procedures proposed in subsection 3.2.1. Also it should be 

noticed that outlined procedures use MySQL-based dialect of DDL scripts that may not work properly 

in other DBMS. However, in the software implementation it is planned to add multi-system support of 

generated DDL scripts. 

4. Software Design and Implementation 
4.1. Software Tool Prototype 

The software tool is supposed to be used by business analyst and database designer roles. Business 

analysts should have possibilities to create projects, setup vocabularies used to detect column domains 

(see Fig. 12) and alternate keys (see Fig. 13), and add business rules for database schema generation. 

If necessary, business analysts should be able to update or delete any vocabulary elements or business 

rules in projects they are participating. 

Database designers, as well as business analysts, should be able to review projects, however, they 

also should be able to obtain DDL scripts generated from formulated business rules. Scripts should be 

configurable (e.g. to include or exclude checks for already existing database and tables with the same 

names etc.). Also it is supposed to provide database designers with the possibility to execute obtained 

DDL scripts after connecting to a database management system server. Main features of the software 

tool are shown on UML (Unified Modeling Language) use case diagram in Fig. 15. 

 

 
Figure 15: Planned use case scenarios 

 

At this moment the software is implemented only as the prototype, which allows users to translate 

given business rules, provided as text, into DDL scripts to create a database. The software prototype is 

implemented as a server-less web application: there is a single HTML (HyperText Markup Language) 

home page, which uses Bootstrap front-end library to create the responsive user interface and jQuery 



library to simplify DOM (Document Object Model) operations. Described business rules processing 

and translation into DDL statements is also implemented using JavaScript. Several objects, which are 

used to detect attribute domains and alternate keys, translate business rules into a relational structure, 

and then into DDL statements that describe the database schema, were developed. System architecture 

of the software prototype is shown on UML deployment diagram demonstrated in Fig. 16. 

 

 
Figure 16: System architecture of the software prototype 

 

As it is demonstrated in Fig. 15, the source code is available in GitHub repository [24] also used as 

the source for application deployment into the Heroku cloud-based platform. Organized development 

pipeline allows to immediately deploy recent changes of the software, which helps to improve internal 

communication between developers and testers, and receive latest feedbacks from stakeholders. 

4.2. Analysis of Software Prototype Usage Results 

The software prototype is now accessible online for experiments [25]. Since its functions now are 

limited only to business rules input and DDL scripts output with minimum configurations (users only 

may choose whether CREATE DATABASE statement and should be included, as well as to choose if 

DROP statements are necessary before creation of a database and its tables), it has been implemented 

as the single-page web application that fits to a single screen. A home page is demonstrated in Fig. 17. 

The home page includes several user interface elements: 

 Text area where users may put their business rules, which describe certain subject area. 

 Buttons, which are used to clear the input text area or translate given business rules into DDL 

scripts respectively. 

 Source code area, where DDL statements, translated from given business rules, are shown. 

 Text input to provide that database name. 

 Check boxes for optional settings (whether CREATE DATABASE, DROP DATABASE, and 

DROP TABLE should be included). 

 Radio button to select the SQL dialect used to generate DDL statements (for now it supports 

only MySQL dialect). 

 Button to copy generated DDL statements to clipboard in order to simplify scripts transfer to 

a DBMS client. 

In order to demonstrate the software usage example (see Fig. 17) of business rules translation into 

DDL statements, we used the following business rules, considered before in Fig. 9: 

 “Each student has full name, student card id, birth date, enrollment date”. 

 “Each student is given by many scores”. 

 “Each course has title, semester, approval date”. 

 “Each course is evaluated by many scores. Each score has value, completion date”. 



 
Figure 17: Homepage of the prototype 

 

The DDL scripts obtained for given business rules (see Fig. 17) are basically the same statements 

demonstrated in Fig. 9 – 11 and Fig. 13. Using these statements, we created the database in MySQL 

DBMS that is of following scheme (see Fig. 18). The database structure is demonstrated using in-built 

designer of phpMyAdmin software tool for MySQL administration. 

 

 
Figure 18: Obtained database structure in phpMyAdmin 

 

After interactive human-computer procedures of column domains and alternate keys selection have 

been finished, the respective vocabularies were filled with the initial data in order to provide real-time 

suggestions in future sessions (see Table 1). 

 

Table 1 
Initial data of column domains and alternate keys vocabularies 

Vocabulary Classification Data 

Column domains DateTime birth_date, enrollment_date, completion_date, approval_date 

Number value, semester 

Text full_name, student_card_id, title 
Alternate keys UNIQUE student_card_id 

 
Another attempt of the same business rules translation will result in the automatically suggested 

domains, corresponding MySQL data types, and UNIQE alternate keys. Some of classification results 

by each column domain are outlined below, as well as the alternate key suggestion: 

 arg min{𝑃(𝐷𝑎𝑡𝑒𝑇𝑖𝑚𝑒|𝑏𝑖𝑟𝑡ℎ_𝑑𝑎𝑡𝑒), 𝑃(𝑁𝑢𝑚𝑏𝑒𝑟|𝑏𝑖𝑟𝑡ℎ_𝑑𝑎𝑡𝑒), 𝑃(𝑇𝑒𝑥𝑡|𝑏𝑖𝑟𝑡ℎ_𝑑𝑎𝑡𝑒)} =
arg min{1,0,0} = 𝐷𝑎𝑡𝑒𝑇𝑖𝑚𝑒; 



 arg min{𝑃(𝐷𝑎𝑡𝑒𝑇𝑖𝑚𝑒|𝑣𝑎𝑙𝑢𝑒), 𝑃(𝑁𝑢𝑚𝑏𝑒𝑟|𝑉𝑎𝑙𝑢𝑒), 𝑃(𝑇𝑒𝑥𝑡|𝑣𝑎𝑙𝑢𝑒)} = arg min{0,1,0} =
𝑁𝑢𝑚𝑏𝑒𝑟; 

 arg min{𝑃(𝐷𝑎𝑡𝑒𝑇𝑖𝑚𝑒|𝑓𝑢𝑙𝑙_𝑛𝑎𝑚𝑒), 𝑃(𝑁𝑢𝑚𝑏𝑒𝑟|𝑓𝑢𝑙𝑙_𝑛𝑎𝑚𝑒), 𝑃(𝑇𝑒𝑥𝑡|𝑓𝑢𝑙𝑙_𝑛𝑎𝑚𝑒)} =
arg min{0,0,1} = 𝑇𝑒𝑥𝑡; 

 𝑠𝑡𝑢𝑑𝑒𝑛𝑡_𝑐𝑎𝑟𝑑_𝑖𝑑: 𝑥 = 1, 𝑝(𝑥) = 0.73 > 0.5 ⇒ UNIQUE. 

Software prototype keeps training data in JavaScript local storage, which later should be replaced 

with the database. Business rules executed in further sessions may be translated into DDL statements 

with automatically recommend column domains and alternate keys. Results of respective suggestion 

procedures validation are shown in Fig. 19. 

 

 
Figure 19: Results of column domains and alternate keys suggestion procedures validation 

 

In order to validate the obtained database structure (see Fig. 18), we have filled tables with sample 

records (see Fig. 20). 

 

 
Figure 20: Sample records stored using the obtained database structure 

 

The following queries and execution results, which show these queries are failed, demonstrate data 

integrity and consistency validation: created foreign key references ensure strong referential integrity 

and data consistency according to created unique indexes (see Fig. 21). 



 
Figure 21: Failed attempts to violate data integrity and consistency 

 

Verification of generated SQL statements was performed automatically when they were executed 

on MySQL server. However, the database structure could be evaluated using Data Model Scorecard 

metrics [26]. The most interesting metrics in this case, by our opinion, are 2, 4, and 10 [26] (Table 2). 

 

Table 2 
Database structure (Fig. 18) evaluation using some of the Data Model Scorecard metrics 

Metric Total score Model (Fig. 18) score Value 

How complete is the model? 15 3 0.20 
How structurally sound is the model? 15 10 0.67 

How well does the metadata match the data? 10 8 0.80 

 
Generated database structure (Fig. 18) is not even close to real-world enterprise databases in the 

same subject area. The database structure has normalization issue (non-atomic attribute “full_name”). 

Chosen data types seem proper enough, while sizes of VARCHAR and DECIMAL columns could be 

specified more precisely. Thus, the obtained database schema (see Fig. 18) was evaluated with metric 

values demonstrated in Table 2. This particular database was created only for demonstration purposes, 

however, real-world data models should be refined after evaluation using the Data Model Scorecard 

metrics [26] or another ones. 

5. Conclusion and Future Work 

In this paper we have presented the approach and software tool prototype for translation of natural 

language business rules into database structure. The approach is based on textual descriptions written 

in a special way, so they could be processed and relational model that contains entities, attributes, and 

relationships could be obtained. This could be considered as the limitation of the proposed approach, 

since business rules should correspond to strict patterns even though they are English sentences. Right 

here the second limitation appears, since proposed approach and software “understand” only English, 

while multi-language support should be considered in the future research together with more flexible 

business rules format, which may support at least many-to-many relationships declaration (for now it 

is required to declare each one-to-many part of the many-to-many relationship separately). 

Obtained relational mapping then translated into DDL scripts used to create database schema in a 

relational DBMS. Data types and unique attributes, referred as alternate keys, since primary keys are 

generated automatically and supposed to contain auto-increment numbers, are suggested using naïve 

Bayes classifier and logistic model respectively. This approach requires using vocabularies of titles 

make assumptions whether certain attribute actually belongs to considered domain or certain attribute 

indeed a unique key. Future work may include usage of more advanced machine learning and natural 

language processing methods in order to suggest attribute domains and unique keys, since occurrence 

of linguistic phenomena, such as plurality, synonymy or polysemy of used attribute titles may lead to 

suggestion of improper domains and alternate keys. Also correspondence between suggested domains 

and DBMS data types should be clarified, e.g. using expert judgment methods. 

Nevertheless, proposed approach and software tool already demonstrate some initial prototype that 

may contribute to industry, by simplifying the process of database schema creation and making it less 

dependent on human errors. Outlined results demonstrate working prototype and its usage to translate 

sample set of business rules into MySQL database schema. However, research in this field should be 



continued to overcome depicted limitations. Also in future work it is planned to consider support of 

business logic requirements (e.g., constraints, action enablers, inferences, and computations that will 

be translated into respective database objects, such as triggers, functions, procedures, and views) and 

referential integrity constraints (i.e., on delete and on update behavior for related tables). 
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