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Abstract. Science of Science (SciSci) is an emerging discipline wherein
science is used to study the structure and evolution of science itself using
large data sets. The increasing availability of digital data on scholarly
outcomes offers unprecedented opportunities to explore SciSci. In the
progress of science, the previously discovered knowledge principally in-
spires new scientific ideas, and citation is a reasonably good reflection of
this cumulative nature of scientific research. The researchers that choose
potentially influential references will have a lead over the emerging pub-
lications. Although the peer-review process is the mainly reliable way
of predicting a paper’s future impact, the ability to foresee the lasting
impact based on citation records is increasingly essential in the scientific
impact analysis in the era of big data. This paper develops an attention
mechanism for the long-term scientific impact prediction and validates
the method based on a real large-scale citation data set. The results
break conventional thinking. Instead of accurately simulating the origi-
nal power-law distribution, emphasizing the limited attention can better
stand on the shoulders of giants.
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1 Introduction

With the advent of the era of big data, people pay more and more attention
to the value of data. The massive volume of publications created every year
has grown into big data that we can’t ignore. With the development of SciSci, it
provides a quantitative understanding of scientific discovery, creativity, and prac-
tice [12, 11, 23, 34, 5, 29]. From the perspective of SciSci, identifying fundamental
drivers of science and developing predictive models to capture its evolution are
instrumental for successful science. SciSci reveals that the previously discovered
knowledge mainly inspires new scientific ideas [47], and citation [24] is a rela-
tively good reflection of this cumulative nature of scientific research. Citation
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count, which has been used to evaluate the quality and influence of scientific
work for a long time, stands out from many quantification measure metrics of
scientific impact [7]. With the rapid evolution of scientific research, there is a
massive volume of literature published every year, and this situation is expected
to remain within the foreseeable future. Fig. 1 shows the statistics on the cita-
tion data set used in this paper. The data set is extracted from AMiner [38],
which is a billion-scale academic search and mining system. Fig. 1(a) visualizes
the explosive increase in the volume of publications in the past years from 1990
to 2015. It shows that the literature quantity assumes the exponential order to
grow.

(a) The volume of literatures. (b) The citation Distribution.

Fig. 1. Statistics of literature data from AMiner.

Scientific work is founded on prior research. It is not wise nor possible for
researchers to track all existing related work due to the enormous volume of the
existing publications. In general, researchers follow or cite merely a small propor-
tion of high-quality publications. SciSci provides several quantification methods
for scientific impact measurement in article-level, author-level, and journal-level.
Much SciSci work has been done on the evaluation metrics for the quality and
influence of scientific work [31, 30], including citation count [33], h-index [18],
and impact factor [16]. One of the most basic quantification measure metrics of
scientific impact is citation count. It measures the number of received citations
for an article. Many other essential evaluation criteria of authors (e.g., h-index)
and journals [15, 13] (e.g., Impact Factor) are calculated based on citation count.

A lot of SciSci researchers have focused on the characterization of scientific
impact [35], such as the universal citation distributions [28], the characteristics of
citation networks [19, 26, 20], and the growth pattern of scientific impact [10, 17].
The results reveal the regularity of scientific progress that a few research papers
attract the vast majority of citations [4], long-distance interdisciplinarity leads to
higher scientific impact [21, 46]. Fig. 1(b) illustrates the citation distribution (the
number of papers vs. citation counts) of about two million papers. The citation
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distribution follows the power-law distribution [14]. It is natural to find that
not all publications attract equal attention in academia. A few research papers
accumulate the vast majority of citations, and most of the other papers attract
only a few citations [4]. A small number of scholarly outcomes are more likely to
attract scientists’ attention than others accounting for a vast majority. For the
ever-growing literature quantity, it is significant to forecast which paper is more
likely to attract more attention in the scientific community. Zhu et al. [48] present
several machine learning methods and one multiple linear regression strategy
to predict a paper’s future citation. Ali et al. [1] propose a novel method for
predicting long-term citations of a paper based on the number of its citations
in the first few years after publication. Daniel et al. [9] present GNN-based
architecture that predicts the top set of papers at the time of publication.

The fact is that the current citation count and the derived metrics can only
capture the past accomplishment. They lack the predictive power to quantify
the future impact [2]. Predicting an individual paper’s citation count over time
is significant, but (arguably) very difficult. To predict the citation count of indi-
vidual items within a complex evolving system, current models are falling into
two main paradigms. One formulates the citation count over time as time se-
ries and then makes predictions by either exploiting temporal correlations [37]
or fitting these time series with certain classes of designed functions [25, 3], in-
cluding the regression models [45], the counting process [39], the point process,
the Poisson process [40, 41], Reinforced Poisson Process (RPP) [32], self-excited
Hawkes Process [27], RPP with self-excited Hawkes Process [42]. The designed
functions consider various factors.

The other prevalent line utilizes Deep Neural Network (DNN) based mod-
els to solve the scientific impact prediction problem. Recently, Convolutional
Neural Network (CNN) and Recurrent Neural Network (RNN) have received
considerable attention from academia and the industry. RNN has been proven
to perform particularly well on temporal data series [36]. Due to the vanish-
ing gradient problem, RNN always fails to handle the temporal contingencies
present in the input/output sequences spanning long intervals [6]. The networks
with loops in RNN allow information to persist for a long time. Long short-term
memory (LSTM) is proven to be capable of learning long-term dependencies.
RNN with LSTM units performs rather well in handling long-term temporal
data series [43].

All the existing methods try to tune the citation distribution precisely as the
original power-law distribution. However, this paper argues that the effectiveness
of quantifying long-term scientific impact is fundamentally limited in this routine
thinking. This paper proposes to put more attention on some specific items,
such as highly cited papers. The authors validate the proposed method on a real
large-scale citation data set. Extensive experiment results demonstrate that the
proposed method possesses remarkable power at predicting long-term scientific
citation. The most important contribution is that this paper changes the line
of thinking in quantifying the long-term scientific impact. Instead of simulating
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the original power-law distribution, researchers need to emphasize the limited
attention to better stand on giants’ shoulders.

2 Problem Formulation

The primary evaluation metric for scientific impact is citation count. The re-
ceived citation count of an individual paper d during time period [0, T ] is char-
acterized by a time-stamped sequence {ntd}Tt=0, where ntd represents the number
of citation counts received by paper d at time t, ntd is an integer greater than or
equal to zero. In giving the historical citation records, the goal is to model the
future citation count and predict it over an arbitrary time.

Given the literature corpus D, card(D) = M means find M papers from D.
In this paper, we believe that the scientific impact of a literature article is equal
to the number of papers which cite it. The scientific impact of a literature article
d ∈ D at time t is defined as its citation counts ntd:

citingtd = {d̃ ∈ D, d̃ 6= d : d̃t cites d}, ntd = card(citingtd). (1)

The underlying assumption of the citation count here is the accumulated cita-
tions, which make it possible to quantify citations for different items at different
times. The long-term scientific impact of the individual item d can be formalized
as the following time series {n0d, · · · , ntd, · · · , nTd }. Without loss of generality, the
number of accumulated citation counts increases over time. And then, we have
0 = n0d ≤ · · · ≤ ntd ≤ · · · ≤ nTd = Nd.

In the scientific impact prediction problem, the input ~X is {n0d, · · · , ntd, · · · },
for every paper d ∈ D, where ntd is the citation counts of paper d at time t. The
goal of the scientific impact prediction problem is to learn a predictive function f
to predict the citation counts of an article d after a given period time t. Formally,
we have:

f(d| ~X, t)→ n̂td, (2)

where n̂td is the predicted citation count and ntd is the actual one. Based on the
learned prediction function, we can predict the citation count of a paper for the
next years. For example, the citation count of paper d at time t is given by
f(d| ~X, t).

3 Scientific Impact Prediction

As the most efficient scientific impact prediction method found so far, RNN
has already achieved compelling performance in predicting the scientific impact.
This paper embeds the RNN with LSTM units as a baseline and then empha-
sizes highly cited articles in the proposed attention mechanism. Although many
other fields have used the attention mechanism, the proposed method gives new
insight into long-term quantifying scientific impact. Instead of adapting citation
distribution to a power-law distribution, this paper’s findings provide a new line
of thinking for the SciSci research.
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(a) The overview. (b) The LSTM units.

(c) The attention model.

Fig. 2. The deep learning attention model.

3.1 Deep Learning Attention Mechanism

Given a time-stamped sequence {ntd}Tt=0, a K-dimensional feature vector ~X =
{x0d, · · · , xtd, · · · , xTd } needs to be designed as input. The input space of every
item with popularity records {(x0, n0), · · · , (xt, nt), · · · , (xT , nT )} reflects the
intrinsic quality of the item. Fig. 2(a) gives an overview of the model architecture.
There are two critical components in the architecture: the RNN with LSTM units
and the attention model. As illustrated in Fig. 2(b), it arranges the LSTM units
in the form of RNN with L layers. In the deep neural network, the parameter
L depends on the input scale. RNN is famous for its popularity and well-known
capability for efficient time series learning [43]. The LSTM units capture the
long-range dependency in long-term scientific impact quantification.

The RNN with LSTM Units. The LSTM units are arranged in the form of
RNN, as illustrated in Fig. 2(b). There are four major components in a standard
LSTM unit, including a memory cell, a forget gate Γf , an input gate Γi, and an
output gate Γo. The gates are responsible for information processing and storage
over arbitrary time intervals. Usually, the outputs of these gates are between 0
and 1. A new study gives suggestions to push the output values of the gates
towards 0 or 1. By doing so, the gates are mostly open or closed instead of in a
middle state [22]. This paper arranges the LSTM units in the form of RNN. In
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this way, introducing the memory cell will solve the vanishing gradient problem.
Thus, it can store information for either short or long periods in the LSTM unit.

Intuitively, the input gate controls the extent to which a new value flows into
the memory cell. The input gate’s function passes through the input gate and is
added to the cell state to update it. The following formula for the input gate is
used:

Γ t
i = σ

(
Wi

[
ht−1, xt

]
+ bi

)
, (3)

where matrix Wi collects the weights of the input and recurrent connections.
The symbol σ represents the Sigmoid function. The values of the vector Γ t

i are
between 0 and 1. If one of the values of Γ t

i is 0 (or close to 0), it means that this
input gate is closed, and no new information is allowed into the memory cell at
time t. If one of the values is 1, the input gate is open for a new coming value
at time t. Otherwise, the gate is in the state of half-open half-clearance.

The forget gate controls the extent to which a value remains in the memory
cell. It provides a way to get rid of the previously stored memory value. Here is
the formulation of the forget gate:

Γ t
f = σ

(
Wf

[
ht−1, xt

]
+ bf

)
, (4)

where Wf is the weight matrix that governs the behavior of the forget gate.
Similar to Γ t

i , Γ t
f is also a vector of values between 0 and 1. If one of the values

of Γ t
f is 0 (or close to 0), it means that the memory cell should remove that piece

of information in the corresponding component in the cell. If one of the values
is 1, the corresponding information will be kept.

Remembering information for long periods is practically the default behavior
of LSTM. The long-term accumulative influence is formulated as follows:

ct = Γ t
f ∗ ct−1 + Γ t

i ∗ c̃t, (5)

where ∗ denotes the Hadamard product (the element-wise multiplication of ma-
trices), c̃t is calculated as follows:

c̃t = tanh
(
Wc

[
ht−1, xt

]
+ bc

)
. (6)

That is, the information in the memory cell consists of two parts: the retained
old information Γ t

f ∗ ct−1 (controlled by the forget gate) and the new coming

information Γ t
i ∗ c̃t (controlled by the input gate).

The output gate controls the extent to which the value in the cell is used to
compute the output activation of the LSTM unit. The following output function
is used:

Γ t
o = σ

(
Wo

[
ht−1, xt

]
+ bo

)
. (7)

The weight matrices and bias vector parameters are needed to be learned during
training. This paper updates the current working state as the following formula:

ht = Γ t
o ∗ tanh

(
ct
)
. (8)
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The items stored in the current working state have an advantage in reading
over those stored in long-term memory. In the time series modeling of scientific
impact, the recent items stored in the short-term working state have an advan-
tage over those stored in the long-term memory. The next step introduces the
attention mechanism based on ht.

The Attention Model. The artificial attention mechanism, inspired by the
attention behavior in neuroscience, has been applied in deep learning for speech
recognition, translation, and visual identification of objects.Broadly, attention
mechanisms are components of prediction systems that allow the system to focus
on different subsets of the input sequentially. It aims to capture the critical points
and focuses on the relevant parts more than the remote parts as a human does.
More specifically, content-based attention generates attention distribution. Only
part of a subset of the input information is focused. The attention function needs
to be differentiable, so that everywhere of the input is focused, just to different
extents.

The deep learning attention mechanism used in this paper works as follows:
given an input ~X = {x0d, · · · , xtd, · · · , xTd }, the aforementioned LSTM units gen-

erate ~h = {h1, · · · , ht, · · · , hT } to represent the hidden patterns of the input. The
output is the summary of the ht focusing on information linked to the input.
In this formulation, attention produces a fixed-length embedding of the input
sequence by computing an adaptive weighted average of the state sequence ~h.

The graphical representation of the attention model is shown in Fig. 2(c).

The input ~X and the hidden layer ~h of the LSTM network (an RNN composed
of LSTM units) are the input of the attention model. Then, it computes the
following formula:

at = tanh
(
Wa

[
xt, ht

])
, (9)

where Wa is the weight matrix. An important remark here is that each at is
computed independently without looking at the other xt

′
for t′ 6= t. Then, each

at is linked to a Softmax layer, which function is given by:

αt =
ea

t∑
t e

at , for t = 1, · · · , T (10)

where
∑

t α
t = 1, the αt is the softmax of the at projected on a learned direction.

The output is a weighted arithmetic mean of the input, and the weights reflect
the relevance of ~h and the input. It is calculated as the following formula:

O =
∑
t

αtxt. (11)

Finally, the popularity of item d at time t is given by the prediction f(d| ~X, t) =
O.

3.2 Key Factor in Quantifying Long-term Impact

As widely acknowledged, the citation distribution follows the power-law distri-
bution. This finding leads the way for research in this domain. Researchers try
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to simulate the citation distribution as the power-law distribution. This paper
changes the line of thinking. Although the number of research papers has ex-
ploded, the reading time of scientists has not. At the same time, the attention
shifts toward the top 1% over time [4]. Even though the citation distribution fol-
lows the power-law distribution, attention is vital in quantifying the long-term
scientific impact.

In the fact of limited attention, the Matthew effect dominates in quantifying
the long-term scientific impact. The experiments will confirm it. The citation
count captures the inherent differences between papers, accounting for the per-
ceived novelty and the importance of a paper. The ”rich-get-richer” phenomenon
summarizes the Matthew effect of accumulated advantage, i.e., previously accu-
mulated attention triggers more subsequent attention [8] than others. In fact,
the highly popular items are more visible and more likely to be viewed than
others. The proposed model emphasizes highly cited papers under limited atten-
tion. The memory cell in the LSTM unit considers the long-term dependencies.
As shown in Eq. (5), previously accumulated attention stored in the long-term
memory triggers more subsequent attention. What is more, the attention model,
which focuses on the most popular part of the time series as Eq. (11) does, also
emphasizes the Matthew effect.

4 Experiments

This section demonstrates the effectiveness of putting particular emphasis on
the vital factor in quantifying the long-term scientific impact.

4.1 Dataset

The authors extract the data from an academic search and mining platform
called AMiner and construct a real large-scale scholarly dataset–Academic So-
cial Network1. The citation network’s full graph in this dataset has about 2
million vertices (papers) and 8 million edges (citations). In detail, the dataset
is composed of 2, 092, 356 digitalized papers spanning from 1936 to 2016 (for
more than 80 years) and 8, 024, 869 citations between them. By convention, the
authors eliminate those papers with less than 5 citations during the first 5 years
after publication and only retain the remaining papers as the training data. As
a result, 143, 902 papers published from 1956 to 2015 are retained.

4.2 Baseline Models and Evaluation Metrics

To compare the predictive performance of the proposed attention model against
other models, we introduce several published models that have been used to pre-
dict scientific impact. Specifically, the experiments’ comparison methods are LR,
CART, SVR (the three basic machine learning methods used in [45]), RPP [40,

1 https://www.aminer.cn/data
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32], and RNN [43]. The advantage of deep learning is the utilization of various
features. For fairness, the authors only use the citation count records and the
same feature used in [40, 32]. For the fair comparison among different kinds of
models, all models use the same vector features, which are the citation records
of the first five years after publication. Statistics show that for most papers, the
first five years after publication can well reflect their influence on the current
research stage.

This paper uses two basic scientific impact evaluation metrics: Mean Absolute
Percentage Error (MAPE) and Accuracy (ACC). Let ntd be the observed citations
of paper d up to time t, and n̂td be the predicted one. The MAPE measures
the average deviation between the predicted and observed citations over all the
papers. For a dataset of M papers, the MAPE is given by:

MAPE =
1

M

M∑
d=1

∣∣∣∣ n̂td − ntdntd

∣∣∣∣ . (12)

ACC measures the fraction of papers correctly predicted under a given error
tolerance ε. Specifically, the accuracy of citation prediction over M papers is
defined as:

ACC =
1

M

M∑
d=1

I

[∣∣∣∣ n̂td − ntdntd

∣∣∣∣ ≤ ε] , (13)

where I[θ] is an indicator function which returns 1 if the statement θ is true,
otherwise returns 0. We find that our method always outperforms regardless of
ε’s value. In this paper, we set ε = 0.3.

4.3 Model Setting

The experiment results show that the longer the duration of the training set, the
better the long-term prediction performance. According to our experiment, this
paper sets the training period as 5 years and then predicts the citation counts for
each paper from 1st to 5th after the training period. For example, t = 1 means
that the first observation year after the training period. In the experiments, the
features with positive contributions are the citation history, the current h-index
of the paper author, and the publication journal level [44]. For the convenience
of performance comparison, the input feature used here is the citation history
for every sub-window of length 10 years. The value of the parameter L is 2. The
loss function used here is MAPE. Adadelta is the gradient descent optimization
algorithm. The attention layer is fully connected and uses tanh activation. And
the code is available on github 2.

4.4 Results

As shown in Table. 1, the proposed model exhibits the best performance in
terms of ACC in all the situations of t = 1, 2, 3, 4, and 5. It means that the

2 https://github.com/AIOpenData/attention
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DLAM consistently achieves higher accuracy than other models across different
observation times. What is more, the proposed model also exhibits the best per-
formance in terms of MAPE in all the situations mentioned above. That is, the
proposed model achieves higher accuracy and lowers error rates simultaneously.
In the experiments, all the models used for comparison achieve acceptable low
error rates, except RPP. RPP can avoid this problem with prior [32], which
incorporates conjugate prior for the fitness parameter. However, the RPP with
prior does not improve the ACC performance. Overall, the proposed model also
outperforms RPP with prior.

Table 1. The performance of various models on the data set.

t = 1 t = 2 t = 3 t = 4 t = 5

Models MAPE ACC MAPE ACC MAPE ACC MAPE ACC MAPE ACC

RPP 0.219 0.819 0.381 0.661 0.686 0.524 0.904 0.433 1.376 0.370

SVR 0.195 0.814 0.252 0.664 0.296 0.579 0.331 0.528 0.362 0.493

LR 0.136 0.924 0.207 0.752 0.269 0.629 0.330 0.540 0.386 0.482

CART 0.131 0.913 0.202 0.758 0.256 0.634 0.297 0.549 0.328 0.489

RNN 0.123 0.940 0.185 0.804 0.234 0.703 0.298 0.590 0.317 0.551

DLAM 0.121 0.960 0.168 0.849 0.203 0.757 0.231 0.693 0.255 0.643

Compared to the other methods in terms of ACC and MAPE, the proposed
model increases with the number of years after the training period. Compare to
RNN (the most efficient method certified in recent works), the proposed model
achieves a few performance improvements, about 1.65% in terms of MAPE and
about 2.13% in terms of ACC when t = 1. However, in the situation of t = 5, the
proposed model achieves significant performance improvement of about 24.31%
in terms of MAPE and about 16.7% in terms of ACC. In other words, the
proposed model shows much superiority over other models in scientific impact
prediction, especially in the long-term situation.

5 Further Exploration

Effectiveness of the attention mechanism. The authors remove the
attention module of the proposed model to verify the effectiveness of the atten-
tion mechanism. The remainder is RNN with LSTM units (labeled as LT-CCP),
proven to be useful in long-term citation count prediction. In the next step, we
add the attention mechanism in two different ways. Firstly, we add the atten-
tion module before the RNN module, labeled as ATT-B-LT (attention before
LT-CCP). In a second way, we add the attention module after the RNN mod-
ule, labeled as ATT-A-LT (attention after LT-CCP). As shown in Fig. 3(b) and
Fig. 3(a), the ACC is increased, and the corresponding MAPE is decreased. Both
ATT-B-LT and ATT-A-LT perform better than LT-CCP in terms of MAPE and
ACC. Introducing the attention module improves the ability of scientific impact
prediction. The effectiveness of the attention mechanism is verified.
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(a) ACC comparision. (b) MAPE comparision.

(c) LT-CCP (RNN with
LSTM).

(d) ATT-B-LT. (e) ATT-A-LT (DLAM).

Fig. 3. The performance comparison in citation count prediction.

In addition, we can see that the ATT-A-LT performs better than ATT-B-
LT. When the attention model is applied after a deep learning model, it is more
effective than the reverse combination. It indicates that the deep learning model
can learn the implicit features underlying the citation records, which boots the
performance.

Analysis of the citation distribution. We illustrate the actual and the
predicted citation distribution of LT-CCP (RNN with LSTM), ATT-B-LT, and
ATT-A-LT (DLAM) when t = 5 in Fig. 3(c), Fig. 3(d), and Fig. 3(e), respec-
tively. The LT-CCP (RNN with LSTM) illustrated in Fig. 3(c) shows the best
simulation of the power-law distribution. But the ATT-B-LT shown in Fig. 3(d)
and the ATT-A-LT (DLAM) shown in Fig. 3(e) present bad simulation of the
power-law distribution. The results show that LT-CCP (RNN with LSTM)
matches very well with that of real citations, but the ATT-B-LT and the ATT-
A-LT (DLAM) don’t. Usually, it is believed that the more similar the power-law
distribution, the whole result is better. At first glance, it seems that LT-CCP
(RNN with LSTM) performs the best.

However, the first thought is wrong. As verified in Fig. 3(a) and Fig. 3(b), the
LT-CCP (RNN with LSTM) performs the worst. In fact, the LT-CCP only has a
better fitting effect on the papers with little citation counts. On the contrary, the
ATT-B-LT and ATT-A-LT (DLAM) have a better fitting effect on the highly
cited papers. The methods with attention mechanisms achieve better overall
performance than others. It is more accordant with practical prediction require-
ments that a few papers occupy a vast number of citations. It further proves the
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effectiveness of the attention model. The experimental results indicate that we
need to change the fixed pattern of thinking in quantifying long-term scientific
impact.

6 Conclusion

Scientific impact evaluation is always a critical point in decision-making concern-
ing recruitment and funding in the scientific community. The rapid evolution of
scientific research has been creating a massive volume of publications every year.
Among the many quantification measures of scientific impact, citation count
stands out for its frequent use in the research community. Although the peer-
review process is the mainly reliable way of predicting a paper’s future impact,
the ability to foresee the lasting impact based on citation records is increasingly
essential in the scientific impact analysis in the era of big data.

SciSci provides a quantitative understanding of the scientific impact based on
big data empirical analysis. In this paper, the authors develop an attention mech-
anism in long-term scientific impact prediction and verify its effectiveness. More
importantly, this paper provides us great insights into understanding the critical
factor in quantifying the long-term scientific impact. Usually, researchers try to
make the predicted citation distribution similar to the original one. However,
the experimental results in the paper question this solution. In future research
work, we need to change the fixed pattern of thinking in quantifying the long-
term scientific impact and emphasize limited attention to better stand on giants’
shoulders.
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