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Abstract  
Ambient Assisted Living environments use different sensors and actuators to enable their end-
users to live in their preferred environments. Unlike smart homes, where a target audience is 
usually a family unit, standard Ambient Assisted Living end users are care receivers and care 
providers. This article describes an approach based on the fog computing paradigm to detect 
sleep apnea in an Ambient Assisted Living context unobtrusively. The edge nodes process and 
detect local activities of daily living events and have direct control of the local environment. 
The fog nodes are used to further process and transmit data. The cloud is used for more complex 
and anonymous data computation. This research shows that sensors, which are unobtrusive and 
do not interfere with users' daily routines, can be successfully used for pattern observation. 
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1. Introduction 

Advancements in cloud computing and the 
Internet of Things (IoT) have had a positive 
impact on pervasive computing and can 
improve Ambient Assisted Living (AAL) 
solutions. Fog computing is a newer discipline 
that brings an opportunity to fill in some gaps 
and improve many aspects of cloud-based AAL 
systems, mainly by increasing user privacy if 
used correctly [1], [2]. 

Technology for monitoring, assisting, and 
improving personal health has improved 
considerably with affordable wearable and 
unobtrusive sensors, cloud computing, and 
improved Internet connectivity. The presence 
and rapid growth of the Internet of Things (IoT) 
paradigm has also impacted how people 
monitor their health. Most current wearable 
devices can monitor heart rate and physical 
activity.  More appliances come with Internet 
connection capability, and smart sensors are 
becoming increasingly common. The data 

obtained with unobtrusive sensing can give a 
more detailed picture of the care receivers' 
health and personal habits. In that way, 
technology directly impacts elderly and 
disabled people’s ability to remain at home and 
live more independent lives [3][4]. AAL is also 
addressing the growing cost of traditional 
health care. Advances in AAL's research 
provide tools and methods for improving the 
health of the elderly and people with 
disabilities. On the other hand, Enhanced 
Living Environment (ELE) is a field that 
provides resources for personal health for the 
general population. Although AAL and ELE 
address different target audiences, both fields 
benefit from similar technology [5]. 

A typical AAL goal is to enable care 
providers to have technology-enabled 
continuous monitoring of care receivers. It 
reduces care costs on the one hand and 
increases care efficiency on the other hand 
[6][7]. Cloud paradigm fits well for this 
scenario as data can be aggregated and analyzed 
in a centralized location. An interface for care 



 
 
 
 

providers can be provided from the cloud using 
the web and mobile devices. Network reliability 
and demand for real-time processing of risk 
factors and different privacy concerns require 
some local data processing. Fog computing 
addresses these problems by its definition. 

A single device, individual, or group of 
unobtrusive sensors present in the ELE can 
provide input on a limited set of health aspects. 
Smartwatches and health trackers can track 
body temperature, heart rate, walking or 
running; environmental sensors can detect 
temperature, humidity, fall detection, and 
movement within the home. A more holistic 
picture of these devices and sensors can be 
provided if connected to the cloud, where all the 
data is analyzed for more robust data processing 
techniques. By using data from many users, 
machine learning (ML) algorithms can learn 
and predict health hazards and find correlations 
between the environment and human health 
[8][9]. 

While IoT cloud-based computing benefits 
are visible both in research and daily use, there 
are many drawbacks when it comes to personal 
health care data clouds. The most significant 
ones are the following: 

• The lack of security of IoT devices and 
companies' un-proper practices that gather 
and abuse personal data have made 
consumers more proactive in protecting 
their data [10]. There is a potential of 
targeted advertisement to identify personal 
health details, with a possibility that future 
employers could refuse potential employees 
because of their health risks or personal 
habits. Insurance companies can purchase 
personal data and use it to deny coverage or 
increase premiums. Protections against 
these practices vary and can be loose in 
some jurisdictions. Even when such 
protections exist, the legal expenses can be 
high, and the case can be challenging to 
prove. Fog computing can have a role in data 
protection by moving some data analysis to 
the edge nodes and anonymizing the cloud's 
data. 
• Personal healthcare and AAL systems 
can generate a significant quantity of data 
[11]. Some ALE scenarios, such as fall 
detection, require having an immediate 
reaction of the system by triggering an alarm 
to the care provider. Data pre-processing on 
edge nodes can significantly reduce the 

bandwidth requirement and the need for 
real-time cloud communication. 
• Cloud downtime or connectivity issues 
can be a problem in the case of AAL [12]. 
While many large cloud providers have 
multiple availability zones, the cost of 
having high availability of the cloud is 
higher. Edge nodes can more easily be 
clustered, allowing for the high availability 
of fog computing. 
In this paper, we identify multiple benefits 

of fog computing in the typical AAL scenario 
and propose an architecture that would make 
them possible. The AAL fog-based architecture 
is described in Section 2 of this paper. The 
proposed architecture benefits are illustrated 
with the experiment presented in Section 3, and 
Section 4 concludes the paper. 

2. Fog based AAL architecture 

Fog computing adds a layer to the cloud 
computing architecture. However, it should not 
be interpreted as an extension of the cloud. Fog 
computing spans to adjacent physical locations. 
It supports online analytics and various 
communications networks in performing 
distributed computing [13]. There are four 
logical layers of Fog computing. 

Data is generated by sensors that can be 
wearable or body sensors and peripheral or 
environmental sensors on the first layer. Data 
can also be generated from external sources 
such are: social networks, clinical center 
information systems, or medical databases. 
Data collected by the sensors can include vital 
signs, personal habits, or environmental factors. 
External data sources can provide different 
information, including medical check results, 
medical databases for diagnostics, and similar. 

The fog layer gathers the sensor data, 
processes them, and passes either processed or 
portions of raw data to the cloud. The devices 
directly connected to the sensors are called edge 
nodes. Aside from collecting data, they can take 
action with the user. Each LAN environment 
can have one or more edge nodes, depending on 
the application requirements and scale. In 
elderly care facilities, data for multiple tenants 
could be processed on the same edge nodes. 
These actions can include providing feedback 
to the person to take their medicine or to start 
exercising. They can directly interact with the 
environment, such as: activating the humidifier 



 
 
 
 

or regulating the room temperature, controlling 
electrical appliances, and cutting-off for water, 
gas, and electricity in case of an emergency. 
The fog network usually has a more limited 
capacity than the cloud for data computation 
and cannot do complex machine learning and 
feature extraction.  

However, fog nodes could be able to run 
algorithms developed by machine learning. As 
the machine learning system improved and 
evolved, regular updates could be pushed down 
to the fog network to improve sensor data 
patterns. Using this methodology, ADL 
detecting ML could receive continuous data 
and improve the detection rate. Events that take 
a brief time, such as when a person falls, can be 
detected by the fog nodes using the latest ML 
model improved in the cloud. 

The cloud layer assembles and processes the 
data from multiple sources and creates machine 
learning models. The feature extraction is done 
at this layer as well. Data from the fog and 
external sources is collected and processed by 
the data fusion component [14]. The output is 
an improved knowledge base. The service layer 
uses this knowledge base in turn. 

The service layer is the product of the 
system.  Knowledge obtained by analyzing the 
data is used for services, including creating 
customized recommendations for diet and 
exercise, improving diagnostics systems, 
providing updates to the health providers, and 
adding additional information in medical 
databases. 

The critical features that should be satisfied 
by the system include security, privacy, high 
availability, and interoperability. Security and 
privacy [15] can be addressed by implementing 
best practices to protect the network and the 
data. Redundancy and automatic fail-over are 
needed to provide high availability, primarily 
when the health care recipient’s life depends on 
the assisted living system. The increased 
complexity requires ensuring connected and 
inter-operable components by using 
frameworks intended to ensure mutual 
compatibility [16]. 

In fog computing, the nodes nearest to the 
devices are named edge nodes. In healthcare 
systems, these nodes represent smart e-health 
gateways. They act as a bridge for medical 
sensors to cloud computing platforms. The 
main requirement of a gateway is to support 
various wireless protocols and inter-device 
communication. Its role can be extended to 

support several features such as acting as a 
repository to temporarily store sensors’ and 
users’ information and bring intelligence by 
enhancing data fusion, aggregation, and 
interpretation techniques. It is essential to 
provide preliminary local processing of sensors' 
data, which is the primary role of a smart e-
health gateway. Smart e-health gateway can 
tackle many challenges in ubiquitous healthcare 
systems such as energy efficiency, scalability, 
interoperability, and reliability issues [17]. 

Due to the privacy concerns and the 
technical aspects for scalability and 
interoperability, it is crucial to identify and 
trace the data flow in the system. Sensor data 
originates when sensors acquire measurement 
from the physical world. This measurement is 
represented by an electrical signal transferred to 
a controller that would interpret the signal. 
Some sensors are manufactured to include the 
electronic circuits to digitalize the reading, and 
some are even Internet-connected, enabling 
them to upload the data to a remote system 
directly. The sensor data is then passed to the 
local processing nodes. These nodes are part of 
the fog and can communicate to other layers of 
the fog. The data on these edge nodes is 
processed for local events detection. 

Only the edge nodes or smart e-health 
gateways should be able to get unfiltered raw 
sensor data. The data that is passed on to other 
layers of the fog is pre-processed [18]. From 
this point, the data can be split into multiple 
processing paths depending on the desired 
function. Data with person-identifying 
properties can only be passed to the fog areas 
used for healthcare provider usage in a 
compliant way with local regulations for 
handling medical data. Data used for science 
research can also contain medical data, but 
personal identifiers should be stripped or 
hashed. Other service types might require 
aggregated data that does not expose the user’s 
medical conditions. It, for example, can include 
the average time spent outdoors. Such data can 
be correlated with local weather to determine 
the best time to organize group activities for the 
community's senior members. Some data might 
be of the type that the person would like to share 
on social media or other platforms. It might 
include exercise data such as walking, hiking, 
or riding a bike. 

Each of the services dealing with user data 
is logically independent and can be hosted on 
separate cloud platforms. The health provider 



 
 
 
 

service is independent of social media or 
medical research databases. The separation of 
the cloud can be implemented by separation on 
any level in the fog network. As the data is 
passed between layers of the fog network, 
several processing types can occur. Data 
processing tasks mostly would take place on the 
edge nodes or smart e-health gateways as the 
gateways would directly interface with the 
sensor network and receive raw sensor data. At 
this layer, we can identify the following types 
of tasks: 

Data filtering is used to filter noise, invalid 
sensor readings, and redundant information that 
does not contribute to the desired information 
the system should induce. Sensor data contains 
valuable information. However, they also carry 
non-deterministic errors such as motion 
artifacts, data corruption issues, and unwanted 
signals that are also significantly uploaded to 
increasing storage requirements and power 
consumption. Fog computing could play an 
essential role in increasing efficiency and 
reduce storage requirements for medical big 
data solutions [19]. 

Anonymizing of data strips or replacing 
person-identifying information from data 
packets. When there is a requirement to 
separate patient/customer data, personal 
information is replaced with unique identifiers. 
This data can be passed on to the fog nodes for 
added security using an enterprise service bus 
(ESB). 

Data fusion automatically transforms 
information from different sources and points 
into a representation that provides practical 
support for automated decision-making. 
Applying data fusion in gateways provides 
several advantages: reduced data ambiguity, 
extended coverage in space and time, 
robustness and reliability, and increased data 
quality. After data is fused, only final results are 
transmitted through the network so the network 
bandwidth can be efficiently utilized, and the 
system can be more energy-efficient [15]. 

Data processing that can be done on any 
layer of the fog network includes: 

• Data compression is used to reduce the 
amount of bandwidth required to transmit 
the sensor network's information. 
Compression can be lossy or lossless. Lossy 
compression can be acceptable in many 
cases, especially if the sensor data's 
resolution is too high. Besides, the extra 

information will not cause significant 
improvements in the algorithms [20]. 
• Data encryption is used to protect data 
as it passes through the network. Data 
encryption can be full or partial. For 
example, a gateway node would encrypt 
sensor readings and meta-data of the person. 
However, the personal information would 
be encrypted so that only the healthcare 
provider’s network would have the 
decryption key. The sensor data would be 
encrypted so the fog nodes would decrypt 
and, without person-identifying meta-data, 
pass it onto cloud instances to do statistical 
analysis or machine learning. This method 
will reduce data duplication in the network 
as the same information will not have to be 
transmitted twice from the gateway to 
different fog nodes. 
• Error code correction can be used to 
ensure validity during transmission. The fog 
network can rely on various data 
transmission techniques and technologies to 
pass on the information; sometimes, the 
network protocol would have a built-in 
feature to ensure valid transmission. When 
this is not the case, the fog nodes would have 
to ensure the data's validity by identifying 
and correcting transmission errors. The 
same applies to the data traveling from the 
sensors to the gateway, as many sensors do 
not have a buffer memory and cannot re-
transmit data. Error code correction will be 
used to identify faulty readings and discard 
them (because having gaps in the data is 
often better than having inaccurate data). 

3. Experiment 

A common usage of sensor networks is to 
train machine learning models and enable 
different end-user actions. Depending on the 
number of sensors used, the number of features 
extracted from the sensor data, and the data 
generation rate, generating the model will most 
likely be done in the cloud due to the resources 
demand and a potential need to use data from 
other locations. On the other hand, the 
implementation of the model can and should be 
done on edge. As an example, we will consider 
a data flow model to detect sleep apnea using 
noninvasive sensors, illustrated in Figure 1.  
 

 



 
 
 
 

 
Figure 1: Data processing for unobtrusive sleep apnea detection 

The sensor readings from multiple care 
recipients are collected. In scenarios of multiple 
occupants, such as in a hospice, edge nodes 
retain personal or identifiable information, 
which is then stripped by the edge. 

The sensor readings from multiple care 
recipients are collected. In scenarios of multiple 
occupants, such as in a hospice, edge nodes 
retain personal or identifiable information, 
which is then stripped by the edge. 
 

 
Figure 2: Floor plan and sensor layout  
 

The first phase is to pre-process the data by 
identifying body movements. As described in 
[21], sleep apnea is accompanied by body or leg 
movement, which noninvasive sensors can 
detect. We have used multiple PIR sensors and 
piezoelectric-based sensors placed under the 
mattress (see Figures 2 and 3).  
 

 
Figure3: Sensor for movement detection on 
the bed under the mattress 
 

The strong correlation between the two 
sensor types, shown in the diagram of recorded 
sensor data over 8 hours, is presented in Figure 
4. 



 
 
 
 

When motion is detected, the data from 
multiple noninvasive sensors is processed on 
the edge node. The local machine learning 
model is run, and the possible occurrence of 
sleep apnea is diagnosed. Periodical sessions 
with invasive sensors or medical professionals' 
observations can be carried out to label the data 
set [22]. 

 
Figure 4: Movement in bed over 8 hours of 
continuous sleeping 
 

After anonymization of the data, it is 
packaged and sent to the cloud for additional 
processing. The data model on the cloud side is 
run to verify the outcome for the received data. 
If the model present in the cloud makes positive 
detection for the received data and if the data 
was previously labeled with a negative result by 
the edge node, then the updated model is sent 
back to the edge node, which in turn processes 
the data against the updated model. 

Sensor data that does not suggest strong 
negative results are marked for further labeling 
if additional data such as monitoring from 
medical equipment or video that can be 
analyzed by a trained professional is available. 
Such feedback is periodically included to build 
the cloud model continuously. 

3.1. Classification algorithms 

This section explains the classification 
algorithms used for feature ranking and 
construction classification models. The 
accuracy was used for the comparison of 
various classification models throughout the 
system. One of the classification algorithms 
used in our experiments is logistic regression 
[23]. For small datasets, it is straightforward 
and provides easily interpretable models. 
Moreover, it is a lightweight algorithm, which 
can be useful if the system is deployed on 
hardware with limited resources. 

Random Forest (RF) [24] is an effective 
algorithm that creates an ensemble of decision 
trees [25] by randomly sampling training 

instances from the dataset. The sampling is 
random but consistent while growing a single 
tree. The multiple decision trees are trained on 
the training data independently. 

The tree branching is performed by finding 
the best split from the features on each node. 
During classification, trees vote for the class, 
and the majority class is eventually predicted. 
Like RF, the Extremely Randomized Trees 
(ERT) algorithm [26] also generates trees' 
ensembles. ERT chooses the split from the 
attributes randomly, unlike RF. As a result, the 
number of calculations per node is decreased, 
thus increasing the training speed. Both 
algorithms provide excellent classification 
performance and can train models on extensive 
datasets very fast. 

Both ERT and RF provide feature 
importance estimates, a property used for 
feature ranking and discarding of low-
importance features during the feature selection 
phase. We have used the feature importance 
estimates when training an ERT classifier due 
to its better speed than RF. 

Additionally, we have also used the Support 
Vector Machines (SVM) classifier [27] with 
Gaussian kernel. Even though SVMs are much 
slower algorithms as the dimensionality of data 
increases, they are compelling, especially after 
parameter tuning [28]. Whenever we used 
SVMs, the datasets were normalized so that the 
training dataset will have a mean and standard 
deviation of 0 and 1, respectively. The RF and 
ERT parameters were the default per their 
implementation in the [29] library. We did not 
notice any significant gain by tuning their 
parameters (i.e., number of features per tree). 
Both ERT and RF classifiers were trained using 
100 trees, which was appropriate for this size 
dataset. Using fewer trees improved the speed 
while offering slightly worse classification 
performance. This library was used for the other 
classification algorithms as well. 

3.2. Feature extraction 

The measurements from sensors can detect 
atomic actions or states. More complex actions 
are depending on the context, which recent 
measurements can determine. Therefore, the 
data needs to be first adequately segmented, and 
then feature extraction performed [30]. This 
study additionally discusses the window size 
impact on activity recognition. Generally, 



 
 
 
 

lower sensor frequencies entail longer 
windows. It is considered during our 
experiments by using different window lengths 
and analyzing the accuracy depending on them. 
The segmentation into windows, step 1 on 
Figure 5, was performed, thus excluding the 
border intervals when the activity changes from 
one activity to another. 

Segmenting of streaming data into windows 
is performed in step 2 in Figure 5. Step 2 
extracts the following types of features (the 
number of measurements within one window is 
denoted by n.): 

• Basic statistics results in 14 features 
per time series. 
• Equal-width histogram calculated with 
[log! 𝑛+1] intervals, based on the Sturges 
rule [31]. It results in 5 to 8 features when 
the window length varies from 5s (25 
measurements) to 20s (100 measurements). 
• Quantile-based features: first quartile, 
median, third quartile, interquartile ranges, 
and other percentiles (5, 10, 20, 30, 40, 60, 
70, 80, 90, 95), also used in [32]. From one-
time series, it generates 14 features. 
• Auto-correlation of the measurements 
within one sliding window [33]. Let τ denote 
the amount of shift, and its domain is 

defined as τ ∈ [1, ] 
• For exponentially increasing values of 
τ in that range, classical autocorrelation and 
Pearson correlation are calculated. 
Additionally, it calculates both correlations 
using the first and second half of 
measurements within one sliding window. 
This results in 3 to 4 τ values when the 
window length varies from 5s (25 
measurements) to 20s (100 measurements). 
• Pearson correlations between pairs of 
time series; For five-time series, this results 
in 9 features. 
• Linear and quadratic fit coefficients; 
There are two linear fit and three quadratic 
fit coefficients, yielding five features in total 
per time series. 
• As a result of step 2, 250 to 270 features 
are generated depending on the window 
length. In step 3 performs feature 
importance and drift sensitivity estimation is 
done. Next, step 4 performs coarse-grained 
feature selection, which tests a set of 
thresholds used to discard features with low 
importance or high drift sensitivity. 

The system evaluates different feature sets 
by building classification models using the 
training dataset and evaluating them with the 
validation dataset. The test set is not utilized at 
this stage at all. Thus, only the feature set that 
results in the best classification accuracy is 
retained. To summarize, the purpose of this step 
is to significantly reduce the feature set size by 
discarding features with low importance or high 
data drift sensitivity. 

The system evaluates different feature sets 
by building classification models using the 
training dataset and evaluating them with the 
validation dataset. The test set is not utilized at 
this stage at all. Thus, only the feature set that 
results in the best classification accuracy is 
retained. To summarize, the purpose of this step 
is to significantly reduce the feature set size by 
discarding features with low importance or high 
data drift sensitivity. 

After the feature set is reduced, step 5 uses 
the training and validation sets to perform 
parameter tuning for the SVM. 

Finally, step 6 evaluates different classifiers 
by building classification models with the 
training and validation dataset's union and 
evaluating it using the independent test set. 
 

 
Figure 5: Feature extraction, selection, and 
classification flow 
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4. Results and evaluation 

The duration of our experiment was 8 hours. 
The sampling rate was set to 10Hz, thereby 
measuring ten values from each sensor every 
second. We divided the dataset into three 
different subsets: training, validation, and 
testing. The training subset consisted of the first 
45% records for each action, and the validation 
subset consisted of the next 25% records. The 
remaining 30% of records belonged to the test 
subset. When performing parameter tuning for 
SVMs and making feature selection, the 
training set was used to build models, and the 
validation set was used to evaluate their 
performance. Once this phase was completed, 
the final evaluation was performed only with 
the best feature set decided after the feature 
screening and using the most optimal 
parameters. The union of the training and 
validation sets was used to build classification 
models for making final predictions. The test 
set was used for building predictions and the 
performance evaluation. 

5. Conclusion 

As personal health becomes pervasive and 
the data generated by it increases in volume, fog 
computing offers a solution for many critical 
challenges. The added flexibility of the fog 
architecture enables better placement of 
computing and network resources. Smarter data 
flow could protect personal data, bandwidth 
cost could be reduced, and more scalable, 
secure, and interoperable systems can be 
designed. This paper illustrates those benefits 
by providing an experimental illustration of 
typical AAL service provided by fog-based 
health care ELE. 

By using simple hardware, the AAL data 
was streamed to a cloud-based system, where it 
was fused. Using a systematic and automated 
feature extraction and selection process, we 
could extract robust and reliable features that 
facilitated building powerful classification 
models. 
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