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Abstract
A continuous-time network evolution model is studied. The basic units

of the model are edges and triangles. The evolution of the units is governed
by a continuous-time branching process. The asymptotic behaviour of the
model is studied. It is proved that the number of edges and triangles have
the same magnitude on the event of non-extinction, and it is 𝑒𝛼𝑡, where 𝛼 is
the Malthusian parameter.

Keywords: Random graph, network, branching process, Malthusian parame-
ter
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1. Introduction

Network theory is one of the most popular research topics of our age. It studies
both real-life networks and theoretical models. Networks are described by graphs.
The nodes of the network are the vertices of the graph, and the connections are
the edges. One of the most famous models is the preferential attachment model
introduced by Albert and Barabási. It is a discrete time model (that is the evolution
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events occur at time 𝑛 = 1, 2, . . . ) and it describes connections of two nodes.
The meaning of connection can be cooperation or any interaction. Therefore the
connections of more than two nodes are also important. For example, Backhausz
and Móri in [1] describe three-interactions, Fazekas and Porvázsnyik in [6] 𝑁 -
interactions, or Fazekas and Perecsényi in [5] star-like connections. Continuous-
time network evolution models seem to be more difficult but more realistic models
than the discrete time ones. In [8] a continuous-time branching process is applied
to govern the evolution mechanism. In [4] we extended the results of [8] for 3
interaction models. There we applied the general theory of branching processes
[7]. In this paper we describe our model and present our limit theorems. The
mathematical proofs are quite long, so they will be published in another paper (see
[3]). In the paper at hand we show numerical and simulation results supporting
our mathematical theorems.

2. The Model

In this paper we shall study the following random graph evolution model. Param-
eter 𝑡 ∈ [0,∞) will denote the time. At the initial time 𝑡 = 0 we start with a single
object, it can be either an edge or a triangle. We call this object the ancestor.
This ancestor object produces offspring objects which can be also edges or trian-
gles. Then these offspring objects also produce their offspring objects, and so on.
The reproduction times of any object, including the ancestor, are given by its own
Poisson process with rate 1. We assume that during the evolution, the reproduction
processes of different objects are independent. The reproduction processes of the
triangles are independent copies of the generic triangle’s reproduction mechanism.
Similarly, the reproduction processes of the edges are independent copies of the
reproduction mechanism of the generic edge.

Consider the generic edge and its Poisson process Π2 (𝑡). When the Poisson
process jumps, then a new vertex appears an it is connected to our generic edge.
The probability that this new vertex is connected to the generic edge by one new
edge is 𝑟1, 0 ≤ 𝑟1 ≤ 1. The end point of this new edge is chosen from the two
vertices of the generic edge uniformly at random. So in this step an edge produces
one edge. The other possibility is that the new vertex is connected to both vertices
of the generic edge. It has probability 𝑟2 = 1 − 𝑟1. In this case the offspring of
the generic edge is a triangle consisting of the generic edge and the two new edges.
It is important to fix that in this case the generic edge and the new triangle will
produce offspring, but the two new edges will not do it.

For the generic triangle the reproduction is the following. Let Π3 (𝑡) , 𝑡 ≥ 0,
denote the Poisson process with rate 1 corresponding to our triangle. The jumping
points of Π3 (𝑡) are the birth times of the generic triangle. At every birth time a
new vertex is added to the graph which can be connected to our generic triangle
with 𝑗 edges (𝑗 = 1, 2, 3). Let 𝑝𝑗 denote the probability that the new vertex will
be connected to 𝑗 vertices of our generic triangle. The vertices to be connected to
the new vertex are chosen uniformly at random. It follows from the definition of
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the above evolution process that at each birth step we always add 1 new vertex.
With probability 𝑝1 the generic triangle gives birth to a new edge. However, in
the remaining cases we count only the new triangles and not the new edges. So,
with probability 𝑝2 the generic triangle produces one child triangle, moreover, with
probability 𝑝3, the generic triangle produces three children triangles.

We shall consider that any edge is of type 2 object and it will be denoted by
subscript 2, while for a triangle it will be denoted by 3. So let us denote by 𝜉𝑖,𝑗(𝑡)
the number of type 𝑗 offspring of the type 𝑖 generic object up to time 𝑡 (𝑖, 𝑗 = 2, 3).
As usual, 𝜉𝑖,𝑗 , 𝑖, 𝑗 = 2, 3, are point processes. Then

𝜉2(𝑡) = 𝜉2,2(𝑡) + 𝜉2,3(𝑡)

is the number of all offspring (either edge or triangle) of the generic edge up to
time 𝑡. Similarly,

𝜉3(𝑡) = 𝜉3,2(𝑡) + 𝜉3,3(𝑡)

is the number of all offspring (either edge or triangle) of the generic triangle up to
time 𝑡.

Let us denote by 𝜏3(1), 𝜏3(2), . . . the birth times of the generic triangle and let
𝜀3(1), 𝜀3(2), . . . be the corresponding total litter sizes. That is the generic triangle
bears 𝜀3(𝑖) children being either triangles or edges at the 𝑖th birth event. Then
𝜀3(1), 𝜀3(2), . . . are independent identically distributed discrete random variables
with distribution P (𝜀3(𝑖) = 𝑗) = 𝑞𝑗 , 𝑗 ≥ 1. We have

P (𝜀3(𝑖) = 1) = 𝑞1 = 𝑝1 + 𝑝2, P (𝜀3(𝑖) = 3) = 𝑞3 = 𝑝3,

P (𝜀3(𝑖) = 𝑗) = 𝑞𝑗 = 0, if 𝑗 /∈ {1, 3} .
Throughout the paper we assume that 𝑝1 < 1, because otherwise there were no
reproduction of the triangles. We assume that the litter sizes are independent of
the birth times.

Let the finite, non-negative random variable 𝜆3 be the life-length of the generic
triangle. We assume that the reproduction terminates at the death of the indi-
vidual, therefore 𝜉3 (𝑡) = 𝜉3 (𝜆3) for 𝑡 > 𝜆3. Then the reproduction process of a
triangle can be given by

𝜉3 (𝑡) =
∑︁

𝜏3(𝑖)≤𝑡∧𝜆3

𝜀3(𝑖) = 𝑆3 (Π3 (𝑡 ∧ 𝜆3)) ,

where Π3 (𝑡) is the Poisson process, 𝑆3(𝑛) = 𝜀3(1) + · · · + 𝜀3(𝑛) gives the total
number of offspring of the generic triangle before the (𝑛 + 1)th birth event and
𝑥 ∧ 𝑦 denotes the minimum of {𝑥, 𝑦}.

The survival function of the life-length. Let 𝐿3 (𝑡) denote the distribution
function of 𝜆3. Then the survival function of a triangle’s life-length is

1 − 𝐿3 (𝑡) = P (𝜆3 > 𝑡) = exp

⎛
⎝−

𝑡∫︁

0

𝑙3 (𝑢) d𝑢

⎞
⎠ ,
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where 𝑙3 (𝑡) is the hazard rate of the life-length 𝜆3. We assume that the hazard
rate depends on the total number of offspring, so that

𝑙3 (𝑡) = 𝑏 + 𝑐𝜉3 (𝑡)

with positive constants 𝑏 and 𝑐.
Let 𝜆2 be the life-length of the generic edge. Then 𝜉2 (𝑡) = 𝜉2 (𝜆2) for 𝑡 > 𝜆2.

As the edge always gives birth to one offspring (which can be an edge or a triangle),
so the total number of offspring of the generic edge is

𝜉2 (𝑡) = Π2 (𝑡 ∧ 𝜆2) ,

where Π2 (𝑡) is the Poisson process.
Let 𝐿2 (𝑡) denote the distribution function of 𝜆2. Then the survival function of

the life-length of an edge is

1 − 𝐿2 (𝑡) = exp

⎛
⎝−

𝑡∫︁

0

𝑙2 (𝑢) d𝑢

⎞
⎠ ,

where we assume that the hazard rate of the life-length 𝜆2 is of the form 𝑙2 (𝑡) =
𝑏 + 𝑐𝜉2 (𝑡).

We have to mention that we do not delete any triangle or edge when it dies,
because its edges and vertices can belong to other triangles or edges, too. So we
consider a dead triangle or edge as an inactive object not producing new offsprings.

3. Theoretical Results

Here we summarize the theoretical results of our paper [3].

3.1. The Mean Offspring Number
Let us denote by 𝑚𝑖,𝑗 (𝑡) = E𝜉𝑖,𝑗 (𝑡) the expectation of the number of type 𝑗
offspring of a type 𝑖 mother until time 𝑡.

Proposition 3.1. For any 𝑡 ≥ 0 we have

𝑚2,2 (𝑡) = 𝑟1𝐹 (𝑡), 𝑚2,3 (𝑡) = 𝑟2𝐹 (𝑡),

where

𝐹 (𝑡) =

𝑡∫︁

0

(1 − 𝐿2 (𝑠)) d𝑠 =

𝑡∫︁

0

𝑒−(𝑏+1)𝑠𝑒
1−𝑒−𝑐𝑠

𝑐 d𝑠 =
1

𝑐

1−𝑒−𝑐𝑡∫︁

0

(1 − 𝑢)
𝑏+1
𝑐 −1

𝑒
𝑢
𝑐 d𝑢.

E𝜆2 =
1

𝑐

1∫︁

0

(1 − 𝑢)
𝑏+1
𝑐 −1

𝑒
𝑢
𝑐 d𝑢.
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For any 𝑡 ≥ 0 we have

𝑚3,2 (𝑡) = 𝑝1𝐺(𝑡), 𝑚3,3 (𝑡) = (𝑝2 + 3𝑝3)𝐺(𝑡),

where

𝐺(𝑡) =

𝑡∫︁

0

(1 − 𝐿3 (𝑠)) d𝑠 =

𝑡∫︁

0

𝑒−𝑠(𝑏+1)𝑒
3(𝑝1+𝑝2)(1−𝑒−𝑐𝑠)+𝑝3(1−𝑒−3𝑐𝑠)

3𝑐 d𝑠

=
1

𝑐

1−𝑒−𝑐𝑡∫︁

0

(1 − 𝑢)
𝑏+1
𝑐 −1

𝑒
𝑢
3𝑐 (𝑝3𝑢

2−3𝑝3𝑢+3) d𝑢.

E𝜆3 =
1

𝑐

1∫︁

0

(1 − 𝑢)
𝑏+1
𝑐 −1

𝑒
𝑢
3𝑐 (𝑝3𝑢

2−3𝑝3𝑢+3) d𝑢.

0 < E𝜆2,E𝜆3 < ∞ because 𝑏 ≥ 0.

Let

𝑚*
𝑖,𝑗(𝜅) =

∞∫︁

0

𝑒−𝜅𝑡𝑚𝑖,𝑗(𝑑𝑡), 𝑖, 𝑗 = 2, 3,

be the Laplace transform of 𝑚𝑖,𝑗 .

Proposition 3.2. For any 𝜅 ≥ 0 we have

𝑚*
2,2 (𝜅) = 𝑟1𝐴(𝜅), 𝑚*

2,3 (𝜅) = 𝑟2𝐴(𝜅),

where

𝐴(𝜅) =

∞∫︁

0

𝑒−𝜅𝑠𝑒−(𝑏+1)𝑠𝑒
1−𝑒−𝑐𝑠

𝑐 d𝑠 =
1

𝑐

1∫︁

0

(1 − 𝑢)
𝜅+𝑏+1

𝑐 −1
𝑒

𝑢
𝑐 d𝑢.

For any 𝜅 ≥ 0 we have

𝑚*
3,2 (𝜅) = 𝑝1𝐵(𝜅), 𝑚*

3,3 (𝜅) = (𝑝2 + 3𝑝3)𝐵(𝜅),

where

𝐵(𝜅) =

∞∫︁

0

𝑒−𝜅𝑠𝑒−𝑠(𝑏+1)𝑒
3(𝑝1+𝑝2)(1−𝑒−𝑐𝑠)+𝑝3(1−𝑒−3𝑐𝑠)

3𝑐 d𝑠

=
1

𝑐

1∫︁

0

(1 − 𝑢)
𝜅+𝑏+1

𝑐 −1
𝑒

𝑢
3𝑐 (𝑝3𝑢

2−3𝑝3𝑢+3) d𝑢.
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3.2. The Perron Root and the Malthusian Parameter
Let

𝑀(𝜅) =

(︂
𝑚*

2,2 (𝜅) 𝑚*
2,3 (𝜅)

𝑚*
3,2 (𝜅) 𝑚*

3,3 (𝜅)

)︂

be the matrix of the Laplace transforms. By direct calculation we obtain that the
characteristic roots of 𝑀(𝜅) are

𝜚1,2(𝜅) =
(𝑝2+3𝑝3)𝐵(𝜅)+𝑟1𝐴(𝜅)±

√
((𝑝2+3𝑝3)𝐵(𝜅)−𝑟1𝐴(𝜅))2+4𝑝1𝐵(𝜅)𝑟2𝐴(𝜅)

2 . (3.1)

The greater of these values is called the Perron root, that is

𝜚(𝜅) = 𝜚1(𝜅) =
(𝑝2+3𝑝3)𝐵(𝜅)+𝑟1𝐴(𝜅)+

√
((𝑝2+3𝑝3)𝐵(𝜅)−𝑟1𝐴(𝜅))2+4𝑝1𝐵(𝜅)𝑟2𝐴(𝜅)

2

is the Perron root.
We assume that the process is supercritical, that is 𝜚1(0) > 1. Now, that value

of 𝜅 for which the Perron root is equal to 1 is called the Malthusian parameter.
In the usual notation, 𝛼 is the Malthusian parameter if 𝜚(𝛼) = 1. We assume the
existence of the Mathusian parameter. From relation 𝜚(𝛼) = 1 and (3.1) we obtain,
that for the Malthusian 𝛼 we have

𝑟1𝐴(𝛼)(𝑝2 + 3𝑝3)𝐵(𝛼) − (𝑟1𝐴(𝛼) + (𝑝2 + 𝑝3)𝐵(𝛼)) = 𝑟2𝐴(𝛼)𝑝1𝐵(𝛼) − 1. (3.2)

We shall need the eigenvectors of 𝑀(𝛼). So let 𝛼 be the Malthusian parameter
and let (𝑣2, 𝑣3)⊤ be the right eigenvector of 𝑀(𝛼) satisfying condition 𝑣2 + 𝑣3 = 1.
Then direct calculation shows, that

𝑣2 =
(𝑟1 − 1)𝐴(𝛼)

(2𝑟1 − 1)𝐴(𝛼) − 1
, 𝑣3 =

𝑟1𝐴(𝛼) − 1

(2𝑟1 − 1)𝐴(𝛼) − 1
. (3.3)

Again let 𝛼 be the Malthusian parameter and let (𝑢2, 𝑢3)⊤ be the left eigenvector
of 𝑀(𝛼) satisfying condition 𝑢2𝑣2 + 𝑢3𝑣3 = 1. Direct calculation shows, that

𝑢2 = 𝑝1𝐵(𝛼)((2𝑟1−1)𝐴(𝛼)−1)
𝑝1𝐵(𝛼)(𝑟1−1)𝐴(𝛼)−(𝑟1𝐴(𝛼)−1)2 , 𝑢3 = (1−𝑟1𝐴(𝛼))((2𝑟1−1)𝐴(𝛼)−1)

𝑝1𝐵(𝛼)(𝑟1−1)𝐴(𝛼)−(𝑟1𝐴(𝛼)−1)2 . (3.4)

3.3. Results
In the following theorem we shall need the next formulae.

𝐷(𝛼) =
3∑︁

𝑙,𝑗=2

𝑢𝑙𝑣𝑗
(︀
−𝑚*

𝑙,𝑗(𝛼)
)︀′
.

Here 𝑢𝑖 and 𝑣𝑖 are from equations (3.4) and (3.3). Moreover, by Proposition 3.1 or
by Proposition 3.2, we have that

(︀
−𝑚*

2,2(𝛼)
)︀′

= 𝑟1 (−𝐴′(𝛼)) ,
(︀
−𝑚*

2,3(𝛼)
)︀′

= 𝑟2 (−𝐴′(𝛼))
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(︀
−𝑚*

3,2(𝛼)
)︀′

= 𝑝1 (−𝐵′(𝛼)) ,
(︀
−𝑚*

3,3(𝛼)
)︀′

= (𝑝2 + 3𝑝3) (−𝐵′(𝛼)) ,

where

−𝐴′(𝛼) =

∞∫︁

0

𝑠𝑒−𝛼𝑠𝑒−(𝑏+1)𝑠𝑒
1−𝑒−𝑐𝑠

𝑐 d𝑠 = − 1

𝑐2

1∫︁

0

ln(1 − 𝑢) (1 − 𝑢)
𝛼+𝑏+1

𝑐 −1
𝑒

𝑢
𝑐 d𝑢,

−𝐵′(𝛼) =

∞∫︁

0

𝑠𝑒−𝛼𝑠𝑒−𝑠(𝑏+1)𝑒
3(𝑝1+𝑝2)(1−𝑒−𝑐𝑠)+𝑝3(1−𝑒−3𝑐𝑠)

3𝑐 d𝑠

= − 1

𝑐2

1∫︁

0

ln(1 − 𝑢) (1 − 𝑢)
𝛼+𝑏+1

𝑐 −1
𝑒

𝑢
3𝑐 (𝑝3𝑢

2−3𝑝3𝑢+3) d𝑢.

We turn to the limit of the edges and triangles.

Proposition 3.3. Assume that (3.2) has a finite positive solution 𝛼. Assume that
0 ≤ 𝑟1 < 1, 0 < 𝑝1 ≤ 1 and it is excluded, that both 𝑟1 = 0 and 𝑝1 = 1 are satisfied
at the same time.

Let 2𝐸(𝑡) and 3𝐸(𝑡) denote the number of all edges being born up to time 𝑡 if
the ancestor of the population was an edge and triangle, respectively. Then

lim
𝑡→∞

𝑒−𝛼𝑡
𝑖𝐸(𝑡) = 𝑖𝑊

𝑣𝑖𝑢2

𝛼𝐷(𝛼)

almost surely for 𝑖 = 2, 3.
Let 2�̃�(𝑡) and 3�̃�(𝑡) denote the number of all edges alive at time 𝑡 if the ancestor

of the population was an edge and triangle, respectively. Then

lim
𝑡→∞

𝑒−𝛼𝑡
𝑖�̃�(𝑡) = 𝑖𝑊

𝑣𝑖𝑢2𝐴(𝛼)

𝐷(𝛼)

almost surely for 𝑖 = 2, 3.
Let 2𝑇 (𝑡) and 3𝑇 (𝑡) denote the number of all triangles being born up to time 𝑡

if the ancestor of the population was an edge and triangle, respectively. Then

lim
𝑡→∞

𝑒−𝛼𝑡
𝑖𝑇 (𝑡) = 𝑖𝑊

𝑣𝑖𝑢3

𝛼𝐷(𝛼)

almost surely for 𝑖 = 2, 3.
Let 2𝑇 (𝑡) and 3𝑇 (𝑡) denote the number of all triangles alive at time 𝑡 if the

ancestor of the population was an edge and triangle, respectively. Then

lim
𝑡→∞

𝑒−𝛼𝑡
𝑖𝑇 (𝑡) = 𝑖𝑊

𝑣𝑖𝑢3𝐵(𝛼)

𝐷(𝛼)

almost surely for 𝑖 = 2, 3.

110



4. Numerical and Simulation Results

4.1. The Simulation of the Model

To get a closer look on the theoretical results, we made some simulations about
them. We generated our code in Julia language [2]. We chose Julia, because of
the great implementation of priority queues. The simulation time of our code was
significantly faster in Julia than in other programming languages. There were 4
kind of objects in our simulations: a birth event for an edge and a triangle and a
death event for an edge and a triangle. We put all objects in a priority queue with
the priority of its occurrence time, because we can pop out the element with the
lowest priority. If it is a death event, we just modify the number of objects being
born or being alive. If it is a birth event for an object we can handle its birth
process with the predefined parameters 𝑏, 𝑐, 𝑟1, 𝑟2, 𝑝1, 𝑝2, 𝑝3. In the birth process
we generated an exponential time step for the next birth step of our object. After
that we checked if the object is still alive by calculating the survival function. If
the object is dead, we put a death event in the queue and move to the next one. If
it is alive, then we generate the offspring and put them into the priority queue with
the calculated birth time priorities. After this step we moved to the next event.

4.2. Support for the Theoretical Results

Our first step in the simulation was to check if the parameters have a root for
Equation 3.1. In Figure 1 we see that 𝜚(𝜅) − 1 has a root at 𝜅 = 0.9133 with the
parameters 𝑟1 = 0.1, 𝑟2 = 0.9 𝑝1 = 0.2, 𝑝2 = 0.6, 𝑝3 = 0.2, 𝑏 = 0.25, 𝑐 = 0.25.
This numerical value can be considered as the Malthusian parameter 𝛼.

Figure 1. Searching for 𝛼 with 𝜚(𝜅)− 1.

If the conditions were given by the existence of the Malthusian parameter, we
simulated 220 = 1, 048, 576 events and calculated the number of edges and triangles
up to time 𝑡. We have to mention that all the events are processed till the end
time of the simulation thanks to structure of the priority queue. For the above
demonstration we used the parameter set 𝑟1 = 0.1, 𝑟2 = 0.9, 𝑝1 = 0.2, 𝑝2 =
0.6, 𝑝3 = 0.2, 𝑏 = 0.25, 𝑐 = 0.25 again. On Figure 2 and Figure 3 the ancestor
object was a triangle. Here we show 3𝐸(𝑡) by Figure 2a, 3�̃�(𝑡) by Figure 2b, 3𝑇 (𝑡)
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by Figure 3a and 3𝑇 (𝑡) by Figure 3b for the same simulation. On each plot the
simulation result can be obtained by a straight line on a logarithmic scale and the
theoretical result with a dashed linear line with 𝛼 slope. The parallel lines show
us a good support for our Proposition 3.3.

(a) The number of edges alive. (b) The number of edges being born.

Figure 2. Simulation results for the number of edges,
where the ancestor is a triangle.

(a) The number of triangles alive. (b) The number of triangles being born.

Figure 3. Simulation results for the number of triangles,
where the ancestor is a triangle.

For the random variable 𝑖𝑊 of Proposition 3.3 we have got only some general
information, but nothing about the distribution. Therefore we simulated 500 mod-
els with the same parameters until the slope stabilized at a large fixed 𝑡 and saved
the last values for the number of edges and triangles being born and being alive.
After it we multiplied each result by the correct constant values of Proposition 3.3.

𝑖𝑊 ∼ 𝑒−𝛼𝑡
𝑖𝐸(𝑡)

𝛼𝐷(𝛼)

𝑣𝑖𝑢2
∼ 𝑒−𝛼𝑡

𝑖�̃�(𝑡)
𝐷(𝛼)

𝑣𝑖𝑢2𝐴(𝛼)
∼

∼ 𝑒−𝛼𝑡
𝑖𝑇 (𝑡)

𝛼𝐷(𝛼)

𝑣𝑖𝑢3
∼ 𝑒−𝛼𝑡

𝑖𝑇 (𝑡)
𝐷(𝛼)

𝑣𝑖𝑢3𝐵(𝛼)
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Figure 4 demonstrates the histograms of the previously described simulations with
a triangle ancestor (3𝑊 ) and parameters 𝑟1 = 0.1, 𝑟2 = 0.9, 𝑝1 = 0.2, 𝑝2 =
0.6, 𝑝3 = 0.2, 𝑏 = 0.25, 𝑐 = 0.25.

(a) Histogram calculated from 𝐸(𝑡). (b) Histogram calculated from �̃�(𝑡).

(c) Histogram calculated from 𝑇 (𝑡). (d) Histogram calculated from 𝑇 (𝑡).

Figure 4. Histogram of 3𝑊 calculated from the simulations.

It was also important to know that the experimented 3𝑊 has the same dis-
tribution for the different kinds of extractions. For this purpose we made the
Kolmogorov-Smirnov test for each pair of extractions. Table 1 shows us the 𝑝-
values. In the table 𝐸 denotes the empirical distribution of 3𝑊 came from the
number of edges being born, �̃� denotes the empirical distribution of 3𝑊 came
from the number of edges being alive, 𝑇 denotes the empirical distribution of 3𝑊
came from the number of triangles being born and 𝑇 denotes the empirical distri-
bution of 3𝑊 came from the number of edges being alive.

Table 1. p-values for the Kolmogorov-Smirnov tests.

�̃� 𝑇 𝑇
𝐸 0.8127 0.9938 0.4676
�̃� 0.9938 0.9938
𝑇 0.8127
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