
Compute Shader in
Image Processing Development∗

Robert Tornai, Péter Fürjes-Benke

University of Debrecen, Faculty of Informatics
tornai.robert@inf.unideb.hu
furjes.peter99@gmail.com

Proceedings of the 1st Conference on Information Technology and Data Science
Debrecen, Hungary, November 6–8, 2020

published at http://ceur-ws.org

Abstract
This paper will present the OpenGL compute shader implementation of

the BlackRoom software. BlackRoom is a platform-independent image pro-
cessing program, which supports multiple execution branches like Vulkan
fragment shader, OpenGL fragment shader, and CPU-based rendering. In
order to support a wider range of devices with different amounts of mem-
ory, users can utilize tile rendering, and the program can be run in browsers
thanks to the WebAssembly format.

Thanks to our program’s built-in benchmark system, the performance dif-
ferences between the implemented CPU- and GPU-based executing branches
can be easily determined. We made a comprehensive comparison between
the rendering performance of our CPU, OpenGL compute shader, fragment
shader and Vulkan fragment shader branches. Latter is under development,
which induces a relatively higher runtime presently.

A further aim is to optimize our algorithms, which are using Vulkan API.
Besides that, the program will be capable of rendering multiple effects at once
with Vulkan fragment shader. Furthermore, the available GPU rendering and
multi-threading features are planned to be enabled for WebAssembly platform
yielded by the Qt framework [2].

Keywords: Image processing, benchmark, CPU, shaders, Vulkan, OpenGL

AMS Subject Classification: 65D18, 68U10, 97R60
Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

∗This work was supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The
project was supported by the European Union, co-financed by the European Social Fund.

218



1. Introduction

BlackRoom is an image processing application developed in Qt 5.15 version [6].
The goal was to use the most modern techniques, so we implemented the algo-
rithms using compute shader also beyond fragment shader of OpenGL and Vulkan
fragment shader. This paper will cover the results of these implementations.

The structure of BlackRoom is based on the standard skeleton, which is in-
troduced in GPU Gems [4]. As a source operator, we have a load operator for
processed and raw formats. Our system contains image filters. Some filters, as the
Harris shutter, have additional load operators for the color channels, thus extending
the simple demo structure mentioned in GPU Gems. Consequently, not just linear
processing paths can be accomplished. We have implemented both image view and
save operator as sink operators. Similar to the framework of Seiller et al., each
processing path is implemented in a separate class to follow the basic principles of
object-oriented programming [7].

During the research we have studied the existing accelerated image processing
libraries. Although the progressive GPUCV library was found to be one of the
best, it has not been developed since 2010, and it was never made available for web
applications [3]. However, Allusse et al. enhanced the system with CUDA support,
which is a proprietary technique, and it is not web-enabled either [1]. Our program
supports Linux, macOS and Windows platforms, and most of its features are also
available for the WebAssembly. The optimization of our image processing soft-
ware yielded better and customizable memory management regarding the memory
usage of image modification algorithms. Our other solution for achieving better
performance was implementing our algorithms for Vulkan [8]. Vulkan API will get
significance in adding Android support for our program in the near future.

2. Utilized Technologies

Nowadays, several application programming interfaces are available for image pro-
cessing. Our goal was to implement the most common platform independent APIs
and to collect statistics about their performances in different use cases. Therefore,
the BlackRoom software provides multiple execution branches based on OpenMP,
OpenGL and Vulkan APIs. In this section, these technologies will be presented in
order to give a short summary of their characteristics.

2.1. OpenMP

The Open Multi-Processing is an API which supports shared-memory multiprocess-
ing on CPU. It was released in 1997 for Fortran and since 2000 it has supported C
and C++ programming languages, as well. This API is quite wide-spread solution
for implementing parallel execution in applications. Its usage is straightforward
in C++ programs since the programmers only need to use #pragma-s before the
specific program code parts. In terms of performance, the difference between the

219



sequential and parallel processing highly depends on the given use case and the
number of utilized threads, but with complex calculations the latter usually pro-
vides significantly better results.

2.2. OpenGL

The Open Graphics Library is a platform independent 2D and 3D graphics API
which was released in 1991. It is quite a robust high-level API, and thanks to that
it is widely adopted in the industry. With the release of OpenGL ES, it can be
used on mobile devices and in web applications thanks to WebGL. Since OpenGL
is used for hardware-accelerated rendering on GPU, it is really efficient in image
processing and what is more, thanks to the compute shader support, it can be used
for general calculations, as well.

2.3. Vulkan

Vulkan is the newest platform independent 2D and 3D graphics API which is based
on the Mantle API developed by AMD. It was released in 2016, and its main goal
was to provide higher performance and balanced CPU/GPU usage. Similarly to
OpenGL, it is available for multiple platforms and hardware, like Windows, Linux,
Android and macOS through MoltenVK. Compared to OpenGL, the Vulkan API
can be 100% faster but it really depends on the application and the implementation.
Latter is one of the key point of this new API, since the developer has almost
full control over the graphics processing unit and because of that, for beginner
programmers it is really difficult to implement the interface efficiently.

3. Benefits of OpenGL Compute Shader

Previously BlackRoom used only OpenGL fragment shader for computing the ef-
fects on GPU. Meanwhile, this way of the computing has its benefits for our needs,
and this approaches brought in some challenges. First of all, the software contains
multiple context-sensitive algorithms where the neighboring pixels are used for the
final result. With OpenGL fragment shader, the access of the neighborhood was
not really effective, although it has improved by introducing rectangle textures
that enabled the usage of integer indices instead of float values. Secondly, the his-
togram generation may be even slower than computing it on the CPU [5]. Finally,
the implementation of the OpenGL fragment shader is a little bit more complex
compared to our needs.

So, we started to implement our algorithms in OpenGL compute shader be-
cause of the above reasons. For this executing branch, the program uses OpenGL
fragment shader only for the onscreen rendering, and the effect chain calculation is
done completely by OpenGL compute shaders. In terms of compute performance,
the difference between the two approaches is not significant since both use the same
hardware. However, the source code is more straightforward and simpler. The code

220



for histogram generation is more elegant than by OpenGL fragment shader. From
OpenGL 4.3 the atomic counters give a huge boost to histogram calculations.

4. Performance Comparisons

Our test system contains an AMD Ryzen 5 3600 processor @ 4.35GHz and an
Nvidia GTX 960 graphics card with 4GB memory. The following effects were used
in order to compare the performance of the different executing branches: basic
modifications, edge detection, Gauss filter, infrared and grayscale effects. As for
basic modifications, we are talking about exposure value and brightness. To obtain
the execution times we used the QElapsedTimer class, which measures the elapsed
time in nanoseconds. Because the magnitude of the running time of our algorithms
is millisecond, after readout, the timer variable is divided by 1 000 000 in order to
yield values of milliseconds. The measured times in the figures represent only the
runtimes of the effect executions without the bus transfer between the main memory
and the video card. The effects were tested with multiple images and according to
our observation the size of the image and the execution time is in linear relationship.
The results below were measured with a 4608 × 3072 PNG image (see Figure 1).
The color depth and the number of color channels do not affect the results since
the program converts every image to single-precision floating-point format.

Figure 1. Tested image.

4.1. Context-free Algorithms

The processing times of the basic—exposure value and brightness—modifications,
the infrared and the grayscale effects were measured. According to the results (see
Figure 2), rendering by GPU is approximately twice as fast as rendering by CPU
on a single core.

221



Max

Avg

Med

Min

33.014

14.926

14.593

14.322

15.515

12.481

12.231

11.861

9.435

4.42

2.995

2.816

4.995

4.749

4.734

4.723

6.026

5.642

5.629

5.543

OpenGL Compute Shader OpenGL Fragment Shader
Vulkan Fragment Shader CPU (Multi-thread)
CPU (Single-thread)

(a) Basic Effect

Max

Avg

Med

Min

33.326

14.926

14.582

14.259

17.259

12.126

11.984

11.784

9.223

4.483

3.192

2.823

5.264

4.826

4.823

4.738

6.011

5.62

5.619

5.574

OpenGL Compute Shader OpenGL Fragment Shader
Vulkan Fragment Shader CPU (Multi-thread)
CPU (Single-thread)

(b) Infrared Effect

Max

Avg

Med

Min

33.065

14.844

14.48

14.138

16.914

12.37

12.231

11.758

9.45

5.641

5.547

2.819

4.941

4.806

4.809

4.749

6.071

5.589

5.558

5.483

OpenGL Compute Shader OpenGL Fragment Shader
Vulkan Fragment Shader CPU (Multi-thread)
CPU (Single-thread)

(c) Grayscale Effect

Figure 2. Time results of context-free algorithms in milliseconds.

Utilizing multi-threading and SIMD decreases the gap but raises another prob-
lem. The memory bandwidth is limiting the all core performance of the CPU.
Furthermore, thread management also increases the execution time. Nevertheless,
taking into consideration the basic, infrared, and grayscale effects we can see an
almost 20% decrease in execution time compared to the single-thread performance.
It can be seen that the multi-core performance is more consistent because of the
smaller gap between the extreme values.

Looking at the comparison of different execution branches of the GPU ren-
dering, we can see a little performance advantage in favor of OpenGL fragment
shader with grayscale effect. The Vulkan fragment shader execution branch is un-
der development at present, but even now, it has decent performance. Talking
about basic and infrared effects’ execution time, the Vulkan fragment shader is the
best. Inconsistency is its worst drawback since the difference between the extreme
values is here the biggest among the execution branches. The OpenGL compute

222



shader is behind the two other GPU rendering branches in terms of execution time.
Meanwhile, it provides really consistent performance.

4.2. Context-sensitive Algorithms

The context-sensitive algorithms were represented by edge detection and Gauss
filter effects during the benchmarks. These effects calculate each pixel based on its
neighbors. The benchmark tests show that there is quite a big difference between
these two effects in terms of performance (see Figure 3). As an example, rendering
the Gauss filter can profit from the extra threads of the CPU. Its execution time is
almost eight times faster on multiple threads than on a single thread. Meanwhile,
the edge detection’s runtime is slower by utilizing multi-threading. The reason
for this is the simplicity of the edge detection compared to the Gauss filter. In
this case, supposedly, the limited memory bandwidth and the thread management
increase the execution time.

Max

Avg

Med

Min

113.331

110.879

111.235

108.29

163.014

159.401

159.174

158.267

9.223

4.61

3.764

3.495

6.557

5.317

4.999

4.881

18.714

16.847

16.369

14.458

OpenGL Compute Shader OpenGL Fragment Shader
Vulkan Fragment Shader CPU (Multi-thread)
CPU (Single-thread)

(a) Edge Detection

Max

Avg

Med

Min

827.18

802.072

801.672

784.815

177.201

148.767

147.66

146.597

9.175

6.819

6.014

5.663

9.412

9.236

9.224

9.213

38.566

37.92

37.922

37.798

OpenGL Compute Shader OpenGL Fragment Shader
Vulkan Fragment Shader CPU (Multi-thread)
CPU (Single-thread)

(b) Gauss Filter

Figure 3. Time results of context-sensitive algorithms
in milliseconds.

The variance between the three GPU based execution branches is greater com-
pared to the results with context-free algorithms. The OpenGL compute shader
falls behind both OpenGL fragment shader and Vulkan fragment shader. According
to our experiments, the overhead of compute shader causes a huge difference. Ac-
cessing the neighboring pixels in the same work group is really efficient but getting
the pixel colors from other work groups takes too much time. OpenGL fragment
shader provides the second best overall performance in edge detection and in Gauss
filtering. The Vulkan execution branch – which is still under development – is a
little bit faster. However, there is a huge room for improvement, especially in terms
of consistency.

223



5. Results

We implemented OpenGL compute shaders, and most of our effects are now avail-
able for this execution path. Its performance increment is significant compared
to the CPU computation. Meanwhile, the execution times of the context-sensitive
algorithms are big due to the pixel access from other work groups. Our Vulkan
implementation is mature enough for competing with our OpenGL compute shader
and OpenGL fragment shader implementations. Furthermore, its Android support
makes it useful for the BlackRoom software.

Unfortunately, the theoretical speedup of the parallelization of algorithms on
either CPU or GPU cannot be achieved because the memory bandwidth is heavily
limiting the multi-core performance of both of them.

6. Future Work

Since our Vulkan implementation can only handle just one effect at a time now,
we are planning to develop it further for calculating a whole effect chain at once.
Besides that, WebAssembly also remains in our scope, and we will provide a wider
range of functionality of our program on this platform. Thanks to the compute
shader implementations, the creation of histogram becomes easier, so we will add a
panel to the user interface where the user can see the histogram change in real-time.

References

[1] Y. Allusse, P. Horain, A. Agarwal, C. Saipriyadarshan: GpuCV: A GPU-Accelerated
Framework for Image Processing and Computer Vision, in: Advances in Visual Computing.
ISVC 2008. Lecture Notes in Computer Science, Las Vegas, December, 2008, pp. 430–439,
doi: http://dx.doi.org/10.1007/978-3-540-89646-3_42.

[2] L. Z. Eng: Qt5 C++ GUI Programming Cookbook: Practical recipes for building cross-
platform GUI applications, widgets, and animations with Qt 5, 2nd, Birmingham, England:
Packt Publishing Ltd., March 27, 2019.

[3] J.-P. Farrugia, P. Horain, E. Guehenneux, Y. Alusse: GPUCV: A framework for im-
age processing acceleration with graphics processors, in: IEEE International Conference on
Multimedia and Expo, Toronto, July, 2006, pp. 585–588,
doi: http://dx.doi.org/10.1109/ICME.2006.262476.

[4] F. Jargstorff: A Framework for Image Processing, in: GPU Gems, ed. by R. Fernando,
1st ed., Boston: Addison-Wesley Professional, April, 2004, chap. 27, pp. 445–467.

[5] A. Kubias, F. Deinzer, M. Kreiser, D. Paulus: Efficient computation of histograms on
the GPU, in: SCCG ’07: Proceedings of the 23rd Spring Conference on Computer Graphics,
April 2007, pp. 207–212,
doi: http://dx.doi.org/10.1145/2614348.2614377.

[6] G. Lazar, R. Penea: Mastering Qt 5: Create stunning cross-platform applications, Birm-
ingham, England: Packt Publishing Ltd., December 15, 2016.

224



[7] N. Seiller, N. Singhal, I. K. Park: Object oriented framework for real-time image process-
ing on GPU, in: Proceedings of 2010 IEEE 17th International Conference on Image Processing,
Hong Kong, September, 2010, pp. 4477–4480,
doi: http://dx.doi.org/10.1109/ICIP.2010.5651682.

[8] R. Tornai, P. Fürjes-Benke, L. File, D. M. Nyitrai: WebAssembly and Vulkan API
in Image Processing Development, in: Proceedings of the 11th International Conference on
Applied Informatics (ICAI) (Eger, Hungary, Jan. 29–31, 2020), ed. by I. Fazekas, G. Kovász-
nai, T. Tómács, CEUR Workshop Proceedings 2650, Aachen, 2020, pp. 382–391,
url: http://ceur-ws.org/Vol-2650/#paper39.

225


