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Abstract
Critical infrastructures are becoming increasingly dependent on accurate and continuous position,
navigation, and timing (PNT) services provided by Global Navigation Satellite Systems (GNSS).
PNT services are critical for, e.g., stock market, electricity transmission, banking and security infor-
mation systems, building industry, logistics and transport (maritime and road transport as well as
aviation), wireless communications, and rescue services. These critical services will not be available
or they will need to rely on backup services if GNSS signals are unavailable in the area. This makes
these services vulnerable when it comes to disruption in GNSS signals as a result of natural or in-
tentional interference, or occurrence of unexpected GNSS constellation level problems. This calls for
continuous monitoring of the GNSS signal quality so that any anomalies can be detected, isolated,
and reported to authorities and a seamless shift to back-up solutions can be made.

This study aims at improving the security of supply of the services that rely on GNSS-enabled
PNT by the use of emerging Machine Learning methods (such as Deep Learning) for improved situ-
ational awareness in GNSS throughout Finland. The study is based on a GNSS-Finland monitoring
platform, which uses the permanent GNSS reference network in Finland (FinnRef) to detect and
localize the disruptions in the GNSS signals. Using the big data available from GNSS-Finland, Deep
Learning (DL) methods will be developed to investigate possible trends in signal quality, and to
detect or predict signal anomalies. This will provide an assessment of the continuity and forecast of
critical failures in positioning and timing information and thus improve the resilience of critical PNT-
dependent services and operations in Finland. For the improved resilience of timing services, we also
aim to explore solutions for cost-effective, fibre-optic time transfer to a large number of geographical
locations as well as develop software-defined-radio-based technologies for monitoring low-frequency
timing signals and other signals of opportunity. As a future effort, case studies in critical locations
are planned in collaboration with end users, both for monitoring the GNSS signal quality and to
explore the potential of using back-up timing services.
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1. Introduction

Critical infrastructures are in the core of security of supply, as their failure will seriously affect
national security, economic security, and public health and safety. There is an increasing num-
ber of infrastructures and services for which accurate Position, Navigation, and Time (PNT)
information from GNSS is crucial [1, 2]. These include banking transactions, stock markets,
telecommunications, and electricity transmission systems, which require accurate timing for
synchronization. Accurate and reliable positioning is needed in rescue operations, building
sites, aviation, and logistics. These operations also need to build and maintain situational
awareness, which is not possible without reliable and accurate location or time information.
The fact that critical services rely on GNSS renders these services vulnerable to disruptions and
interference [3, 4]. The disruption in GNSS will result in unavailability of these services in the
area, which means that GNSS itself is considered a critical infrastructure and gets regulated
and monitored by authorities [5].

Position from GNSS is calculated from the time of arrival, which causes GNSS also to
provide precise timing. Each satellite is synchronized to the system time scale of the respective
constellation, which is traceable to different UTC(k) realizations. The system time scales are
often related to each other: there are conversion parameters between Galileo and GPS system
times available from Galileo. If there is a failure in either in the ranging signals or the conversion
parameters, there will be a disruption in time-critical systems. Such an incident took place in
2016 [3], when Global Positioning System (GPS) satellites were broadcasting erroneous time
correction parameters, causing problems in, for example, digital radio broadcasts in the United
Kingdom.

In this Work-in-Progress paper we present the REASON project, which is a joint effort of the
Finnish Geospatial Research Institute (FGI), University of Helsinki and the National Metrology
Institute VTT MIKES. We explore the potential of Machine Learning methods (such as Deep
Learning) for GNSS in providing GNSS situational awareness from GNSS signal data. We
also discuss the technologies and related research that will likely enable Finland to improve
crisis preparedness and security of supply in terms of robust location and time information.
We will introduce the FinnRef network and the GNSS-Finland service, look at the research
related to machine learning methods in GNSS fault detection and diagnosis (FDD), and explore
alternatives to GNSS-based timing. We describe the results and outcomes we expect to get
in the REASON project, and the impact it will have on the end users in terms of improved
cyber security, situational awareness, and critical operations. The specific research objectives
in REASON are:

• To study the potential of Artificial Intelligence (AI) methods and Big Data in GNSS
situational awareness.

• To develop AI methods for GNSS disturbance detection and localization, including both
intentional and unintentional interference.

• To develop alternatives to GNSS-based time dissemination on a large scale in a cost-
effective manner.

In Section 2 we describe the FinnRef monitoring network and the GNSS-Finland Service.
Section 3 discusses machine learning approaches in GNSS FDD. Section 4 covers the alterna-
tives to GNSS-based time. Section 5 discusses the outcomes we expect to obtain in this project
and Section 6 concludes this study.



2. FinnRef and GNSS-Finland Service

The FinnRef network consists of 47 continuously operating GNSS stations. It works as a
fundamental geodetic infrastructure that is used for the needs of the national reference frames
and for positioning related services. The stations are equipped with GNSS antennas and
receivers that enable tracking of all satellites and signals available.

One of the purposes of the FinnRef network is providing data for DGNSS and RTK po-
sitioning. This data is offered as real-time streams transmitting RTCM messages of various
types. A subset of those messages, namely signal observations, ephemerides and positions
computed at reference stations, allows continuous monitoring of GNSS performance at each
station. Since GNSS is utilized in almost all industries while being vulnerable to disruptions
on both local and system level, the need for such monitoring has increased. Furthermore, open
access to this information is important to allow all users utilizing PNT to conduct their work
more effectively. In the years 2020-2021, a monitoring system called GNSS-Finland Service was
created and made publicly available [6]. This work was carried out in the scope of the project
GNSS-Finland Service funded by Ministry of Transport and Communications of Finland and
Finnish Transport and Communications agency (Traficom) [7]. Figure 1 shows the main view
of the service presenting reference stations along with signal status information.

Figure 1: GNSS-Finland Service, available at https://gnss-finland.nls.fi/#/map.

The service monitors the following key performance indicators:

https://gnss-finland.nls.fi/#/map


• strength of GNSS signals based on Carrier-to-Noise density Ratio (CNR),

• health status of satellites based on parameters transmitted in ephemerides,

• position deviation relative to the known station position.

This information is presented in user interfaces and also served via an API for third-party
software. A set of analysis tools have been implemented to detect predefined anomalies such
as interference, abnormal position bias and significant changes in satellites’ health status. In
case of detection of these events, a notification with detailed information is sent to authorized
users.

The service is made scalable in different ways. Since it uses standard RTCM messages as
input data, other reference stations or networks can be seamlessly added in the loop. Besides,
it has modular open architecture which allows connecting new analysis tools.

During the development and exploitation of the service, a number of phenomena has been
observed including interference events at different stations and impacts of high geomagnetic
activity on GNSS signals.

3. Fault Detection and Diagnostics in GNSS

Fault Detection and Diagnosis (FDD) means the process of detecting errors in the system and
identifying their sources. In this section different FDD methods for interference and GNSS
system level fault situations are discussed, with an emphasis on approaches utilizing machine
learning techniques. Effective detection and mitigation of different GNSS fault situations
improves the resilience of critical services depending on GNSS.

3.1. Interference Detection and Mitigation

Interference, especially deliberately generated, can seriously compromise operations of criti-
cal infrastructures and services relying on GNSS. Interference sources for GNSS signals can
be classified into unintentional or deliberate sources. Intentional interference can be further
classified into jamming or spoofing and their effect on the signal depends on the specific equip-
ment and methods used. Unintentional interference may be caused by multipath propagation,
atmospheric disturbances or radio transmitters operating at the same signal frequency bands
as GNSS. Different interference types deteriorate the signal with varying ways and extent, and
thereby their mitigation methods also differ. Therefore, it is essential to use FDD for detecting
when the signal is disrupted and what is causing the disruption.

3.1.1. Position domain

Traditionally, GNSS FDD has been implemented using conventional signal processing methods,
such as Fast Fourier Transform based methods [8] or wavelet decomposition [9]. Unfortunately,
such methods as well as corresponding time domain processing methods [10] tend to uninten-
tionally rule out other data sources of interest. At present, Machine Learning (ML) is actively
used for analysing radio signals. Research has been mainly concentrating in the detection
domain and the occurrence of interference from a pre-defined source has been searched for.

Hsu [11] used Support Vector Machines (SVMs) for classifying the signal into clean, mul-
tipath and non-line-of-sight (NLOS) in static scenarios. Semanjski et al [12] used SVMs for



spoofing detection, and found out that the separation among manipulated and authentic sig-
nals is altogether a complex task that is difficult to be implemented using traditional ML
methods. The power of Deep Learning (DL) over such conventional supervised ML methods
is in its character of automatically finding the relevant signal features to be used in inference.
Therefore, the ML research in the signal domain has shifted into developing DL based methods.

When it is known that a jammer is present, the jammer type (Amplitude Modulated, chirp,
narrow-band, etc) may be classified using ML. Ferre et al. [13] converted the signal into spec-
trogram images and used a Convolutional Neural Network (CNN) for detecting the presence of
jamming and the jammer type with good results. Multipath detection has also been improved
using CNNs. Munin et al. [14] developed a CNN based method and tested it using simulated
scenarios with good results. Cross Ambiguity Function evaluated at the delay/Doppler grid
can be considered as an image and fed into CNN for spoofing detection with promising per-
formance [15]. However, CNNs were initially developed for image processing and thereby they
are able to process the spatial dimension of the data, but not the temporal one. However, the
temporal dimension brings valuable information for the detection of signal abnormalities and
is therefore essential to be exploited as well for the best performance.

Two types of DL models, non-recurrent models based on delay elements in the feedforward
direction and recurrent models with delayed feedback can do the time inclusion. Time-Delayed
Neural Networks (TDNN) belong to the first type. They are one-dimensional convolutional net-
works applied to time series. TDNNs have been used for implementing Receiver Autonomous
Integrity Monitoring (RAIM) for detecting anomalous events in GNSS, such as receiver clock
bias jumps or ephemeris errors [16]. Long Short Term Memory (LSTM) methods are recurrent
models and capable for learning long-term dependencies in the data. They have proved to
provide superior performance for addressing the temporal dimension, however they are more
complex to train and build than TDNNs. Previously, LSTM based methods have been de-
veloped for GNSS spoofing detection [17] and for implementing RAIM for static positioning
scenarios [18]. In our research, we will address GNSS FDD for real-life positioning. Detection
of signal anomalies requires a system that is able to remember information for long periods
of time, namely what kind of changes is the signal experiencing over time. Therefore, we will
develop a LSTM based anomaly detector that is able to identify the interference source and
predict the system failure well in advance for initiating the process for mitigation.

3.1.2. Time domain

Methods for FDD in position solution described above largely apply also to time solutions.
While interference to the signal compromises both position and time solution, the time com-
ponent can be specifically spoofed, which affects the operation of many critical infrastructures
dependent on accurate timing [19, 20, 21].

Methods have been developed to find interfered time solutions in for example [22] and [23]
where the authors also mitigate the affected solution. In [23] authors base their solution to
robust estimation method which can effectively correct the spoofed time solution for stationary
device while it requires only low memory and does not require tuning of parameters to specific
attacks.

Using a ML approach, in [24] multi-layer perceptron neural network is implemented to detect
time synchronization attacks and correct the spoofed time solution. The authors show that
the neural network based solution is better than the algorithmic methods they are comparing
and still requires only little memory or computational power from the device.



3.2. System Level Fault Detection and Mitigation

In absence of interference, faults in GNSS may occur also due to problems on navigation
satellites and the orbit and clock parameters they are transmitting. Despite of the health
parameters transmitted by the navigation satellites, problems affecting the GNSS on a large
scale are not always easily observed by a single navigation receiver without additional mea-
sures. Applying FDD also to issues rising from the navigation satellite system makes critical
operations less vulnerable in such situations.

On receiver side, conventional solutions to GNSS system level FDD include Receiver Au-
tonomous Integrity Monitoring (RAIM) and information transmitted by Satellite Based Aug-
mentation Systems (SBAS), in addition to simply utilizing the health information in the satel-
lite broadcast data. However, also SBAS might be experiencing problems and thus be unaware
of the ephemeris being faulty, and the satellite health information can be outdated. This sit-
uation may happen, for example, due to unannounced satellite maneuvers or GNSS ground
segment uploading faulty ephemeris parameters.

Regarding conventional GNSS timing integrity monitoring approaches, key timing perfor-
mance indicators are defined in [25] in terms of timing accuracy and frequency stability, as
well as integrity and availability. Utilizing Timing RAIM (T-RAIM) is shown to detect faulty
observations, and it enables a timing receiver to achieve sufficient performance even with a low
cost oscillator. In [26] timing performance is tested under threat conditions such as jamming
and spoofing, erroneous navigation messages and ionospheric errors. Approaches such as uti-
lizing a Kalman filter on oscillator during GNSS holdover triggered by detection of spoofing
or jamming, utilizing EGNOS transmissions to exclude faulty satellites, crosschecking solution
between constellations and utilizing dual frequency measurements are shown to help mitigating
the effect of different threats on GNSS timing performance.

In the context of GNSS monitoring networks, such as FinnRef, erroneous ephemerides can
be detected combining measurements made by several monitoring stations. For instance, a test
statistic for single satellite ephemeris health has been developed based on the difference of true
distance between two monitoring stations and a computed distance based on the ephemeris
to be evaluated, pseudorange measurements, station locations and law of cosines [27]. A test
statistic based on double difference carrier phase observations has been developed in [28]. In
case of short baseline between monitoring stations, the statistic in normal conditions has a
normal distribution with zero mean, whereas faulty ephemeris will result in distribution with
non-zero mean [28]. Test statistic based on carrier phase is more sensitive to ephemeris faults
compared to code measurements, but requires ambiguity resolution.

Considering navigation satellite clock anomaly detection, for example consecutive carrier
phase observations can be used to eliminate phase ambiguity and to obtain time-differenced
phase offset between the satellite and a receiver connected to a hydrogen maser clock [29]. In
this work comparison of Kalman filter predictions and actual observations of clock phase and
frequency offset are used to develop two test statistics for fault detection.

Several publications discuss ML in improving and predicting navigation satellite ephemeris
information as well as satellite clock offset information. Following the idea of comparing ex-
pected and obtained parameters utilized in existing GNSS FDD approaches, these ML methods
can likely be utilized also for FDD purposes. Comparison of predicted and actual parameters,
regardless of the prediction method, should enable detection of at least abrupt fault situations.

For example, satellite orbits and clocks can be predicted forward in time for duration of
several days using a Kalman filter approach [30]. The objective in this work is to reduce the



Time to First Fix in standalone navigation receivers without assisted GNSS. The presented
approach has been refined in several following articles such as [31, 32, 33]. CNNs can be
utilized to estimate and correct the residual radial, tangential and normal errors in Kalman
filter orbit predictions, that occur due to for example some unmodeled forces affecting the
satellites [34]. Image-like input for the CNN is generated based on difference between the
predicted satellite positions and position based on the broadcast ephemeris. Combining the
Kalman filter prediction and CNN correction, the 95% error quantile of Signal in Space Range
Error (SISRE) is less than 8 m even for prediction duration of one week for GPS satellites.

A Least Squares SVM (LSSVM) can be utilized to predict clock offset based on broadcast
ephemeris data, among other approaches [35]. In this work, for prediction duration of one
week for GPS satellites, the LSSVM clock offset prediction differs from broadcast ephemeris
for equivalent of less than 5 m 68% of the time. This is more than 55% improvement compared
to extrapolating clock correction in old ephemeris. However, it should be noted that for
example a Kalman filter approach for prediction performs better than LSSVM for many of the
satellites discussed in the paper. Also, in [36] a RNN-style NARX neural network is used to
predict satellite clock offset up to 24 hours based on precise satellite clock bias (SCB) obtained
from International GNSS Service (IGS). The RMS prediction error in that case is less than
0.5 ns on average. In [37] a LSTM is used to predict the single difference SCB values based
on precise IGS clock products for up to three days. LSTM model results in less than 1.6 ns
RMS prediction error, and also has the lowest time complexity compared to the alternatives
discussed.

Comparing the ephemeris and clock information to the corresponding predictions it will be
possible to detect system level problems on orbit and clock information. Furthermore, the
predictions could be used instead of broadcast data in fault situations, and help in the case of
harsh signal conditions, such as jamming, where the broadcast data demodulation might not
be possible. This type of approach might also be useful in detecting record and replay type
spoofing attacks, in which case there would likely be a difference between the predicted and
received ephemeris.

4. Robust Backup for GNSS-based Timing Methods

Many critical infrastructures rely especially on accurate GNSS-based time, and are thus vul-
nerable to any problems in GNSS signals. For this reason, in this work we will study also
alternative methods for accurate and cost effective time dissemination on a large scale. The
potential approaches are discussed in this section. Utilizing one of these alternatives will reduce
the reliance of critical facilities to GNSS-based time, and thus prevent potentially catastrophic
consequences in case of failure of GNSS.

The most accurate long-distance time and frequency transfer is done using point-to-point
fibre-optic links [38, 39, 40, 41]. As long as the third parties do not have knowledge of the fibre
route or access to it, fibre-optic links are also highly secure, since jamming and spoofing from
the outside is very difficult, if not impossible. The downsides of fibre links are that not only
are they costly but the number of geographical locations that can be reached is very limited
due to the limited channel capacity of telecom networks. Thus, one of the objectives of this
work is to develop techniques for sending timing signals through the telecom fibre network to
a large number of distant endpoints.

The starting point for this is to use the direct sequence spread spectrum (DSSS) technique,



similar to what is used in GNSS [42] and in Two-Way Satellite Time and Frequency Transfer
(TWSTFT) [43, 44], to realize code-division multiple access (CDMA) on a single telecom
channel [45]. Here the difference to GNSS is that each receiver sends a signal back to the
transmitter, which is then used to calculate the two-way optical path delay based on the
unique codes of each receiver. The measured delay is communicated to the receivers as their
clock offset or the timing signal sent out is pre-compensated.

The spread spectrum signal is generated by modulating the carrier phase by a unique and
known pseudorandom noise (PRN) bit sequence. The received signal is cross correlated with
the known bit sequence allowing for reception with low signal-to-noise ratio. As is evident from
the Shannon and Hartley channel-capacity theorem, lowering of the signal to noise ratio can
be compensated by increasing transmitted bandwidth [46]. The spread spectrum technique
allows for additional process gain by averaging the received signal. Large signal attenuation
can be tolerated, which, in turn, should enable time transfer far outside the normal telecom
communication bands, enabling a geographically dense fibre-optic time transfer network.

In addition to GNSS and fibre-optic time transfer, low-frequency (LF) transmitters are
also operated by several countries. The most prominent examples in Europe are DCF77 in
Mainflingen, Germany, operating at 77.5 kHz [47, 48] and the Time from NPL, also known as
MSF, operating at 60 kHz from Anthorn, UK [49]. LF signals have large coverage and can
be received with low-cost hardware. DCF77 even employs spread-spectrum signal processing,
as part of the signal is phase modulated by a PRN sequence [48]. LF signals provide only
one-way communication, and the timing signals suffer from diurnal variation in signal strength
and delay, especially for the ionosphere-reflected sky wave [50]. Due to bandwidth limitations
in the LF band, timing accuracy and stability are inferior to GNSS [50]. Nevertheless, they
provide a potential backup for timing especially if their signal quality and time deviations can
be monitored.

In addition to traditional over-the-air timing signals, also the use of Signals of Opportu-
nity (SoOp) together with a software-defined radio (SDR) will be addressed for timing pur-
poses. SDR receiver can be used to collect opportunistic non-GNSS short-range signals. These
signals can be acquired from many sources combining radio frequency signals that are available
in the infrastructure, such as long-term evolution, digital television, cellular, AM/FM radio
signals or WiFi networks and Bluetooth [51]. Other short-range radio links can be introduced
by demand, like hand-held ultra-wide band (UWB) transceivers. In long-haul telecommunica-
tions, separate fibers are used for the up- and down-streams. Utilizing SoOp at both ends of
fiber links, the error of open-air signals can be quantified.

SDR was envisioned as a new wireless standard approximately 15 years ago, but the advent
of SDR has posed new challenges in design, power consumption and standards production.
Due to its complexity and aforementioned challenges, it is by no means suitable for all possible
situations. Promisingly however, it was recently proposed as error mitigation in coordinated
universal time (UTC) determination. The observed variation of diurnal patterns in the gener-
ation of UTC with TWSTFT can be as high as 2 ns [52]. According to their hypothesis, the
contributor in diurnals could be related to the satellite time and ranging equipment (SATRE)
modem. Therefore, they suggest replacing the receive modems with SDR to reduce noise. Ref.
[53] demonstrated the ability to use a hybrid waveform combining GNSS and SoOp in varying
situations, both in free space and indoor navigation. For this purpose, they introduced Ad-
vanced Software Radio (ASR) platform designed for portable solutions like unmanned aerial
navigation (drone) or robust surface navigation (rover).

Currently, traceability to international Coordinated Universal time (UTC) is provided via



the continuous key comparison “CCTF-K001.UTC” between National Metrology Institutes
(NMIs) or Designated Institutes (DIs) of Member States of the International Bureau of Weights
and Measures (BIPM), or laboratories associate of the General Conference on Weights and
Measures (CGPM). In practice, time is compared either via dedicated TWSTFT [43] or GNSS
precise-point positioning [54]. Local UTC(k) time-scales are typically created by correcting
the frequency of a free-running atomic clock (e.g. a hydrogen maser) using a fine-grained
frequency synthesizer (named micro-stepper or micro-phase stepper). Active hydrogen masers
under stable environmental conditions (temperature, humidity) typically show linear frequency
drift of 10−16 to 10−15 per day, which must be corrected using the micro-stepper continuously.
SDRs can be used to accurately measure the phase difference between multiple local clocks
[55, 56]. Phase and frequency difference measurements act as inputs to a clock-ensemble
algorithm where the frequency of each free-running clock is modelled using e.g. a Kalman filter
approach. An open hardware micro-stepper is being developed by VTT MIKES [57].

Accurate absolute frequencies for the free-running clocks in a maser ensemble or a clock
network can be provided via frequency comparison to a primary or secondary frequency stan-
dard realizing a frequency traceable to the definition of the International System of Units (SI)
second with a known uncertainty. VTT MIKES is developing an optical clock based on an
electric quadrupole transition in the 88Sr+ ion, a secondary representation of the SI second.
Characterization of the systematic frequency shifts caused by, e.g., blackbody radiation, is
currently ongoing. An initial evaluation of the uncertainty budget is planned for 2021.

Optical clocks do not yet operate continuously and are thus not directly used to generate
time scales, only to steer the local oscillator that generates the time scale. Simulations show
that by operating an optical clock, e.g., 6 h three times per week or 12 h once a week, one can
achieve a performance similar to that of a continuously-operating Cs fountain [58]. A higher
optical-clock uptime ratio of 46% has been shown to lead to superior stability compared to a
Cs-based time scale [59]. In a pioneering experiment, a time scale was steered by an optical
clock operating 104 s per week for 6 months, leading to sub-ns agreement with Terrestrial Time
(TT) after five months [60]. A low optical-clock availability sets stringent requirements on the
maser. This can be addressed by replacing the maser by a clock ensemble [61].

Another important application of optical clocks is to contribute to International Atomic
Time (TAI). This is done by comparing the optical clock with a hydrogen maser contributing
to TAI and submitting the data to BIPM for evaluation and inclusion in Circular T. So far
only a few optical clocks have been reported to BIPM.

5. Anticipated Results

In this work machine learning and especially deep learning methods will be developed in order
to enhance GNSS situational awareness. We will utilize the big data available from GNSS-
Finland and FinnRef monitoring network, described in Section 2, to generate novel insights
into GNSS status. Using a network of receivers together with ML methods will likely enable
detection of signal phenomena invisible to a single receiver. Furthermore, we will develop a
robust alternative to GNSS-based timing methods in order to improve resilience in critical
infrastructures requiring precise timing. The REASON project objectives are illustrated in
Figure 2. The specific research questions we want to answer are:

1. Based on both current and historical data patterns, is it possible to use AI/ML ap-
proaches to predict satellite navigation signal unavailability or failure?



Figure 2: Illustration of REASON objectives

2. How to use AI/ML techniques to localize intentional interference to satellite navigation
signals?

3. In case of catastrophic failure of GNSS, what back-up solutions can be developed es-
pecially for accurate timing dissemination, and within what timeframe these can be
implemented?

4. How to distribute reliable and accurate time independent of GNSS in a cost-effective
manner to numerous and distant geographical locations?

Section 3 discusses existing research and potential machine learning approaches related to
questions 1. and 2. To be more specific, both interference and system level faults will be
addressed for both position and time domain in development of novel DL approaches for FDD.

DL methods will be developed and applied to detect and mitigate GNSS fault situations
in a comprehensive manner. So far GNSS FDD methods have been developed for detecting
incidences caused by certain interference sources. As far as we know, this will be the first
comprehensive solution capable to detect and identify all interference types using deep learning
on a nationwide scale. Furthermore, using machine learning to detect distortions in timing
signals will be one of the first contributions to this end.

The different deep learning techniques are expected to be more sensitive in detection of
signal anomalies and other phenomena, thus lowering detection threshold compared to current
approaches. Furthermore, in this project we will move from monitoring signal quality and
detecting anomalies to prediction of future problems in navigation signals.

In Section 4 possible alternatives to GNSS-based time are introduced regarding research
questions 3. and 4. We expect to find cost effective ways of sending timing signals through
the fiber optic networks to a large number of distant endpoints and to develop software de-
fined radio approaches for monitoring low-frequency, open-air broadcasts and other signals of



opportunity for timing purposes.
The approaches developed will enable GNSS situational awareness throughout Finland. Ac-

curate and timely information of GNSS status will enable end users and critical infrastructures
to safely utilize GNSS, knowing when they can trust the signal quality. In case of interference
or fault situations, end users will be warned as fast as possible or even ahead of time, so they
can switch to alternative means of PNT. The users requiring accurate timing information will
have a robust alternative to GNSS time.

6. Conclusion

This Work-in-Progress paper provides a first-hand overview on the usage and challenges related
to positioning and timing among a wide group of end users in different branches such as security,
finance, power and construction industries, rescue services, transport, and cyber security. Our
end user has indicated that a holistic understanding of the timing services is missing. In this
work the anticipated results of the REASON project have been discussed, as the research is
still ongoing.

The methods that will be developed in this work will improve detection and mitigation of
anomalies in GNSS at both receiver level and system level. This study presents the state-
of-the-art ML based GNSS anomaly detection methods and outlines plans for developing a
novel LSTM based method capable to detect and identify all GNSS interference types from
the signal. We have discussed potential approaches to ML usage especially in improving GNSS
timing security, and have presented alternatives to GNSS-based time dissemination.

When complete, our results will enhance cyber security, situational awareness, and safety in
critical operations.
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[32] H. Leppäkoski, S. Rautalin, X. Zhang, S. Ali-Löytty, R. Piché, Extended prediction of
QZSS orbit and clock, in: 2016 International Conference on Localization and GNSS
(ICL-GNSS), IEEE, 2016, pp. 1–7.
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E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard,

https://iopscience.iop.org/article/10.1088/0026-1394/50/2/133
http://dx.doi.org/10.1088/0026-1394/50/2/133
http://dx.doi.org/10.1088/0026-1394/50/2/133
https://link.aps.org/doi/10.1103/PhysRevA.90.061802
https://link.aps.org/doi/10.1103/PhysRevA.90.061802
http://dx.doi.org/10.1103/PhysRevA.90.061802


M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L.
Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, P.-E. Pottie, A
clock network for geodesy and fundamental science, Nat. Commun. 7 (2015) 12443. URL:
http://www.nature.com/articles/ncomms12443. doi:10.1038/ncomms12443.

[41] A. Abuduweili, X. Chen, Z. Chen, F. Meng, T. Wu, H. Guo, Z. Zhang, Sub-ps resolution
clock-offset measurement over a 114 km fiber link using linear optical sampling, Opt.
Express 28 (2020) 39400–39412. URL: http://www.opticsexpress.org/abstract.cfm?URI=
oe-28-26-39400. doi:10.1364/OE.411569.

[42] C. J. Hegarty, GNSS signals — An overview, in: 2012 IEEE International Frequency
Control Symposium Proceedings, 2012, pp. 1–7. doi:10.1109/FCS.2012.6243707.

[43] A. Bauch, Time and frequency comparisons using radiofrequency sig-
nals from satellites, Comptes Rendus Physique 16 (2015) 471–479. URL:
https://www.sciencedirect.com/science/article/pii/S1631070515000201. doi:https:
//doi.org/10.1016/j.crhy.2015.02.006, the measurement of time / La mesure du
temps.

[44] Y. Huang, H. Tsao, Design and Evaluation of an Open-Loop Receiver for TWSTFT
Applications, IEEE Transactions on Instrumentation and Measurement 64 (2015) 1553–
1558. doi:10.1109/TIM.2015.2415111.

[45] M. J. Wouters, L. Marais, Time-transfer over optical fibre using pseudo-random noise
ranging, in: 2014 European Frequency and Time Forum (EFTF), 2014, pp. 308–311.
doi:10.1109/EFTF.2014.7331494.

[46] M. Sha, Y. Xie, The Simulation Study of the Spread-Spectrum System, in: Proceedings
of the 2015 4th International Conference on Computer, Mechatronics, Control and Elec-
tronic Engineering, Atlantis Press, 2015/11, pp. 833–836. URL: https://doi.org/10.2991/
iccmcee-15.2015.152. doi:https://doi.org/10.2991/iccmcee-15.2015.152.

[47] D. Piester, A. Bauch, J. Becker, A. Hoppmann, Time and Frequency Broadcast With
DCF77, in: Proceedings of the 43rd Annual Precise Time and Time Interval Systems
and Applications Meeting, 2011, pp. 185–196. URL: https://www.ion.org/publications/
abstract.cfm?articleID=10784.

[48] D. Engeler, Performance analysis and receiver architectures of DCF77 radio-controlled
clocks, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 59 (2012)
869–884. doi:10.1109/TUFFC.2012.2272.

[49] NPL, MSF radio time signal, 2021. URL: https://www.npl.co.uk/msf-signal.
[50] P. Dolea, P. V. Dascal, T. Palade, O. Cristea, Aspects regarding the use of LF radio

transmitters for time dissemination, in: 2014 11th International Symposium on Electronics
and Telecommunications (ISETC), 2014, pp. 1–4. doi:10.1109/ISETC.2014.7010763.

[51] M. Maaref, J. Khalife, Z. M. Kassas, Integrity monitoring of LTE signals of opportunity-
based navigation for autonomous ground vehicles, in: Proceedings of the 31st International
Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+
2018), 2018, pp. 2456–2466.

[52] Z. Jiang, V. Zhang, Y.-J. Huang, J. Achkar, D. Piester, S.-Y. Lin, W. Wu, A. Naumov,
S.-h. Yang, J. Nawrocki, et al., Use of software-defined radio receivers in two-way satellite
time and frequency transfers for UTC computation, Metrologia 55 (2018) 685.

[53] M. B. Mathews, P. F. MacDoran, A Software Defined Radio Solution for Hybrid
GPS/Signals of Opportunity Navigation, in: Proceedings of the 26th International Tech-
nical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2013),
2013, pp. 1539–1548.

http://www.nature.com/articles/ncomms12443
http://dx.doi.org/10.1038/ncomms12443
http://www.opticsexpress.org/abstract.cfm?URI=oe-28-26-39400
http://www.opticsexpress.org/abstract.cfm?URI=oe-28-26-39400
http://dx.doi.org/10.1364/OE.411569
http://dx.doi.org/10.1109/FCS.2012.6243707
https://www.sciencedirect.com/science/article/pii/S1631070515000201
http://dx.doi.org/https://doi.org/10.1016/j.crhy.2015.02.006
http://dx.doi.org/https://doi.org/10.1016/j.crhy.2015.02.006
http://dx.doi.org/10.1109/TIM.2015.2415111
http://dx.doi.org/10.1109/EFTF.2014.7331494
https://doi.org/10.2991/iccmcee-15.2015.152
https://doi.org/10.2991/iccmcee-15.2015.152
http://dx.doi.org/https://doi.org/10.2991/iccmcee-15.2015.152
https://www.ion.org/publications/abstract.cfm?articleID=10784
https://www.ion.org/publications/abstract.cfm?articleID=10784
http://dx.doi.org/10.1109/TUFFC.2012.2272
https://www.npl.co.uk/msf-signal
http://dx.doi.org/10.1109/ISETC.2014.7010763


[54] G. Petit, Z. Jiang, Precise Point Positioning for TAI computation, in: 2007 IEEE
International Frequency Control Symposium Joint with the 21st European Frequency
and Time Forum, 2007, pp. 395–398. doi:10.1109/FREQ.2007.4319104.
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