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ABSTRACT
Although there are a great number of adversarial attacks on deep
learning based classifiers, how to attack object detection systems
has been rarely studied. In this paper, we propose a Half-Neighbor
Masked Projected Gradient Descent (HNM-PGD) based attack,
which can generate strong perturbation to fool different kinds of de-
tectors under strict constraints. We also applied the proposed HNM-
PGD attack in the CIKM 2020 AnalytiCup Competition, which was
ranked within the top 1% on the leaderboard. We release the code
at https://github.com/YanghaoZYH/HNM-PGD.

CCS CONCEPTS
•Computingmethodologies→Neural networks; • Security and
privacy→ Software and application security.

KEYWORDS
deep learning, object detector, adversarial attack, ℓ0 constraint

1 INTRODUCTION
Object detection is one of the most fundamental computer vision
tasks, which not only performs image classification [17, 19] but
also identifies the locations of the objects in an image. Now ob-
ject detection has been widely applied as an essential component
in many applications that requires a high-level security, such as
identity authentication [11], autonomous driving [5], and intrusion
detection [6]. In recent years, we witness the significant progress
has been made in object detection, especially by taking the ad-
vantage of deep learning models. However, deep learning based
object detection systems are also demonstrated to be vulnerable to
adversarial examples [6]. The adversarial example was first identi-
fied by Szegedy et al. [13], primarily on classification tasks, they
showed that maliciously perturbed examples can fool a well-trained
Deep Neural Network (DNN) to output wrong predictions. After
that, a great number of methods have been proposed to generate
adversarial examples [3, 18], notably such as First Gradient Sign
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Method [2] and Projected Gradient Descent (PGD) [7]. At the same
time, some studies show that DNN based object detection models
are also facing the same threat [4, 6, 16].

In this paper, we introduce an adversarial attack framework,
called HNM-PGD, which can fool different types of object detec-
tors under two strict constraints concurrently. Our method first
identifies a mask that meets the constraints, and then generates an
adversarial example by perturbing a specific area that is constrained
by the mask. Adversarial examples generated in this way are guar-
anteed to satisfy the limitation in terms of the number of perturbed
pixels and connectivity regions, while remaining a high efficiency.
One key novelty in HNM-PGD lies on that it enables an automatic
process without handcraft operation, which provides a practical
solution for many real-world applications. As a by-product of this
attack strategy, we found that some perturbations contain clear se-
mantic information, which are rarely identified by previous studies
and provide some insights regarding the internal mechanisms of
object detectors.

2 BACKGROUND
2.1 Object Detection Models
Given an input example 𝑥 , an object detector can described as
𝑓 (𝑥) = 𝑧, where 𝑧 represents the output vector of the detector. Con-
sidering YOLOv4 [1] and Faster RCNN [8] as our target models, the
information contained in 𝑧 is slightly different, and as an adversary
under white-box setting, our goal is to make target models fail to
detect the objects in the given examples. Thus we focus on the tar-
get models’ confidence about the existence of objects in 𝑥 . For each
pre-defined box, YOLOv4 directly outputs its confidence 𝑧conf : R
about there is an object inside this box. If 𝑧conf is above the given
threshold, YOLOv4 model views this box as a potential object con-
tainer, i.e. the area that may include objects. Faster RCNN does not
output 𝑧conf, nevertheless, it introduces an extra background class
and make predictions based on its classification result 𝑧cls : R𝐶+1,
where 𝐶 is the number of classes. Suppose 𝑧cls

𝑖
is the maximal item

in 𝑧cls, if 𝑧cls
𝑖

is greater than a given threshold and 𝑖 ≠ 𝐶 + 1, then
the corresponding box will be viewed as the potential container.

2.2 Constraints of Perturbation
In this paper, the restrictions of the adversary are i) the number of
perturbed pixels is not more than 2% of the whole; ii) the number
of 8-connectivity regions is not greater than 10. Except for these
two constraints, there are no limitations on the magnitude of the
adversarial perturbation. Because both constraints are related to
the number of pixels, this belongs to the ℓ0 norm attack.

32

https://github.com/YanghaoZYH/HNM-PGD


Figure 1: An illustration for the workflow of the proposed HNM-PGD.

Algorithm 1 Half-Neighbor Masked PGD (HNM-PGD)
Input: A given example 𝑥 , number of random initialization 𝑛, con-

trol parameter 𝜙 , HN kernel size 𝑘 and adjust step 𝑠 , number
of PGD iterations 𝑃 , PGD step size 𝛼

Output: 𝛿
1: 𝑆𝑥 = 1

𝑛

∑𝑛
𝑖=1 ∇𝑥𝐿 (𝑓 (𝑥 + 𝜂𝑖 ))

2: repeat
3: 𝑧resp = Mean(𝑆𝑥 ) + 𝜙 Std(𝑆𝑥 )
4: Initialize mask𝑀 via 𝑧resp
5: while 𝑘 > 3 do
6: 𝑀 = HN(𝑀,𝑘)
7: 𝑀 = HN(𝑀, 3)
8: 𝑘 = 𝑘 − 𝑠

9: end while
10: 𝜙 = 𝜙 + 0.1
11: until𝑀 meets constraints
12: Random initialize 𝛿
13: 𝛿 = 𝛿 ×𝑀 ⊲ × : element-wise product
14: for 𝑖 = 1 . . . 𝑃 do
15: 𝛿 = 𝛿 + 𝛼 · sign (∇𝛿𝐿 (𝑓 (𝑥 + 𝛿)))
16: 𝛿 = 𝛿 ×𝑀

17: 𝛿 = max(min(𝛿, 0 − 𝑥), 1 − 𝑥)
18: end for

2.3 Salience Map
Salience map is a common tool to analyze and interpret DNN mod-
els’ behaviors. Smilkov et al. [12] proposed SmoothGrad method to
generate stable salience maps. Given a loss function 𝐿, the salience
map is given by

𝑆𝑥 =
1
𝑛

𝑛∑
𝑖=1

∇𝑥𝐿 (𝑓 (𝑥 + 𝜂𝑖 )) , (1)

where 𝜂𝑖 are white noise vectors that sampled i.i.d. from a Gaussian
distribution.

3 METHODOLOGY
3.1 Mask Finding
We first propose a mask generation method to locate perturbation
regions for any given examples. Apparently, the size and shape of
perturbation regions are critical to conduct a successful adversarial
attack under the constraints. Therefore, we use salience map to
capture the model’s response toward each pixel in 𝑥 at beginning.
After compute an example’s salience map, we initialize the mask via
only keep pixels that the model’s respond is larger than a threshold
𝑧resp. To automatically carry out this initialization, we borrow the
idea of standard deviation and coverage from Gaussian distribution,
and compute 𝑧resp via the mean and standard deviation of 𝑆𝑥 , which
can be described as 𝑧resp = Mean(𝑆𝑥 ) + 𝜙 Std(𝑆𝑥 ), where 𝜙 is a
control parameter.

To meet the pixel constraints, we follow the spirit of K Nearest
Neighbor algorithm to refine the mask. Specifically, if half of a
pixel’s neighbors have been chosen by the current mask, then this
pixel would also be chosen, otherwise it will be discarded. We
employ two convolution kernels whose parameters are all 1 to
conduct this Half-Neighbor (HN) procedure. The first kernel aims
to reduce the number of pixels in a mask, and its size is gradually
changed during iterations. The second kernel is fixed to 3×3, it can
guarantee that there are no isolated pixels in the mask and reduce
the number of connectivity regions (See lines 5–9 in Algorithm 1).
If the mask still does not meet the constraints, the algorithm will
adjust 𝜙 accordingly and search again.

3.2 Masked PGD Attack
Once the perturbation regions are located, we generate adversarial
examples via PGD iterations. The basic idea here is summarized
in Algorithm 1, where the selected regions are perturbed by a
PGD adversary via conducting element-wise products between
perturbation 𝛿 and mask𝑀 . The workflow of the proposed defense
is shown in Fig. 1.

Due to the difference in the object detectors’ output 𝑧, we need
to consider YOLOv4 and Faster RCNN separately. As we discussed
in section 2.1, YOLOv4 directly outputs its confidence, so Binary
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Figure 2: Adversarial patches examples generated by the proposed HNM-PGD, the generated patches are mostly located in the
semantic part of the object, such as the horse’s eye, skateboard and human’s body.

Cross-Entropy (BCE) loss is a suitable option to conduct adversarial
attack. Suppose there are𝑚 pre-defined boxes, and the maximal
confidence is 1, BCE loss can be simplified as

𝐿𝑦𝑜𝑙𝑜 (𝑧) =
𝑚∑
𝑖=1

log 𝑧conf𝑖 , (2)

where 𝑧 is the output of a detector and 𝑧conf
𝑖

∈ 𝑧.
Different from YOLOv4, there are𝐶 + 1 classes in Faster RCNN’s

classification result, including 𝐶 foreground objects and 1 back-
ground class. To force the detector to classify an adversarial example
into the background class, we conduct a targeted adversarial attack
with a negative Cross Entropy (CE) loss, which can be written as

𝐿𝑓 𝑟𝑐𝑛𝑛 (𝑧) = 𝑧cls𝐶+1 − log
(∑

𝑗

exp(𝑧cls𝑗 )
)
, (3)

where 𝑧cls is the classification output of Faster RCNN detector,
and 𝑧cls ∈ 𝑧. Note that we can attack YOLOv4 and Faster RCNN
simultaneously by simply using HN masked PGD mixmize 𝐿𝑦𝑜𝑙𝑜 +
𝐿𝑓 𝑟𝑐𝑛𝑛 .

4 EXPERIMENTS
To demonstrate our method, we select 100 images from MS COCO
dataset as a toy dataset and conduct experiments for comparison
on two white-box models, i.e. YOLOv4 and Faster RCNN.

4.1 Implementation Details
YOLOv4 Regarding the provided model YOLOv4, the input size is
set to 608×608 while the original image has 500×500, to allow differ-
ential, we employ the function torch.nn.Upsample with bilinear
interpolation to resolve the resize problem. Due to the approx-
imation computation of torch.nn.Upsample, we need to allow
more boxes to be detected to stabilize the adversarial perturba-
tion. As YOLOv4 method only outputs the foreground objects with
𝑧conf > 0.5, we adjust the confidence threshold from 0.5 to 0.3
during attack.

Figure 3: Performance on the toy dataset with the increasing
amount of pixel.

Faster RCNN Similar to the configuration of YOLOv4, we resize
the input to 800×800 with bilinear interpolation. As the permitted
threshold for Faster RCNN is 0.3, which is relatively lower than
YOLOv4. In practice, we assign a smaller threshold 0.1 when calcu-
lating the loss to enable more boxes to appear.
PGD Settings In this paper, the HNM-PGD is carried out with 40
steps, and the step size is 16/255.

4.2 Experimental Results
In this part, we employ the formula in the description of AnalytiCup
to calculate the score, which provides a criteria to evaluate the
performance of the proposed method. Our code is available on
Github1.

We produce 100 adversarial examples on the white-box models
with two loss together: 𝐿𝑦𝑜𝑙𝑜 + 𝐿𝑓 𝑟𝑐𝑛𝑛 . Figure 2 gives several suc-
cessful examples for the targeted models. We can observe that the
1https://github.com/YanghaoZYH/HNM-PGD
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proposed method does locate the object correctly, and the added
patches normally target on their sensitive parts. Figure 3 illustrates
the overall score with the increasing upper bound of the number
of pixel among 100 selected images, and the scores achieved by
YOLOv4 and Faster RCNN, respectively. We find that with the in-
crease of the quantity of pixel, Faster RCNN performs better, while
this is not the case for YOLOv4. This is because the provided white-
box Faster RCNN uses a low tolerate threshold, where sufficient
pixel is needed for successful attack. In terms of YOLOv4, the per-
formance fluctuates at about 53. Therefore, there is a trade-off when
choosing the amount of the pixel.

We apply the same strategy and perform the adversarial attack
with more steps (800) and smaller step size (4/255) for all 1000
images under the different quantity of pixel, then we pick the best
result obtained on the white-box models as our solution. In the
final stage of the AnalytiCup competition, we had also tried to
improve the generalization of the attacking approach on the unseen
model, i.e. black-box. In detail, we add some transformations (like
flipping/cropping) to the input image, which is expected to not
overfit the known white-box models too much. Our final score is
2414.87, ranked 17 in the competition.

5 BEYOND COMPETITION
This competition leads to a few interesting research directions. In-
tuitively, due to the ℓ0 norm constraint, both location and shape of
the perturbation are critical to the attacking performance. We have
reviewed other top contestants’ solutions and found that linear ad-
versarial patches have a higher impact on the target model’s output
and use less number of pixels than blocky ones, while location is
less important. This seems because blocky perturbation can only
influence a relatively small range of a convolution kernel’s output,
while linear perturbation can cross a wider area. To verify such
conjecture, we wish to adopt verification technologies on neural
networks [9, 10, 15] into the object detectors and quantify the worst-
case scenario of adversarial patches on object detectors. Besides,
on the top of our HNM-PGD, we can also expand evaluation of
existing adversarial attacks and defenses, such as [14, 18], onto
object detection tasks.

6 CONCLUSION
In conclusion, we propose a PGD-based approach to attack object de-
tectors using Half-Neighbor masks. In the proposed HNM-PGD, the
automatic pipeline allows it to craft adversarial examples/patches
automatically under ℓ0 constraint, which can be applied in many
applications, even physical-world attacks. On the other hand, this
end-to-end attack framework also benefits further studies on de-
fending object detectors against adversarial attacks and verifying
their robustness.
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