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ABSTRACT
Colonoscopy is the third leading cause of cancer deaths worldwide.
While automated segmentation methods can help detect polyps and
consequently improve their surgical removal, the clinical usability
of these methods requires a trade-off between accuracy and speed.
In this work, we exploit the traditional U-Net methods and compare
different segmentation-loss functions. Our results demonstrate that
IoU loss results in an improved segmentation performance (nearly
3% improvement on Dice) for real-time polyp segmentation.

1 INTRODUCTION
Colorectal cancer (CRC) is the commonly diagnosed malignancy
and the third leading cause of cancer-related deaths worldwide [4].
Colorectal polyps are abnormal protrusions from the mucosa that
are usually identified during standard medical procedure referred
to as colonoscopy; the associated malignancy is classified through
histopathological examinations [13]. Patients with conventional
adenomas or serrated polyps are advised to undergo polypectomy,
which is a non-invasive surgical procedure usually done during
colonoscopy surveillance to prevent CRC [7]. While detection and
segmentation of polyps are critical, missed detection and inaccurate
removal of polyps can lead to subsequent risk of CRC. Due to
advancements in hardware and algorithmic revolutions such as
deep learning, building accurate real-time systems is now possible.
However, a trade-off between accuracy and speed is still vital for
the use of automated systems during CRC surveillance and surgical
removal of polyps.

Medico automatic polyp segmentation challenge1 held in 2020
aims to address the automated delineation of polyps and evaluate
the capability of built models for real-time performance that di-
rectly implicates clinical utility of the methods. We participated
in both polyp segmentation and algorithm efficiency sub-tasks in
this challenge. To this end, we have investigated the successful and
widely used for semantic segmentation U-Net architecture [12]. In
this paper, we propose and shed light on U-Net-based deep learning
architecture and evaluate it using different loss functions and data
augmentation strategies for polyp segmentation.

2 RELATED WORK
In the past, several biomedical challenges related to the endoscopy
data have been accomplished [1, 2, 5, 6]. These challenges curate
endoscopy video image frames and provide to the computational
1https://multimediaeval.github.io/editions/2020/tasks/medico/
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scientists to benchmark their methods. Among these challenges,
the very first challenge on polyp segmentation2 was introduced
in 2015 with comprehensive single images and video data. This
dataset has been widely used by the researchers. GIANA dataset3
was introduced in 2017 with the added detection task [6].

Kvasir-SEG dataset [10], released in 2020, contains 1000 pairs of
colonoscopy images and their ground-truth segmentation masks4.
Similarly, multi-class endoscopy disease detection and segmenta-
tion challenge [3] includes polyps as one of its five disease cate-
gories. A comprehensive comparison of deep learning methods on
this dataset can be found in [1]. Likewise, [8] provides an extensive
comparison of the state-of-the-art methods for Kvasir-SEG dataset.

3 APPROACH
U-Net [12] is an established encoder-decoder architecture with
skip-connections. Classically, binary cross-entropy (BCE) is used
for binary segmentation tasks [8, 12]. While preserving the stan-
dard U-Net design, we used intersection-over-union loss L𝐼𝑜𝑈 and
experimented with a combination of BCE and IoU losses. To boost
the performance on this dataset, we have also added augmentation
techniques that include random rotations (up to 180 degrees in
each direction) and random horizontal flips (with probability 0.5)
followed by cropping to return the rotated images to their original
sizes. Here, we have directly used negative of IoU instead of classi-
cally used 1 − 𝐼𝑜𝑈 as shown in Eq. 1, where𝑀𝑝 and𝑀𝐺𝑇 are the
predicted and ground-truth masks, respectively.

L𝐼𝑜𝑈 = − | 𝑀𝑝 ∩𝑀𝐺𝑇 |
| 𝑀𝑝 ∪𝑀𝐺𝑇 |

(1)

During the training stage, the IoU loss computation showed
convergence already at 55 epochs providing validation IoU value
over 70% (refer Figure 1).

4 EXPERIMENTS
4.1 Dataset and set-up
We split our training data into 88% training and 12% for validation
on the 1000 training images provided by the organisers [9]. The
resolution of images varies from 332 × 487 to 1920 × 1072 pixels,
so we resized all the images to 256 × 256 pixels for training pur-
poses. A hidden test dataset that included additional 160 images
was provided.

We used Adam optimiser [11] for minimisation of our loss func-
tion with a learning rate of 1𝑒−4 and default weight decay of 1𝑒−8.
For each experiment, we trained our network for 100 epochs with

2https://polyp.grand-challenge.org/Home/
3https://giana.grand-challenge.org
4https://datasets.simula.no/kvasir-seg/
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Figure 1: IoU loss computation for training and validation.
Red line shows the achieved stopping criteria reached on the
54th epoch (starting from 0) with validation IoU of 0.703.

Table 1: Results on the validation subset of the provided
Kvasir-SEG training dataset

Model IoU DSC Rec. Prec. Acc. F2 FPS

U-Net
+ IoU loss 0.6761 0.7703 0.8360 0.7967 0.9346 0.7772 241
+ BCE loss 0.6639 0.7556 0.8373 0.7769 0.9304 0.7714 221
+ BCE + Iou loss 0.6497 0.7415 0.8275 0.7745 0.9298 0.7509 223
+ IoU loss, aug 0.7005 0.7868 0.8307 0.8435 0.9391 0.7820 252

+ IoU loss, subm 0.6928 0.7821 0.8686 0.7895 0.9391 0.8026 243

early stopping (patience 10) and a batch size of 20. The implemented
code is available at https://github.com/GeorgeBatch/kvasir-seg. We
implemented the network architecture in PyTorch (1.7.0) and ran
the computations on Tesla V100 32GB GPU.

4.2 Evaluation metrics
We used standard computer vision metrics for evaluating semantic
segmentation of polyps: intersection-of-union (IoU), Dice similarity
coefficient (DSC), recall (Rec.), precision (Prec.), overall accuracy
(Acc.) and F2-error (F2). Additionally, we demonstrated the real-
time application of our approach using frames-per-second (FPS)
measurement.

4.3 Results
Table 1 shows the quantitative results of the U-Net model with
different loss functions and augmentation. It can be observed that
using IoU loss as a minimization objective is better than using the
BCE loss or the combined (IoU + BCE) loss. Furthermore, using IoU
loss and data augmentation results in the best DSC of 0.7868, the
best IoU of 0.7005, and the best trade-off between precision (0.8435)
and recall (0.8307). It is worth noting that our method with IoU loss
has the highest FPS on our hardware of over 240.

Table 2 presents the results of our method on the unseen test
dataset provided by the challenge organisers. We have achieved the
DSC of 0.7328 and precision of 0.8229. Again, it can be observed that
our method has an FPS of 197, which is sufficient to be used in clin-
ical practice. In general, with available high-definition colonoscopy
equipment, the required rate is below 100 FPS.

Table 2: Results on the previously unseen test dataset (pro-
vided by the organisers)

Model mIoU DSC Rec. Prec. Acc. F2 FPS

U-Net + IoU loss 0.6351 0.7328 0.7500 0.8229 0.9422 0.7361 197

Figure 2: Quantitative results on validation set

Figure 3: Qualitative results on (unseen) test set

Figure 2 shows polyps with different size present at various
locations in the colon. Additionally, there are different textures
present on these protrusions. We see that our method is able to seg-
ment these polyps accurately with IoU of nearly over 0.95. Figure 3
presents predicted masks from our trained network on the unseen
test dataset. For this data, no ground truth was provided. Visual
inspection suggests that our method is able to segment the most
protruded polyps accurately. However, the method confuses the
large polyp structure with the colon folds.

5 CONCLUSION
We have presented different loss combinations and showed that
using widely used U-Net with IoU loss results in a descent segmen-
tation performance on the Kvasir-SEG dataset. Additionally, our
method provides strong clinical applicability due to its real-time
capability. In future, we will work on improving the segmenta-
tion accuracy using attention mechanism and apply shape context
information to boost performance.
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