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Abstract
Colorectal cancer (CRC) is a commonly found and highly fatal carcinoma at the later stage. Colonoscopy
is recommended for the early detection and prevention of CRC by finding and removing the leading CRC
precursors, the polyps. Polyp segmentation, which helps extract polyps from colonoscopy images, is
an essential step for diagnosing and developing an automatic real-time polyp classification system. In
the EndoCV2021 challenge, aiming to enhance PraNet [1], we utilized a parallel res2Net-based network
with reverse attention and proposed a new post-processing workflow to predict polyp segmentation
masks.EndoCV2021 and three more datasets were used to test the performance and generalization abil-
ity of the proposed segmentation methodology with seven metrics. Quantitative and qualitative eval-
uation results show that we develop a generalizable model with excellent real-time efficiency (∼32fps)
and precision / accuracy / sensitivity of 81.14%-88.94% / 94.11%-98.57% / 77.63%-91.48%, respectively.
Compared to the original PraNet, our proposed method improves segmentation precision significantly
by a level of 10%-29% and is more accurate with an increase of 2%-6%.
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1. Introduction

Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of
cancer-related death [2]. Polyps, considered the most prominent CRC precursors, could be easily
removed before they advance into malignant carcinoma. The location, size, and appearance
of polyps obtained during colonoscopy are crucial for CRC clinical diagnosis and follow-up
treatment decisions. Therefore, numerous researches have explored the development of polyp
detection and segmentation [3].

Deep learning is widely used in medical imaging analysis and computer-aided detection
(CAD) systems due to its excellent feature extraction ability [4, 5]. Since MICCAI 2015 Automatic
Polyp Detection in Colonoscopy Videos challenge, more and more datasets and challenges have
been launched, which further promote the application of deep learning-based endoscopic vision.
Among the deep learning networks, UNet-based [6] and FCN-based [7] models are widely
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applied in medical image segmentation for their excellent segmentation precision. However,
these models concentrate more on detecting the polyp regions and less on the examination of
the relationship between polyp areas and boundaries. Subsequent approaches on area-boundary
investigation for polyp segmentation also have the problem of incomplete calculations [8] or
time-consuming [9].

In 2020, Fan et al. [1] reported the state-of-the-art PraNet, a parallel reverse attention network
to generate a recurrent cooperation mechanism between polyp areas and boundaries. PraNet
first uses a parallel partial decoder to predict rough areas for polyps, then applies a reverse
attention module to model the previous boundaries. It works similarly as an endoscopist, looking
at the polyp’s general location, then extracting its edge and mask from the local features.

To further improve PraNet, our proposed methodology starts with a parallel res2Net-based
network with reverse attention to segment polyp from colonoscopy image. In addition, the
segmentation results are post-processed to eliminate the uncertain pixels and distinct the
segmentation edge. By doing so, we clarify the polyp boundaries and diminish large numbers
of false-positive cases, thus enhancing the precision, Jaccard, and Dice value. Four datasets
are used to assess the performance of the model. Evaluation results demonstrate that our
method offers the advantages of high generalization capacity, real-time efficacy, precision, and
accuracy. Comparing to PraNet, our method is much more precise and accurate. Therefore,
the tremendous emotional stress of the patients and additional tests can be avoided in clinical
practice.

2. Methods

2.1. Pre-processing

Different from data augmentation, we first split the data randomly into five equal sub-datasets
to employ the five cross-validation training strategy. In this strategy, five different models were
trained each time, using four datasets to find the appropriate model parameters and prevent
over-fitting.

The images have a different size in the subfolder of the EndoCV2021 dataset [10]. We then
resized images to the same size with a multi-scale training strategy to feed into the neural
network. Using this strategy to scale the input images to different sizes, the model can better
adapt to images of various sizes and increase the number of training sets.

2.2. Methods

The model we used is a Res2Net-based network, which extracts multi-level features from polyp
images. Figure 1 shows the outline framework. The architecture could be divided into three
processes. First, we used the feature extractors to generate five-level features that included two
low-level and three high-level features. After that, the high-level features will be up-sampled
and paralleled in connection to the partial decoder. We next put the high-level features and
output of the partial decoder (PD) to reverse attention (RA) component, which could adjust
segmentation to accurate results. Each process will be described as follows.



Figure 1: Framework of the model, which extracted features by a parallel network with three reverse
attention components.

The Res2Net-based [11] backbone network was utilized to extract multi-level features. As
Figure 1 shown, we designed five extractors, and each of them contains several network layers
based on a Res2Net-based network. In details, we called the first two extractors low-level
extractor and the others high-level extractor, which extract low-level features{𝑓1, 𝑓2} and
high-level features{𝑓3, 𝑓4, 𝑓5} respectively.

The high-level features would occupy fewer computing resources and contribute more to
the network, thus are concentrated more than low-level features[12] in our model. Therefore,
we apply paralleled connection on high-level features rather than all features. High-level
features will be up-sampled and using the Concat function to be connected parallelly to be more
specific. To aggregating these deep features, a partial decoder 𝑝()[12] component is computed
by 𝑝(𝑓3, 𝑓4, 𝑓5). The previous partial detector generates a global map 𝑀𝑔 with the paralleled
connection of high-level features. Using the deepest CNN network, high-level extractors will
roughly extract the feature information.

Figure 2(a) shows a traditional medical image segmentation framework, which generating
map 𝑀 by adopting a full decoder to integrate all level features. However, Wu et al. [12] proved
the high-level features would occupy fewer computing resources and contribute more to the
network. Besides, they conducted visualization experiments on multi-level feature maps and
found that the fifth layer still reserved edge information. Inspired by their work, our model
concentrates more on high-level features and uses five-level extractors to elicit features. As
Figure 2(b) shown, we applied paralleled connection on high-level features rather than all
features. Therefore, high-level features are up-sampled and connected parallelly by the Concat
function. To aggregating these deep features, a partial decoder p()[12] component is computed



Figure 2: (a) Traditional encoder-decoder framework, (b) The paralleled partial decoder framework.

by 𝑝(𝑓3, 𝑓4, 𝑓5). This partial detector generates a global map 𝑀𝑔 . With the paralleled connection
of high-level features, high-level extractors will roughly extract the feature information using
the deepest CNN network.

To further detail the information, we adopt a reverse attention component for each high-level
feature branch. A shallow-forward strategy is applied to ensure that the maps 𝑀𝑖 generated by
each branch are gradually refined. Specifically, the deep maps {𝑀4,𝑀5,𝑀𝑔} will be delivered
to the RA component of the shallow part to compute reverse attention features {𝑅3, 𝑅4, 𝑅5}.
Each deep map and reverse attention feature element-wise is multiplied and generates the
shallow maps {𝑀3,𝑀4,𝑀5}. The map gradually sharpens by sequentially fusing with shallow
maps.

Our loss function formula is represented as 𝐿 =𝑖 𝑙(𝐺,𝑀𝑢𝑝
𝑖 ) , where the deep feature maps

{𝑀𝑖, 𝑖 = 3, 4, 5, 𝑔} will be up-sampled to the same size of the ground-truth G, and calculate
the loss between each 𝑀𝑢𝑝

𝑖 and 𝐺 by function 𝑙. Function 𝑙 is defined as (1).

𝑙 = 𝑙𝑤𝐼𝑂𝑈 + 𝑙𝑤𝐵𝐶𝐸 (1)

Among them, 𝑙𝑤𝐼𝑂𝑈 and 𝑙𝑤𝐵𝐶𝐸 express the weighted IOU loss and BCE loss, respectively.
Comparing with standard IOU and BCE loss, the weighted loss would concentrate more on hard
pixels instead of allocating the same weights for all pixels.

2.3. Post-processing

The original prediction, generated by the deep paralleled network with reverse attention modules,
could roughly divide into polyp cases and pending cases. We can distinguish two cases easily by
the presence or absence of a clear polyp site. The polyp case contains more white pixels and is
more concentrated than the pending case, while most of the gray pixels distribute on the edge



of white pixels. By contrast, polyps have no presence in the pending case, so their white pixels
are sparse, and gray pixels are scattered irregularly. Therefore, we introduced post-processing
to the original predictions to clarify the polyp case boundary and eliminate the uncertainty.

(a) Uncertain case

(b) Polyp case

Figure 3: (a) shows a pending case of the original prediction, while (b) is a polyp case. Each pending
case compares with the polyp case visual difference of the original prediction, post-processing result,
and corresponding ground-truth.

Concretely, the smallest polyp size, which is the tiniest white pixel in the dataset’s polyp
case, is appointed as the reference value. We subsequently use the number of white pixels to
judge the type of case from the original prediction. When the number of white pixels in the
original prediction is more than the reference value, we consider it the polyp case because it is
sufficient to form the smallest polyp. Thereafter, we set a threshold to polarize the gray pixels
into black and white pixels for polyp cases—this conversion distinct the boundary and inner
area of polyp clearly through polarized the pixels. For a pending case, where white pixels are
rare, we consider it a non-polyp image and convert all non-black pixels to the background. The
original prediction, post-processed results of each case, and the corresponding ground-truth are
shown in Figure 3.

3. Experiments

3.1. Dataset and Implementation

Our model mainly used the EndoCV2021 challenge dataset [10] for endoscopic images for polyp
segmentation in this work. The dataset contains 1,449 endoscopic images with ground-truth
masks in C1-C5 folders. We split the dataset into 80% for training and 20% for validation.



To verify the generalization abilities of our method, we also utilize three publicly available
endoscopy datasets, Kvasir-seg [13], CVC-Clinic [14], and EndoScene-CVC300 [15] for testing.

The deep models are implemented based on PyTorch and trained on an NVIDIA GeForce
RTX 3090 GPU using Adam optimizer with a learning rate of 1𝑒− 4. The batch size is set to 16,
while input images are resized to 512512 with multi-scale training parameters {0.75, 1, 1.25}.

3.2. Evaluation Metrics

To quantitatively evaluate our model’s performance, seven metrics provided by the challenge for
the segmentation task are employed: Jaccard (Jac), Dice, F2-score, Precision (Positive Predictive
Value, PPV), Recall (Rec), Accuracy (Acc), and Hausdorff distance (Hdf). A toolbox provided
by the challenge organizer at https://github.com/sharibox/EndoCV2021-polyp_det_seg_gen
[16, 17] is utilized to calculate scores between each prediction and ground-truth. Also, we add
the Frame Per Second (Fps) metric to evaluate the real-time performance of our model.

3.3. Experimental Results

Figure 4 presents our model’s loss on the training set for varying epochs. When the epoch is
less than 50, the graph describes a decreasing trend, while it remains stable after the epoch
greater than 50. That is to say, the loss gradually converges downward, which proves that our
model is feasible. Moreover, we experiment with different input images’ sizes to attempt to
obtain the appropriate size on this dataset. We can observe that when the input size is small,
the loss value after convergence is relatively large, and vice versa. Among them, the size of
512512 reaches the lowest convergence value in the training phase.

Table 1 provides our model’s segmentation results on EndoCV2021 C1 and CVC-ClinicDB
datasets with different input image sizes. Consistent with the results in Figure 4, the larger input
size performs better because it contains more semantic information, which may be lost after
resizing to the smaller input size. Also, we employ the fps metric for real-time performance
evaluation. Our model’s real-time inference speed can reach∼30fps even using different datasets
or input sizes. That is to say, our model not only performs real-time efficiency well but also can
be extended to colonoscopy videos.

Table 1
Quantitative results on the C1 and CVC-ClinicDB datasets with different size of the input image

Size Jac Dice F2 PPV Rec Acc Hdf Fps

EndoCV2021 C1

608 0.5973 0.6979 0.7402 0.6756 0.8124 0.9306 0.3690 31.4
512 0.5804 0.6785 0.7196 0.6597 0.8159 0.9342 0.4528 31.6
448 0.5389 0.6505 0.7169 0.6052 0.8340 0.9311 0.3831 31.6
384 0.4634 0.5751 0.6492 0.5400 0.7980 0.9105 0.5173 32.1

CVC-ClinicDB [14]

608 0.5519 0.6481 0.6819 0.6361 0.7427 0.9302 0.4874 35.4
512 0.5190 0.6133 0.6591 0.6072 0.7215 0.9340 0.4433 35.6
448 0.4634 0.5699 0.6260 0.5565 0.7164 0.9108 0.5192 35.8
384 0.4184 0.5268 0.5909 0.4804 0.6802 0.9093 0.5290 36.2

Quantitative results of model performance, including seven metrics, are presented Table 2.
The results demonstrate that our model’s varying component is a crucial contributor to the

https://github.com/sharibox/EndoCV2021-polyp_det_seg_gen


Figure 4: The model loss with different sizes of the input image on the training datasets.

improvement of the model segmentation ability. The precision, accuracy, and sensitivity are 81%-
89%, 94%-98%, and 64%-80%, respectively, across different source datasets. The post-processing
component enhances the Jaccard, Dice, precision, and accuracy metrics. In other words, our
model can better distinguish the patients without polyps. Comparing with PraNet, the accuracy
increases 2%-6%, and segmentation precision enhances a significant 10%-29%. Besides, Table 2
also shows that the method achieves excellent generability by delivering well segment precision
on datasets never train the model, the Kvasir-seg, and EndoScene-CVC300 datasets.

4. Conclusion

In this manuscript, we introduce a deep model for the EndoCV2021 polyp segmentation task. The
model adopts a parallel res2Net-based network with reverse attention for polyp segmentation
and concentrates on extracting the high-level features. The results are predicted with a post-
processing component. The experimental results indicate that our model (1). has excellent
generalization ability on different datasets, (2). delivers real-time efficiency, and (3). offers
better precision and accuracy that can better identify negative polyp individuals. The 512512
input size is a balance between our GPU memory and image resolution on the EndoCV2021
challenge datasets. Future works will focus on the data augmentation of polyps and lighter
feature extractors to further improve the segmentation results.



Table 2
Ablation study result of all validation, Kvasir-seg, and EndoScene-CVC300 datasets

Methods Jac Dice F2 PPV Rce Acc Hdf

EndoCV2021
C1-C5

Backbone+RA(BR) 0.4499 0.5400 0.5840 0.5376 0.7250 0.9082 0.4373
Backbone+PD(BP) 0.5126 0.5993 0.6074 0.5931 0.7489 0.8821 0.3851
BR+PD(BRP) 0.5210 0.6032 0.6341 0.5953 0.7763 0.9086 0.3659
BRP+post 0.5699 0.6322 0.6199 0.8894 0.6373 0.9576 0.4134

Kvasir-seg [13]

Backbone+RA(BR) 0.6378 0.7408 0.7954 0.7023 0.8686 0.9057 0.4518
Backbone+PD(BP) 0.6951 0.7911 0.8104 0.7547 0.8735 0.9181 0.4375
BR+PD(BRP) 0.6972 0.7940 0.8276 0.7746 0.8743 0.9236 0.4311
BRP+post 0.7240 0.8082 0.7986 0.8687 0.8089 0.9411 0.4439

EndoScene-CVC300 [15]

Backbone+RA(BR) 0.4703 0.5838 0.7081 0.4209 0.9023 0.9204 0.4818
Backbone+PD(BP) 0.5597 0.6767 0.7730 0.5828 0.9087 0.9481 0.4215
BR+PD(BRP) 0.5867 0.7020 0.7933 0.6158 0.9148 0.9654 0.4139
BRP+post 0.6377 0.7309 0.7640 0.8114 0.8029 0.9857 0.4884
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