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Abstract
Detection of colon polyps has become a trending topic in the intersecting fields of machine learning
and gastrointestinal endoscopy. The focus has mainly been on per-frame classification. More recently,
polyp segmentation has gained attention in the medical community. Segmentation has the advantage
of being more accurate than per-frame classification or object detection as it can show the affected area
in greater detail. For our contribution to the EndoCV 2021 segmentation challenge, we propose two
separate approaches. First, a segmentation model named TriUNet composed of three separate UNet
models. Second, we combine TriUNet with an ensemble of well-known segmentation models, namely
UNet++, FPN, DeepLabv3, and DeepLabv3+, into a model called DivergentNets to produce more general-
izable medical image segmentation masks. In addition, we propose a modified Dice loss that calculates
loss only for a single class when performing multi-class segmentation, forcing the model to focus on
what is most important. Overall, the proposed methods achieved the best average scores for each re-
spective round in the challenge, with TriUNet being the winning model in Round I and DivergentNets
being the winning model in Round II of the segmentation generalization challenge at EndoCV 2021. The
implementation of our approach is made publicly available on GitHub.
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1. Introduction

Automatic segmentation of medical images is a common use case in machine learning that has
gained a lot of attention over the last few years. Popular applications include segmenting tumors
in computed tomography (CT) scans [1, 2], finding abnormalities in magnetic resonance images
(MRIs) [3, 4], or segmenting organs and tissue in medical applications [5, 6]. Segmentation
goes a step beyond standard classification and object detection as it extracts the area in an
image that corresponds to the target class or classes at pixel-level precision. This comes with
two advantages that are important in the medical field. The first one is that the algorithm
learns pixel-wise and has more examples to learn from compared to if it would learn image-
wise [7, 8]. This can help for use cases where one does not have many images from a disease.
Secondly, the segmented area makes it easier for the physician to determine what the algorithm
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Figure 1: Some example images and their corresponding ground truth masks taken from the develop-
ment dataset of EndCV2021 [10]

detected and classified as a disease which serves in a broader sense as an explanation. Thus,
detailed image segmentation can also be seen as a type of explanation method. This makes
it highly desired by medical professionals as explainable machine learning is seen as one of
the requirements for the successful implementation of automatic decision support systems
in hospitals [9]. As part of the EndoCV2021 challenge (https://endocv2021.grand-challenge.
org/), we were tasked with creating machine learning models that automatically segment
polyps [11, 12, 13] in video frames collected from real-world endoscopies. This is a complex
task as polyps come in various shapes and sizes, where some (e.g., flat lesions) are barely
detectable by even the most experienced endoscopists. Figure 1 shows some of the more difficult
examples taken from EndoCV’s development dataset [10] provided by the challenge organizers.
The challenge presented two separate tasks, the detection generalization challenge and the
segmentation generalization challenge. We participated in the segmentation generalization
challenge, where we achieved the best results among 13 other competitors in both rounds. The
code for the experiments presented in this paper is available on GitHub1.

This paper summarizes our approaches to the EndoCV2021 challenge. In particular, we
developed the TriUNet segmentation model combining three separate UNet models, and the
DivergentNets that combines TriUNet with an ensemble of the well-known segmentation models,
namely UNet++, FPN, DeepLabv3, and DeepLabv3+. The rest of the paper is structured as
follows. Section 2 present our approach to this year’s challenge, where we use two unique
models that achieve state-of-the-art performance on the EndoCV dataset. Section 3 gives a
description of the implementation details on the models and training procedure and how the
data was split and prepared. Section 4 presents the preliminary and official results for our tested
models and performs a qualitative analysis on some of the predicted masks. Lastly, Section 5
concludes this paper with a summary and plans for future work.

1https://github.com/vlbthambawita/divergent-nets
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Figure 2: An illustration of the TriUNet architecture. First, the image is passed through two separate
UNets in parallel, which produce the feature vectors 𝑉1 and 𝑉2, respectively. These two vectors are then
concatenated before being passed through a third UNet that predicts the final segmentation mask. The
loss is calculated by taking the Dice coefficient of the mask corresponding to the main class and the
ground truth, which is then back-propagated through the entire model.

2. Approach

In this section, we introduce three approaches that we developed for the segmentation general-
ization challenge at EndoCV 2021, which are two new architectures, TriUNet and DivergentNet,
and a modified loss function.

2.1. TriUNet

TriUNet is a convolutional neural network (CNN) architecture that utilizes multiple UNet [14]
architectures arranged in a triangular structure as depicted in Figure 2. The model takes a single
image as input, which is passed through two separate UNet models with different randomized
weights. The output of both models is then concatenated before being passed through a third
UNet model to predict the final segmentation mask. Figure 2 also shows an example of the
intermediate representations provided by the two initial UNet models. The loss is calculated
and back-propagated through the whole model, meaning the entire network is trained in one go.
From the intermediate representations, we clearly see that the different UNets learn different
interpretations of the data, which then are combined in one final output.

2.2. DivergentNets

The DivergentNets network is inspired by the idea of ensembles made with multiple high-
performing image segmentation architectures and the TriUNet architecture presented in the
previous section. We constructed this DivergentNets assuming that cumulative decisions taken
from multiple intermediate models should give a more precise decision than the predictions from
a single network. The included models were selected based on what has previously been shown
to produce good results on different segmentation tasks and some preliminary experiments
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Figure 3: An illustration of the DivergentNets architecture. First, five different models are trained
using the U-Net++, FPN, TriUnet, DeepLabv3, and DeepLabv3 architectures. Then, an image is passed
through each model separately, which produces masks 𝑀1 to 𝑀5. Last, the masks are averaged to
make the final segmentation mask.

using each model independently. Furthermore, the selection was limited by the hardware we
had available.

As shown in Figure 3, our configuration comprises five intermediate models, namely UNet++,
FPN, DeepLabv3, DeepLabv3+, and TriUNet. The five intermediate models are first trained
for 𝑁 number of epochs separately, where the best checkpoint of each model is selected to
be combined in DivergentNet. This 𝑁 should be selected using a preliminary experiment. In
our case, we identified that 𝑁 = 200 is enough to produce high-quality masks. However,
training for more epochs may result in better checkpoints to use in DivergentNet. To produce
the intermediate masks, the output of each model is passed through a softmax2d activation
function. However, this should be changed based on the application. In our case, we predict
masks for two classes, background and polyp, where no two categories may overlap. The masks
produced by each intermediate model represent the divergent views on the data. The final
output of DivergentNets is made by averaging the pixels between each intermediate mask and
rounding to the nearest integer (either 0 or 1).

2.3. Single-channel Dice

All models were trained to predict masks for both polyps and background (mostly containing
the mucosal wall lining the inside of the colon). As the primary focus of EndoCV is to segment
colon polyps, we use a modified Dice loss to calculate the prediction error. We call this loss
function single-channel Dice loss as it only considers one channel when calculating error. This



Table 1
An overview of how the data was split between training, validation, and testing.

Dataset Partition # Samples # Polyp # Non-Polyp

EndoCV Training 1,754 1,329 435
EndoCV Validation 2,756 1,400 1,356

HyperKvasir Testing 1,000 1,000 0

is shown in Equation 1:

Single-Channel Dice Loss =
2 · |𝐴𝑛 ∩𝐵𝑛|

2 · |𝐴𝑛 ∩𝐵𝑛|+ |𝐵𝑛∖𝐴𝑛|+ |𝐴𝑛∖𝐵𝑛|
(1)

where 𝑛 represents the class for which loss should be calculated for. In this case, we only
calculate loss for the polyp class and ignore the background.

3. Experiments

The experimenters can be categorized into two sub-groups, namely baseline experiments and
experiments used for the challenge. The baseline experiments were used to benchmark common
segmentation models. The baseline models tested were UNet [14], UNet++ [15], FPN [16],
DeepLabv3 [17], and DeepLabv3+ [18]. In turn, we used these networks to design the TriUNet
and DivergentNets architectures. This section describes the experimental setup, including how
the data was prepared, training procedures, architecture implementations, and specifics on
what hyperparameters were used.

3.1. Data details and preparation

The development dataset provided by the organizers was split between several directories,
primarily one part consisting of a five-way center-wise split (directories C1 through C5) con-
taining a diverse set of data [10], and one part consisting of pure sequence data (directories
seq1 through seq15). For this challenge, we decided to use a standard three-way split of the data
into training, validation, and testing datasets. The training data was made up of all the data
contained within the center-wise split for training data, in addition to a few sequences only
containing negative samples. For validation, we used the remaining sequence data. Table 1 gives
an overview of how each directory was split between training, validation, and test datasets. All
samples contained an image, a segmentation mask, bounding box coordinates, and the image
with the bounding-box superimposed over it. As we were only participating in the segmentation
generalization challenge, we only used the images and segmentation masks.

3.2. Implementation details

All models were implemented in PyTorch and trained on an Nvidia DGX-2. The Nvidia DGX-2
consists of 16 Tesla V100 GPUs, dual Intel Xeon Platinum 816 processors, and 1.5 terabytes
of system memory. Despite that the system contains 16 GPUs, we only use one for training



Table 2
The results collected from the preliminary experiments on the internal validation dataset.

Model
All Classes Polyp Class Background Class

IoU F1 REC PREC IoU F1 REC PREC IoU F1 REC PREC

U-Net 0.973 0.985 0.985 0.985 0.774 0.802 0.831 0.926 0.984 0.991 0.996 0.988
U-Net++ 0.972 0.984 0.984 0.984 0.787 0.815 0.847 0.918 0.983 0.991 0.995 0.989

FPN 0.973 0.985 0.985 0.985 0.778 0.810 0.853 0.904 0.984 0.991 0.995 0.989
DeepLabv3 0.971 0.984 0.984 0.984 0.764 0.798 0.842 0.902 0.983 0.991 0.994 0.989

DeepLabv3+ 0.973 0.985 0.985 0.985 0.777 0.807 0.840 0.919 0.984 0.991 0.994 0.989
TriUNet 0.970 0.983 0.983 0.983 0.775 0.802 0.846 0.903 0.982 0.990 0.992 0.989

DivergentNets 0.976 0.986 0.986 0.986 0.795 0.823 0.844 0.937 0.986 0.992 0.997 0.989

so that we can train multiple models in parallel. For the baseline experiments, we used the
implementations and pre-trained weights available in the Segmentation Models [19] library.
These networks were also used as the basis for our proposed TriUNet and DivergentNets. Each
model was implemented SE-ResNeXt-50-32x4D [20] as the encoder, which was initialized with
ImageNet [21] weights. Images and masks were resized to 256× 256 and resized back to the
original resolution using bilinear interpolation. The final prediction was produced by passing
the output through a two-dimensional softmax function. For training, all models started with a
learning rate of 0.0001 and reduced to 0.00001 after 50 epochs. The model error was calculated
using the proposed single-channel Dice for the polyp class (as explained in Section 2.3), and the
weights were optimized using Adam [22].

As the size of the development dataset is relatively small, we use a series of different image
augmentations to make the model more generalizable. These augmentations include horizontal
flip, shift scale rotation, resizing, additive Gaussian noise, perspective shift, contrast limited
adaptive histogram equalization (CLAHE), random brightness, random gamma, random sharpen,
random blur, random motion blur, random contrast, and hue saturation. The augmentations
were implemented using the Python library Albumentations [23]. No augmentations were
applied to the validation and testing data.

4. Results and Discussion

In this section, we discuss the preliminary and official results of our approach to the EndoCV
2021 challenge. We also perform a qualitative analysis of the models, showing how the different
modes diverge to a final prediction.

4.1. Preliminary results

Table 2 and Table 3 show the initial results on the provided development validation and testing
datasets. Overall, we see that all models perform well on segmenting the polyp class, with the
DivergentNets architecture achieving the best performance and UNet++ at a close second place
on both the validation and test datasets. Comparing UNet and TriUNet, we see that TriUNet
performs slightly better on the polyp class, however, UNet++ outperforms both. With these
results, it would be natural to assume that a TriUNet++ architecture would perform even better



Table 3
The results collected from the preliminary experiments on the internal testing dataset.

Model
All Classes Polyp Class Background Class

IoU F1 REC PREC IoU F1 REC PREC IoU F1 REC PREC

U-Net 0.941 0.967 0.967 0.967 0.823 0.883 0.876 0.938 0.959 0.977 0.988 0.970
U-Net++ 0.945 0.969 0.969 0.969 0.834 0.894 0.882 0.942 0.961 0.979 0.988 0.972

FPN 0.944 0.968 0.968 0.968 0.824 0.887 0.870 0.943 0.961 0.978 0.990 0.970
DeepLabv3 0.942 0.968 0.968 0.968 0.821 0.885 0.874 0.935 0.959 0.977 0.988 0.970

DeepLabv3+ 0.942 0.968 0.968 0.968 0.823 0.886 0.883 0.931 0.823 0.886 0.883 0.931
TriUNet 0.941 0.967 0.967 0.967 0.829 0.890 0.891 0.928 0.959 0.977 0.983 0.975

DivergentNets 0.949 0.972 0.972 0.972 0.840 0.899 0.886 0.946 0.964 0.980 0.990 0.973

Table 4
The official results provided by the EndoCV organizers. Score is an average score of F1-score, F2-score,
PPV, and Recall provided by the organizers, and SD is the standard deviation of the metrics.

Round Model Score SD

I
UNet++ 0.917 0.168
TriUNet 0.925 0.152

II
TriUNet 0.796 0.047

DivergentNets 0.823 0.043

than TriUNet. However, due to hardware limitations (specifically GPU memory), we were
unable to test this configuration and move this to future work.

4.2. Official results

The official evaluation was split into two rounds, where Round I used a subset of the testing data
that was fully used for Round II. For both rounds, we were limited by the number of submissions
that could be delivered per day. This limit started at five-per-day for Round I and was reduced
to two-per-day for Round II. Due to this limitation, only a subset of the aforementioned models
was submitted as official runs. Models were selected based on their performance on a different
test dataset that we chose, namely the well-known and established HyperKvasir [24] dataset, in
ascending fashion. From the HyperKvasir dataset, we only used the images with segmentation
masks as an independent test set to determine the best generalizable model. It was not used in
any way as training or validation data. Table 4 shows the official results for Round I and Round
II. Note that the DivergentNets model was not part of Round I as it was developed during Round
I and used in Round II once it was finished. From the results, we see that TriUNet achieved the
best score for Round I, and DivergentNets achieved the best score for Round II, i.e.,both winning
their respective rounds of the competition.

4.3. Qualitative analysis

Figure 4 shows some example masks predicted by our best performing model (DivergentNets)
together with masks produced by the intermediate models. We see that each intermediate model
learns slightly different features, making an overall more precise segmentation mask when



Image DeepLabv3 DeepLabv3+ FPN U-Net++ TriUNet DivergentNets Ground Truth

Figure 4: Some predicted mask examples taken from the divergent network and its five intermediate
models. The images are taken from HyperKvasir.

combined. For example, the first row of Figure 4 shows the predicted masks and ground truth
of a large polyp. We see that each model predicts slightly different masks for the same input
and that TriUNet over-estimates the size of the polyp. After averaging the predicted masks
for DivergentNets’ final output, this area is smoothed out by the predictions from the other
intermediate models.

Even though DivergentNets primarily produces more accurate masks than any single model,
there are cases where masks from the intermediate model better match the ground truth. We see
this in row three, where DeepLabv3+ produces a more precise mask than all other intermediate
models, making the averaged output less accurate.

5. Conclusion and future work

In this paper, we presented our approaches to the EndoCV 2021 challenge. We trained a series
of baseline models and two models based on novel architectures using a slightly modified Dice
loss, which achieved the overall best score in both rounds of the generalization segmentation
challenge. For the first round, we developed TriUNet, which reached an average score of
0.925 on the official testing dataset. For the second round, we developed the DivergentNets
architecture, which combines the baseline models with the TriUNet to gain an average score of
0.823 on the official training dataset. Due to a limitation on time and computational resources,



we could not experiment with another improved version where the UNet architectures are
replaced with UNet++ architectures.

For future work, we plan to explore different configurations of TriUNet, such as implementing
TriUNet++ and testing different architectures for three architectures that make up the TriUNet
architecture, for example, combining the UNet, FPN, and DeepLabv3 as TriUNet nodes. We
would also like to explore different configurations for the DivergentNets architecture with
different networks for each node. Another idea could be to use a neural network to produce the
final prediction instead of the current averaging technique, similar to the approach discussed
in [25]. Further testing the approaches with datasets from other medical fields can help to
identify the generalizability of our approach.
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