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Abstract
Automatic segmentation of medical images is a difficult task in computer vision due to the various back-
grounds, shapes, sizes, and colors of polyps or tumors. Despite the success of deep learning (DL)-based
encoder-decoder architectures in medical image segmentation, it is not always suitable to implement in
real-time clinical settings due to its high computation power and less speed. In this EndoCV2021 chal-
lenge, we focus on a light-weight deep learning-based algorithm for the polyp segmentation task. The
network applies a low memory traffic CNN, i.e., HarDNet68, as a backbone and a decoder. The decoder
block is based on a cascaded partial decoder famous for fast and accurate object detection. Further, to cir-
cumvent the issue of a small number of images while training, we propose a data augmentation strategy
to increase the model’s generalization by performing augmentation on the fly. Extensive experiments
on the test set demonstrate that the proposed method produces outstanding segmentation accuracy.
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1. Introduction

The accurate segmentation of medical images is a deciding step in the diagnosis and treatment
of several diseases under clinical settings. The automatic segmentation of diseases can assist
doctors or medical professionals in predicting the size of a polyp or lesion and enables continuous
monitoring, planning, and follow-up studies resulting in treatment without delay. However,
background artifacts, noises, variations in shape and size of the polyps, and blurry boundaries
are some of the main factors contributing to more complications for accurate segmentation.

In recent years, owing to the rapid progress in deep learning-based techniques such as
convolutional neural networks (CNNs), it is now possible to segment medical images without
human intervention. The robust, non-linear feature extraction capabilities of CNNs make it
adaptable in other domains such as medical image classification [1, 2, 3], detection [4, 5, 6], image
retrieval [7]. In particular, methods such as fully convolutional neural network [8] and encoder-
decoder based architectures such as U-Net [9] and SegNet [10] have been widely applied for
image segmentation tasks. These networks consist of a contraction path that captures the context
in the image, and the symmetric expanding path consists of single or multiple upsampling
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Figure 1: Overall framework of the HarDNet-MSEG [13]

techniques to enable a precise localization [8, 9, 10]. Further, skip-connection techniques have
been effective in redeeming fine-grained details, enhancing the network’s performance even on
a complex dataset.

Inspired by these methods, many approaches have been presented to solve segmentation
problems in a wide range of domains. However, the complex architectures, limiting resources,
and the low frame per second (FPS) limit the practical implementation of U-Net variants in the
clinical domain. Therefore, reducing model size by enhancing both energy and computation
efficiency carries great importance. Usually, reduced model size indicates fewer FLOPs(floating-
point operation per second) and lesser DRAM(dynamic random-access memory) traffic for
reading and writing feature maps and network parameters. State-of-the-art networks like
Residual Networks(ResNet) [11], and Densely Connected Networks(DenseNet) [12] have steered
the research paradigm towards a compressed model with high parameter efficiency while
maintaining high accuracy. When small training sets are available, the traditional deep learning
model usually overfits; this lack of available data has been a significant bottleneck in the
research field. Not only that, even when enough data is available, there is a high computational
cost involved. Therefore, we leverage a lightweight network for accurate polyp segmentation,
which provides good segmentation accuracy and speed in comparison to prior methods [13].
Besides decreasing the number of network parameters and the involved computational cost,
the presented method also preserves the segmentation accuracy. Further, we propose an
augmentation strategy for the polyp segmentation, which helps generalize the model in a
complex environment. It encourages the model to learn the semantic features in different
variations and scales.

This study’s significant contributions can be summarized as follows: First, we leverage the
high-speed HarDNet-MSEG model for accurate polyp segmentation. Second, we compares it
with other existing architectures with EfficientNetB0 backbone [14] model. Third, we propose
an augmentation strategy for the polyp segmentation so that the model can be generalized in a
complex environment. Fourth, we evaluated the proposed methodology in different architectures,
and the experimental results show the efficiency of our method. Overall, we show that the
lightweight network with an improved augmentation strategy can be used in the real-time



Figure 2: Overall view of each section of the HarDNet-MSEG.

clinical domain.

2. Methodology

Conventional architectures [15, 16] have achieved high accuracy over small model size coun-
terparts but have low inference speed. HardNet [13], considering the influence of memory
traffic on model design, achieves an increase in inference speed by reducing the shortcuts, and
similarly to make up for the loss of accuracy, increases its channel’s width for the key layer. 1x1
convolution is used to increase the computational density. With this, not only is the inference
time reduced compared with DenseNet [12] and ResNet [15], the model also achieves higher
accuracy on ImageNet [17].

The backbone of this model follows the Cascaded partial decoder [18]. In the cascaded
partial decoder, the shallow features are discarded as the deeper layers’ can represent the
shallow information’s spatial details comparably well. The addition of skip connections and
appropriate convolution also helps in aggregating the feature maps at different scales. Fig. 3(a)
shows a Receptive Field Block [19]. In RFB, varying convolutional and dilated convolutional
layers generate features with diverse receptive fields. RFB block is used following the [18] to
enlarge receptive fields in feature maps of different resolutions. As shown in Fig. 3(b), in dense
aggregation, we upsample the lower scale features and do element-wise multiplication with
another feature of the corresponding scale.

3. Experiments

3.0.1. Metrics

The most commonly used metrics for the medical image segmentation are the Dice coefficient
and IOU- which can be defined as follows:

𝐷𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2 * 𝑇𝑃

2 * 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(1)



Algorithm 1 Detailed augmentation strategy for the training process
1: p indicates the probability for the each augmentation performed on the image.
2: For each training image and corresponding mask:

• Crop the image size into 352 x 352 pixels.
• With probability of p=0.5, perform random rotation [0,90]
• With probability of p=0.5, perform horizontal flip.
• With probability of p=0.5, perform vertical flip.
• With p=0.3, apply one of:

– random IAAAAdditive gaussian noise
– gaussian noise

• With p=0.3, apply one of:
– shiftScaleRotate With scale limit of 0.2 and rotate limit of 45.
– random brightness shift within the range of -10 to +10 percent.
– random contrast shift within the range of -10 to +10 percent.

• With p=0.3, apply one of:
– motion blur.
– median blur with blur limit of 2.

• With p=0.3, apply one of:
– mask dropout in the RGB image.
– gaussian noise

• With probability of p=0.3, perform color jitter of brightness (0.2), contrast (0.2), satu-
ration (0.2) and hue (0.2).

3: Feed the transformed image into the network in each epoch.

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(2)

where, TP represents true positive, FP represents false positive, and FN represents false negative.
Both the Dice coefficient and IoU calculate the similarity between the predicted mask and the
ground truth mask shown in Eqs. (1) and (2), respectively.

3.1. Implementation Details

We divided the whole EndoCV2021 dataset [20] into training and validation set with a ratio of
80:20 percent. Out of 1452 image, 1162 images are used for the training set and the remaining
for the validation set from the challenge. All the images are resized to 352× 352 and performed
heavy data augmentation shown in Algorithm 1. We implement our model in Pytorch and
conduct our experiments on GeForce RTX 2080 Ti. We use Adam optimizer with a learning rate
of 0.00001 for all the experiments.



Figure 3: Qualitative analysis of the outputs of different architectures.

3.1.1. Baselines

We perform experiments on several state-of-the-architectures. We employ U-Net [9], U-Net++
[21], ResUNet [22] and ResUNet++ [23] with the EfficientNet-B0 [14] as a backbone to design
the efficient and light-weight model. Further, we use rotation, flipping, scaling for normal
augmentation and also perform heavy augmentation stated in Algorithm 1 and compares the
performance gain in each architectures. With heavy augmentation, the model gets a different
transformed image in each epoch and eventually helps in generalization.



Table 1
Experimental results of different architectures before and after heavy augmentation (H. aug) with frame
per second (FPS).

Architecture
Jaccard Dice coeff FPS

Before H.aug. After H.Aug. Before H.aug. After H.Aug.
U-Net [9] 0.7911 0.8226 0.8441 0.8643 65
ResUnet[22] 0.8016 0.8247 0.8539 0.8698 48
U-Net++[21] 0.8232 0.8453 0.8762 0.8859 44
ResUnet++[23] 0.8176 0.8392 0.8527 0.8753 42
Hard-Net[13] 0.8485 0.8649 0.8923 0.9124 88

Table 2
Various augmentation strategies for the polyp segmentation. Probability indicates the chances of ap-
plying each transformation on the image.

Augmentation type Probabilities

Rotation 0.5 0.5 0.5 0.5
Horizontal Flipping 0.5 0.5 0.5 0.5
Vertical Flipping 0.5 0.5 0.5 0.5
Random IAAAAdditive gaussian noise
Gaussian noise

- 0.3 0.5 0.3

ShiftScaleRotate
Random brightness shift
Random contrast shift

- 0.5 0.5 0.3

Motion blur
Median blur

- 0.5 0.5 0.3

Mask dropout - 0.3 0.5 0.3
Color jitter - 0.3 0.5 0.3

Dice coefficient 0.75 0.77 0.75 0.78

3.1.2. Experimental Results

Figure 3 displays the qualitative result for the polyp segmentation across several architectures
on multi-institutional challenging images. It can be observed that the Hard-Net can segment
polyp accurately, almost matching the ground truth of the original images, whereas other
architectures like U-Net and ResUnet could not segment the polyps with higher confidence and
misses the polyp in some images. Further, U-Net++ over segments the polyp part covering the
unwanted parts (see in row 4).

From Table 1, it is observable that the HarDNet achieves higher segmentation accuracy
in terms of both the Jaccard index and dice coefficient. The implementation of U-Net with
efficientNet backbone obtained the least Jaccard index of 0.8226 after heavy augmentation.
Similarly, ResUnet and U-Net++ achieved a Jaccard index of 0.8247 and 0.8453 under the same
settings. The ResUnet++ obtains the second position with a Jaccard index of 0.8392 and a
Dice coefficient score of 0.8753. Further, Hard-Net also has a higher frame per second (FPS)



than other existing SOTA methods. It obtained the highest speed of 88 FPS while the U-
Net, ResUNet, U-Net++, and ResUNet++ have 65,48,44,42 FPS, respectively. Moreover, the
augmentation strategy explained in Algorithm 1 also helps increase performance by at least 2
percent in each index. Usually, we started with simple augmentation techniques like rotation,
flip (Horizontally and vertically) as a baseline augmentation, and then added other methods
like Gaussian noise, blurring, masking, color jittering, etc. We carefully design the probabilities
ratio during transformation because a substantial augmentation could lead the model not to
learn anything from the input image. Therefore, we keep higher probabilities for the rotation
and flipping and comparatively smaller probabilities to other techniques. According to our
experiments (fourth column), a strong augmentation could not generalize the model well;
instead obtained a similar accuracy as the baseline augmentations.

3.2. Discussion

In clinical settings, an expeditious deep learning method is much needed. Usually, it is found
that there is always a tradeoff between the speed and the accuracy while applying a deep
learning-based algorithm. However, in this case, Hard-Net surpassed other prior methods in
terms of speed and accuracy, which is a good sign for clinical practice. From the extensive
experimental results from Figure 3 and Table 1, we can observe that the Hard−Net shows
improvement over all other existing methods in terms of Jaccard index, dice coefficient, and FPS.
To decrease the network complexities, we utilized the EfficientNetB0 as an encoder backbone
for all the architectures and tried to minimize the complication as far as possible. However,
Hard-Net surpassed these architectures and achieved an unassailable lead over them in every
index. Further, our augmentation strategies can achieve a significant performance gain, which
helps the model generalize on the challenging validation set. The possible limitation of this
study is setting the manual probabilities for the different augmentation techniques. Moreover,
the current input resolution is 352× 352 for the network, which can be increased more without
reducing the speed. The results were also uploaded for round I and round II of the competition
where we achieved third rank on round II based on the generalisability scores provided by the
organisers similar to detection generalisation defined in [24].

4. Conclusion

This paper presented different methods for the accurate segmentation of polyps in GI tract
diseases. We employ the EfficientNet model as an encoder backbone for all existing methods
and compare it with the recently published HarDNet model. We conclude that the HarDNet
took the unassailable lead over other methods in terms of segmentation accuracy and speed.
Further, the augmentation strategies applied in the model increase the performance by 2 percent.
In the future, we plan to continue researching more efficient tasks.
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